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Chloroquine activates the p53 pathway and
induces apoptosis in human glioma cells
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Glioblastoma is the most common malignant brain tumor
in adults. The currently available treatments offer only a
palliative survival advantage and the need for effective
treatments remains an urgent priority. Activation of the
p53 growth suppression/apoptotic pathway is one of
the promising strategies in targeting glioma cells. We
show that the quinoline derivative chloroquine activates
the p53 pathway and suppresses growth of glioma cells
in vitro and in vivo in an orthotopic (U87MG) human
glioblastoma mouse model. Induction of apoptosis is
one of the mechanisms underlying the effects of chloro-
quine on suppressing glioma cell growth and viability.
siRNA-mediated downregulation of p53 in wild-type
but not mutant p53 glioblastoma cells substantially
impaired chloroquine-induced apoptosis. In addition to
its p53-activating effects, chloroquine may also inhibit
glioma cell growth via p53-independent mechanisms.
Our results clarify the mechanistic basis underlying the
antineoplastic effect of chloroquine and reveal its thera-
peutic potential as an adjunct to glioma chemotherapy.
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lioblastoma is the most common malignant
Gbrain tumor in adults. Owing to its notorious

radiation- and chemoresistance, recurrence of
glioblastomas following surgical resection and adjuvant
radiation- and chemotherapy is inevitable, with an
invariably lethal outcome. The currently available treat-
ments offer only a palliative survival advantage, under-
scoring the need for effective treatments being an
urgent priority.'* Targeting intracellular signaling
pathways involved in the regulation of the growth and
viability of glioma cells is the molecular basis of
several experimental therapeutic strategies.’™ In the
past decade, activation of the endogenous p53 growth
inhibitory pathway or restoration of p53 functions in
glioma cells by introduction of exogenous wild-type
pS53 (wtpS53) has been an intensively explored strategy
to suppress glioma progression.®~'° The tumor suppres-
sor p53 can potently inhibit cell growth by inducing a
transient or permanent block of proliferation or by acti-
vating cell death programs in response to different types
of cellular stress, which has provided a rationale for
pS53-based anticancer therapies."' ' Further, the rel-
evance of p53-based therapies for glioma treatment is
highlighted by the fact that p53—in contrast to most
other solid tumors—is infrequently mutated in primary
or de novo glioblastomas (less than 30% mutations in
the TPS53 gene,'* the most frequently occurring form
of this tumor)."> A phase I trial provided compelling evi-
dence that re-establishment of wtp53 functions by intro-
duction of exogenous wtp53 is a feasible approach.”'°
However, expression of recombinant wtp53 in glioma
cells effectively activates the p53-dependent cell cycle
checkpoints, but fails to induce apoptosis,'® which
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from a therapeutic point of view would be the most
desired outcome.'® An alternative approach to activate
the p53-dependent apoptotic response is based on the
ability of some agents to activate the endogenous p53
pathway either by DNA-damaging agents or by the
agents that can stabilize p53 protein in the absense of
DNA damage.'” In this context, the potential antitumor
effects of quinolines have recently attracted considerable
interest."®=2°  Chloroquine is an aminoquinolinic
membrane-penetratable agent capable of intercalating
into double-stranded DNA without causing physical
damage to the DNA.?! Owing to its weak base proper-
ties, chloroquine also accumulates in lysosomes and
may trigger apoptosis via the inhibition of autophagic
protein degradation.**~>¢ Widely known as an antima-
larial and antirheumatoid drug, chloroquine has recently
emerged as a potential anticancer agent. The cytotoxic
effects of chloroquine have been demonstrated for
tumor cells derived from different types of human
cancers.?>?3?728 The effects of chloroquine on glioma
cells have not been systematically investigated pre-
viously, but there is empirical evidence that chloroquine
may suppress clinical glioma progression by unknown
mechanisms.?”*° Prompted by these findings, we have
examined the effects of chloroquine on the growth and
viability of glioma cells in vitro and in vivo. In this
study, we demonstrate that chloroquine induces apopto-
sis in glioma cells in vitro and suppresses the growth of
experimental gliomas in vivo. Our results demonstrate
that chloroquine treatment results in a sustained stabiliz-
ation of the p53 protein and induces the transcriptional
activity of p53 in glioma cells. Further, we show that
chloroquine shows cytotoxic activity independent of
activation of the p53 pathway in cells with deficient
p53 function, although less efficiently compared with
glioma cells with functional wtpS53.

Materials and Methods

Cells and Antibodies

The human glioma cell lines used in the study have
been previously characterized with respect to their p53
functional status.’' Cells were propagated in minimal
essential medium (Biochem) supplemented with 10%
fetal calf serum. A concentrated chloroquine solution was
prepared for each experiment by dissolving the sodium
salt of chloroquine in PBS, filter-sterilized, and diluted to
the desired concentration in cell culture medium. Cells
were harvested at the indicated time points after chloro-
quine treatment, washed in ice-cold PBS, and lysed in
SDS cell lysis buffer (50 mmol/L Tris—-HCI, pH 8.0,
150 mmol/L NaCl, and 1% SDS) containing protease
inhibitors (Roche). Human p53 was detected by the anti-
body DO-7 (BD Pharmingen) or the phosphorylation-
sensitive antibody 16G8 recognizing p53 protein phos-
phorylated at Ser15 (Cell Signaling Technology, Inc.).
Other antibodies used in the study included those against
p21, mdm2, TBP (Santa Cruz Biotechnology), pig3
(Calbiochem), a-tubulin (Oncogene), bax (Upstate), or
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cleaved caspase-3 (Cell Signaling Technology, Inc.). For
Western  blot  analyses, cells were lysed in
SDS-containing cell lysis buffer supplemented with pro-
tease inhibitors. The protein concentration was deter-
mined using the Bradford reagent (Sigma-Aldrich) and
equalized by using SDS lysis buffer.

Assessment of Cell Growth, Cell Death, and Apoptosis

To assess the effects of chloroquine on cell growth,
cells were seeded in 96-well plates at a density of
2.5 x 10° cells/well 1 day before treatment. After 24
hours of incubation, treatment with chloroquine was
started by addition of chloroquine at the desired concen-
tration to the medium. After 24 hours of incubation with
chloroquine, cells were washed with sterile PBS and
replenished with fresh medium. Cells in 6 replicate
wells were fixed with 3% glutaraldehyde at 24-hour
intervals. After 8 consecutive days, fixed cells were
stained with the DNA dye crystal violet, washed with
PBS, and the dye was solubilized in buffer containing
1% SDS. Absorbance was measured at 560 nm and
plotted versus incubation time. To assess cell death,
the percentage of nonviable cells was determined by
the trypan blue exclusion assay. To estimate rates of
apoptosis, the percentage of apoptotic cells was deter-
mined by counting the number of immunostained
cells positive for activated caspase-3. Apoptotic DNA
fragmentation was assessed by immunofluorescence
detection of TdT-mediated dUTP nick-end labeling
(TUNEL)-positive cells (ApoAlert™ DNA
Fragmentation Assay Kit, Clontech, TAKARA Bio). To
evaluate the effects of chloroquine on the integrity
of the mitochondrial membrane function, untreated
or chloroquine-treated cells were stained with the
fluorescent cationic dye (5,5',6,6'-tetrachloro-1,1',3,3'-
tetraethylbenzimidazolcarbocyanine  iodide  JC-1;
Mitochondrial Membrane Potential Detection Kit,
Stratagene), which forms red fluorescent aggregates in
the mitochondria of healthy cells but not in the apoptotic
cells.>* Red (excitation 550 nm, emission 600 nm) and
green (excitation 485 nm, emission 535 nm) fluorescence
were measured using a Spectrafluor plate reader
(TECAN) to determine the red/green fluorescence ratios.

siRNA Transfections and Immunofluorescence Staining

Cells were seeded on cover slips in 24-well tissue cuture
plates at a density of 0.6-1.0 x 10° cells/mL for at least
24 hours prior to transfection. Cells were transfected
with commercially validated p53-siRNA (TP53
Validated Stealth, Invitrogen) or unspecific scrambled
siRNA (Stealth Negative Control, Invitrogen) using the
Lipofectamin 2000 reagent (Invitrogen) according to
the supplier’s recommendations. For immunofluores-
cence staining, cells were washed with PBS, fixed
with a 4% paraformaldehyde in PBS, and permeabilized
in cold acetone/methanol (1:1) mixture overnight.
Paraformaldehyde-fixed and permeabilized cells were
washed in 0.5% BSA in PBS, blocked in the same
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buffer, and incubated with anticleaved caspase-3 anti-
body at +4°C overnight. Washed cells were then incu-
bated with Alexa Fluor 555-conjugated goat antirabbit
antibody (Molecular Probes Inc.) for 30 min at room
temperature followed by three PBS washes. Finally,
washed cells were counterstained with DAPIL

Orthotopic Glioma Model and Chloroquine Treatment

All procedures were performed in accordance with the
institutional guidelines for animal welfare and experimen-
tal conduct. For intracranial implantation, U87MG cells
were harvested from monolayer culture, washed twice,
and resuspended in PBS at a concentration of 0.5 x 10°/
pL. Prior to implantation, nude mice (NMRI, Taconic
Europe) were anesthetized by a peritoneal injection of a
ketamine/xylazine mixture (120 mg ketamine and
16 mg xylazine in 10 mL of PBS) at 0.1 mL/10g of
body weight. For implantation, the cranium was fixed in
a stereotactic frame (TSE Systems). Cells were injected
into the caudato-putamen of the right-brain hemisphere
using the following stereotactic coordinates in reference
to the bregma: 1 mm (anteroposterior axis), 3 mm (later-
omedial axis), and 2.5 mm (vertical axis). A threshold
dose of chloroquine with respect to acute brain toxicity
was established by injection of 5 uL of 0.7, 7.0, 30, or
70 mM chloroquine solutions into the internal capsule
of the right-brain hemisphere of ketamine-anesthesized
mice. At 70 mM, repetitive injections of chloroquine
were found to be toxic, as they provoked seizures in two
out of three mice. At 30 mM, repetitive injections of chlor-
oquine were well tolerated by all recipient animals and
caused no neurological symptoms. Therefore, a 30 mM
concentration of chloroquine was used for the treatment
of intracranial glioma xenografts. At day 10 postimplan-
tation, 5 wL of PBS or chloroquine was administered
into the site used for injection of tumor cells by means
of a screw bold-guided injection as described® for 17
days. Twenty-six days postimplantation, animals were
sacrificed following a lethal intraperitoneal injection of a
ketamine/xylazine mixture (50 mg xylazine and 350 mg
ketamine per 1kg body weight). The tumor-bearing
brains were explanted, fixed in 4% formalin, cut in
coronal sections, and embedded in paraffin. One- to three-
micrometer thick sections were placed on glass slides and
stained with hematoxylin and eosin. The largest tumor
areas were determined by microscopic examination of
consecutive histological sections and measured by using
Cell-A-Image software (Olympus Soft Imaging Systems).
Paraffin-embedded sections were scored for apoptosis by
TUNEL assay and mitoses. For calculating the apoptotic
as well as the mitotic indexes, up to three sections of the
entire tumor were scored by screening the tumor on
adjacent high-power fields. The number of apoptoses or
mitoses counted was divided by the number of high-power
fields (up to 49) used for screening the tumor.

Statistical Analyses

Each experimental point has been performed in tripli-
cate per experiment unless stated otherwise; the data

shown represent means (SEM). Statistical analyses
were performed using the GraphPad Prism 5 software

(GraphPad Software).

Results

Chloroquine Inhibits Glioma Cell Growth

To assess the effect of chloroquine on the growth of
glioma cells, the growth of a panel of glioma cell lines
with different functional p53 status was analyzed in the
presence of increasing concentrations of chloroquine.
Glioma cell lines U87MG and G120 express wtpS53.
G130 and G44 lines express no or a truncated p53 due
to gross chromosomal aberrations (G130) or a nonsense
mutation in the TP53 gene,”' respectively. G112 and
U251 harbor a TP53 mutation within the hot-spot
codon 273 and express transcriptionally inactive
mutant p53. The results showed that chloroquine
strongly suppressed glioma cell growth in a dose-
dependent manner (Fig. 1A). Although the growth-
suppressing effect of chloroquine was observed in all
cell lines tested, cell lines with wtp53 (U87MG and
G120) appeared more sensitive to all doses of chloro-
quine tested compared with cell lines that are null for
p33 (G130), express truncated p53 (G44), or harbour
inactivating TP53 mutations (U251 and G112). To
examine whether the growth inhibition by chloroquine
was a consequence of affected cell viability, we analyzed
the percentage of nonviable cells in untreated or
chloroquine-treated cultures using a trypan blue exclu-
sion assay. The results summarized in Fig. 1B show that
chloroquine affects glioma cell viability in a dose-
dependent manner. Within the range of the tested chlor-
oquine treatment doses, cell viability was significantly
lower in cell lines with wtp53 compared with
mutp53-expressing cell lines, consistent with the notion
that the p53 status may be an important factor determin-
ing the sensitivity of glioma cells to chloroquine.

Apoptosis Contributes to Chloroquine-Induced Death
in Glioma Cells

Chloroquine can induce cell death by distinct mechan-
isms. A caspase-independent mechanism involving
lysosomal targeting has been described for some types
of nontumorigenic cells.?*** In contrast, caspase-
dependent  apoptosis has been implicated in
chloroquine-induced cell death in different types of malig-
nant tumor cells*>*° and in some types of neurons.”” To
analyze the mechanisms of chloroquine-induced death in
glioma cells, we assessed hallmarks of the apoptotic
cascade, including the activation of caspase-3 and frag-
mentation of genomic DNA. Glioma cells were treated
with chloroquine at a dose of 30 pg/mL, a concentration
which lies within the window of chloroquine concen-
trations (20-40 wg/mL) found to be cytotoxic for all
of the tested glioma cell lines (Fig. 1) and which was
sufficient to induce apoptosis in other tumor cell
types.”>*>*”  Immunofluorescence staining for the
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Fig. 1. Chloroquine inhibits glioma cell growth and viability in culture. (A) Assessment of cell growth rates in glioma cells with known
functional status of p53.3" Cells were treated with a range of chloroquine concentrations indicated in the legends. (B) Assessment of cell
death rates in glioma cells lines with wtp53 (left panel) or deficient p53 function (middle and right panels). Values represent the mean of

6 replicates.

cleaved form of caspase-3 revealed that chloroquine treat-
ment led to the activation of caspase-3, which is indicative
of induction of apoptosis (Fig. 2A-C). Notably,
chloroquine-treated cells generally showed a character-
istic change in nuclear morphology (see inset, Fig. 2A),
which, however, did not coincide with caspase-3 acti-
vation. Chloroquine-induced activation of caspase-3
occurred in a time-dependent manner and was first
observed after 48 hours of chloroquine treatment
(Fig. 2A, shown for the U87MG line). After 96 hours of
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treatment, the majority of the cells were positive for
cleaved caspase-3 (Fig. 2B) indicating a robust apoptotic
response. The assessment of caspase-3 activation by
chloroquine in different cell lines is summarized in
Fig. 2C. The activation of caspase-3 was considerably
more profound in glioma cells with wtp53 compared
with those with mutant p53 (Fig. 2C), suggesting a contri-
bution of wtp353 activities to chloroquine-induced apop-
tosis. Further supporting the impact of apoptosis in
chloroquine-mediated cytotoxicity, glioma cells treated
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Fig. 2. Chloroquine induces apoptosis in cultured glioma cells. (A and B) Time-dependent activation of caspase-3 by chloroquine in U87MG
cells. Untreated or chloroquine-treated cells were stained for the cleaved form of caspase-3 and counterstained by DAPI. The inset in (A)
shows the characteristic nuclear morphology of chloroquine-treated cells. (C) Summary of the caspase-3 activation assessment in glioma
cells lines with different status of p53. The percentage of cells positive for cleaved caspase-3 was determined by counting a minimum of
500 cells in 5-10 microscopic fields in replicates of 3 for each condition. (D) Assessment of apoptosis in U87MG cells by TUNEL. A
propidium iodide (PI) counterstain was used. (E) The effects of chloroquine on the mitochondrial membrane potential integrity assessed
by measurements of the mitochondrial accumulation of fluorescent JC-1 in glioma cells with wtp53 (U87MG) or mutp53 (G112). The
ratio of red/green JC-1 fluorescence was determined in cells untreated or treated with chloroquine for 24 or 48 hours.

with chloroquine showed disintegration of genomic DNA
as demonstrated by TUNEL (Fig. 2D). One of the early
events induced by chloroquine in glioma cells was a
decrease in the mitochondrial aggregation of the fluor-
escent dye JC-1 indicative of a distortion of the mitochon-
drial membrane potential integrity, which preceded
activation of caspase-3 and occurred at a much
earlier time, as early as 24 hours after treatment
(Fig. 2E). Interestingly, a collapse of the mitochondrial
membrane potential caused by chloroquine occurred
with comparable efficacy in cells with wtp53 or
mutp53 (Fig. 2E), indicating that mitochondrial dysfunc-
tion caused by chloroquine may be a p53-independent
effect.

Chloroquine Leads to Stabilization of the p53 Protein
and Induces p53 Transcriptional Targets in Glioma
Cell Lines with wtp53

The increased sensitivity to chloroquine in glioma lines
expressing endogenous wtp53 compared with cell lines
expressing mutp53 (Figs 1 and 2) suggested an

involvement of the p53 pathway in the cytotoxicity of
chloroquine. Therefore, we assessed the levels of p53
protein and its transcriptional targets in glioma cell
lines with known functional status of p53 by Western
blot analyses. The results showed that chloroquine
treatment caused a marked stabilization of the p53
protein, which was chloroquine dose-dependent
(Fig. 3A, shown for the U87MG line). The
chloroquine-induced stabilization of the p53 protein
was considered functionally relevant because it was
accompanied by an increased expression of genes regu-
lated by p53 (Fig. 3B, left panel). Importantly, the
chloroquine-activated p353 transcriptional response
was effective not only in inducing genes involved in
p53 regulation and cell cycle control/DNA repair
(mdm?2 and p21) but also of apoptotic targets of p53
(pig3 and bax). The chloroquine-induced increase in
the expression levels of p53 target genes was also
observed in other cell lines expressing wtp53 such as
HCT116 and G168 (Fig. 3B, right panel and data not
shown). In contrast, chloroquine treatment did not
induce p53 target genes in glioma lines lacking func-
tional p53 (Fig. 3C). These results demonstrate that
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Fig. 2. (Continued).

chloroquine leads to an increase in the p53 protein level
and induces a p53-dependent transcriptional response
in glioma cells with wtp53. Since p53 activity is regu-
lated mostly at the posttranslational level**>” and as
chloroquine does not influence the levels of p53 tran-
scription,®® we next examined the possibility that chlor-
oquine may induce p53 posttranslational modifications
known to promote p53 stabilization in response to
different types of cellular stress. In particular, we were
interested in assessing p53 phosphorylation at a serine
residue at position 15 (p53-Ser15), a posttranslational
modification mediated by the ATM/ATR kinases®’
and essential for p53 stabilization during the cell’s
response to DNA damage.

The phosphorylation status of p53-Serl5 was
assessed in U87MG cells treated by chloroquine or by
v-irradiation. As expected, 7y-irradiation induced a
rapid phosphorylation of p53-Ser15, which preceded
stabilization of the p53 protein (Fig. 3D, upper panel,
compare the levels of p53-Ser15” with the total p53
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levels in lanes 1-4). These results indicate that DNA
damage-dependent signaling converging on pS33 is
intact in U87MG cells. In contrast, p53 stabilization fol-
lowing chloroquine treatment, apparent already 6 hours
after treatment (Fig. 3D, upper panel, compare the levels
of total p53 in lanes 5 and 7), was not accompanied by
appreciable phosphorylation at p53-Ser15 over baseline
levels (compare the levels of p53-Ser15® with the total
p33 levels in lanes 1-4 and 5-8). This lack of corre-
lation between chloroquine-induced stabilization of
p53 and its phosphorylation at Ser15 was observed not
only in glioma cells but also in the different cellular
context of an HCT116 colon carcinoma cell line, a
widely used experimental paradigm of the p53
pathway.*® Similar to the pattern observed in glioma
cells, HCT116 cells respond to chloroquine by a
marked stabilization of the p53 protein and induction
of p53 target genes (Fig. 3D, right panel). In contrast
to the robust and rapid phosphorylation of p53-Ser15
induced by 9-radiation (Fig. 3D, bottom panel,
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Fig. 3. The p53 pathway is responsive to chloroquine. p53 protein and products of the known p53 targets p27, mdm2, bax1, or pig3 were
assessed in glioma cell lines with different p53 status (A—C) and in the human colon carcinoma cell line HCT116 expressing wtp53 (B) by
Western blot. Cells were treated with varying concentrations of chloroquine for 24 hours (A) or with a constant dose of chloroquine (30 g/
mL) for the indicated time periods (B and C). (D) Assessment of the p53 phosphorylation status at a serine residue Ser15 in U87ZMG (upper
panel) and HCT116 (bottom panel) cells treated with chloroquine or ionizing radiation. The phosphorylated form of p53 (p53-Ser15") was
detected using a phosphorylation-sensitive antibody 16G8, which recognizes only the phosphorylated p53-Ser15” isoform. Total p53
detection was by antibody DO-7. The ubiquitously expressed cytoskeleton component a-tubulin or the basal transcription factor TBP

was assessed to assure equal protein loading.

compare the levels of p53-Ser15” in lanes 2, 5, and 8
with the basal p53-Ser15” levels shown in lane 1), chlor-
oquine treatment did not cause a considerable increase
in p53-Ser15 phosphorylation (compare the levels of
pS53-Ser1S” in lanes 3, 6, and 9 with the basal

p53-Ser15” levels shown in lane 1). These observations
strongly suggest that p53 stabilization and activation
of pS3 transcriptional response by chloroquine may
depend on mechanisms distinct from signaling induced
by DNA damage.
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Fig. 4. Inhibition of p53 diminishes apoptotic response to chloroquine in glioma cell lines with wtp53. (A) Assessment of the efficacy of
endogenous p53 inhibition by transfection with unspecific scr-siRNA or p53-siRNA. U251 cells, which express high levels of endogenous
mutp53 were transfected with scr-siRNA or p53-siRNA and stained with antibody DO-7 to ascertain the effect of siRNAs. (B) p53
inhibition by p53-siRNA diminished significantly (P < .02) the activation of caspase-3 in glioma cell lines with wtp53 but not in mutp53
lines. The percentage of cells with activated caspase-3 was determined by counting at least 500 cells in 5-10 microscopic fields from
three replicate cover slips. The results shown represent the mean of two experiments.

Induction of Apoptosis by Chloroquine Requires p53

The findings that chloroquine induces apoptosis and
activates the p53 pathway raised the question of a
causal link between the two phenomena. To address
this question, we assessed the effects of p53 knockdown
on the efficacy of apoptosis induced by chloroquine.
Glioma cell lines were transfected with commercially
available p53-siRNA to inhibit endogenous p53. Cells
transfected with unspecific siRNA (scr-siRNA) were
used as a control. The inhibition of p53 by siRNA-p53
was confirmed by immunofluorescence staining for p53
protein (Fig. 4A) and by Western blot analysis (data
not shown). Glioma cell lines transfected with
p53-siRNA or with scr-siRNA were treated with
chloroquine for 72 hours and assessed for activated
caspase-3. To score the rate of apoptotic cells, the
percentage of cells positive for cleaved caspase-3 was
determined. The results showed that inhibition of
wtp53 by p53-siRNA led to a significant reduction in
the number of cells positive for activated caspase-3 in
chloroquine-treated U87MG and G120 cells expressing
wtp53 (P =.0009 and .012, respectively, Fig. 4B). In
contrast, inhibition of mutp53 in the G112 line had
no effect on the chloroquine-induced apoptosis rates
in the p53-siRNA or scr-siRNA-transfected cells
(Fig. 4B). These results demonstrate that wtp53 function
is essential for apoptosis induction by chloroquine.

Chloroquine Inbibits Growth of Experimental Glioma

Our findings that chloroquine induces the death of cul-
tured glioma cells prompted us to examine the effects
of chloroquine in an orthotopic glioma mouse
model.*! Nude mice were intracranially implanted
with U87MG cells and randomized to chloroquine or
placebo  treatment. Ten days postimplantation
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(approximately one-third of the average survival of
U87MG implanted mice in this xenograft model), one
group received a daily injection of intratumoral chloro-
quine in PBS and the second group was administered
PBS alone. Twenty-six days postimplantation, animals
were sacrificed and tumor-bearing brains were processed
for histology. The histomorphometric measurements
revealed a significant reduction in the average tumor
size in the chloroquine group compared with the
control group (P=.0068) (Fig. S5A, left panel).
Chloroquine-treated tumors showed a significantly
lower number of mitotic cells compared with the
control group (P =.0018) (Fig. 5A, middle panel and
Fig. 5B), whereas the number of apoptotic cells by
TUNEL was significantly higher in chloroquine-treated
tumors compared with placebo-treated group (P =
.0019) (Fig. SA, right panel and Fig. 5C). These data
confirm our in vitro data and demonstrate that chloro-
quine is effective in suppressing growth and inducing
apoptosis of experimental glioma in vivo.

Discussion

This study demonstrates the effects of the quinoline
derivative chloroquine on the growth and viability of
cultured glioma cells and on experimental glioma in
nude mice. The results show that induction of
p53-mediated apoptosis is one of the mechanisms under-
lying the growth-suppressing effects of chloroquine.
Although there is some preliminary and empiric evi-
dence that chloroquine may retard glioma progression
and improve outcome in glioblastoma patients,*® the
molecular basis of the chloroquine-induced effects in
glioma cells remain poorly characterized. We show
that chloroquine cause a sustained stabilization of the
p33 protein and activates p53 transcriptional response
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Fig. 5. Treatment of experimental glioma with chloroquine in vivo. Tumor volumes and mitotic and apoptotic indexes were determined in
chloroquine- or PBS-treated U87MG tumors as described in the Materials and Methods section. (A) Chloroquine-treated tumors show a
significant decrease in the average tumor volume and a lower mitotic index, but significantly elevated rates of apoptotic cells. The data
analysis was performed using a one-way analysis of variance. (B) Representative hematoxylin/eosin-stained histological sections. The
arrowheads indicate mitotic cells. (C) Representative TUNEL-stained histological sections. The arrowheads indicate TUNEL-positive cells.

in glioma cells. This suggests that the p53 pathway plays
an essential role in the chloroquine-mediated suppres-
sion of cell growth and apoptosis. Supporting this con-
clusion, the apoptotic response to chloroquine is
diminished in glioma cells when wtp53 is experimentally
inhibited by p53-siRNA. Although the precise mechan-
isms by which chloroquine activates the apoptotic arm
of the p53 response needs further elucidation, our data
suggest that p53-dependent transcription of proapopto-
tic genes induced in response to chloroquine may be
involved. Another nonexcluding possibility is that chlor-
oquine may also promote a nontranscriptional pathway
to apoptosis mediated by the mitochondria-associated
fraction of p53.** The latter does not preclude a
pS53-dependent transcription of proapoptotic genes by
chloroquine.

The tumor-suppressing function of p53 relies on its
abilities to act as a surveillance factor responsible for
the maintenance of an error-free genome or as a potent
inducer of cell death. The prevalence of survival- or
death-promoting activities of wtp53 appears to be depen-
dent on the cellular context and the specific mechanism of
action of a particular stress factor or drug. For cytotoxic
treatments inducing DNA damage, a switch between
survival- and apoptosis-promoting activities of p33 is
thought to occur when the extent of DNA damage
exceeds the DNA repair capacity of the cell. On the
other side, a successful repair of DNA lesions serves as
a feed-back signal to re-enter the cell cycle, which requires
the reduction of the p53 protein to base levels. Because
radioresistant glioma cells are equipped with extraordi-
narily efficient mechanisms of DNA repair and the
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ability to activate DNA damage checkpoints,* a switch
to death-promoting activities of p53 may only occur at
doses that may be difficult to achieve in the setting of
clinically relevant DNA-damaging agents. Furthermore,
some activities of wtp53 may even contribute to the
increased DNA repair in glioma cells in response to
some DNA-damaging agents.**=*” The mechanisms of
chloroquine-dependent activation of p53 appear versatile
and may or may not involve the DNA damage response
depending on the cell type and experimental system. In
mammary gland epithelial cells, chloroquine-mediated
activation of pS53 relies on ATM signaling.®®*®
However, several ATM-independent mechanisms of
p53 activation by chloroquine have also been revealed,
indicating that in certain cell types, an ATM-dependent
DNA damage signal mi%ht be dispensable for p53
activation by chloroquine.”® Our results are concordant
with such a conclusion and indicate that chloroquine-
induced activation of p53 in glioma cells may occur by
by-passing ATM driven DNA damage signaling. The
lack of a need for DNA damage signaling in p53 acti-
vation by chloroquine would also be concordant with
the mechanism of DNA interaction of chloroquine,
which intercalates into, but does not damage DNA.*!
A scenario could be envisioned whereby DNA intercala-
tion by chloroquine, while unrecognized as DNA
damage by the genome surveillance maschinery, may
have a considerable and durable impact on p53 activities
associated with DNA binding, particularly those
relevant for the regulation of transcription. In this
context, it should be mentioned that DNA-associated
activities of p53 are sensitive to structural DNA altera-
tions,*” and chloroquine may enhance transcription by
intercalating and changing the structure of DNA.>°

In addition to its p53-activating effects, chloroquine
also suppresses the growth of glioma cells with mutant
pS53, although less efficiently compared with glioma
cells with wtp53. p53-independent cytotoxic effects of
chloroquine are well known and related to the ability
of chloroquine to cause mitochondrial dysfunction as a
consequence of inhibition of lysosomal autophagy.”*~>*
Our data demonstrating that chloroquine is capable
of reducing the mitochondrial membrane potential in
glioma cells regardless of p53 status suggest that this
mechanism may also contribute to the overall cytotox-
icity of chloroquine against glioma cells (Fig. 1C). An

important question is whether there is a link between
the p53-independent effects of chloroquine (mitochon-
drial depolarization) and its ability to induce
p353-dependent apoptosis. In this regard, previous find-
ings demonstrating that chloroquine-mediated mito-
chondrial dysfunction per se is not sufficient for
induction of apoptosis but requires bax,?**? a
pS53-regulated mediator of mitochondrial apoptosis,
might provide important clues. It may be envisioned
that activation of the p53 response by chloroquine may
be essential for the later phases of chloroquine-induced
apoptosis triggered initially through a p53-independent
distortion of the mitochondrial function. Such a compo-
site mechanism relying on the synergistic impact of the
p53-independent and -dependent actions of chloroquine
would also be consistent with the previous findings that
apoptosis and nonapoptotic mechanisms contribute to
cell death induced by chloroquine®****® and explain
why wtp53-expressing glioma cells generally show a
higher susceptibility to chloroquine compared with
mutpS3-expressing cells. Our findings are concordant
with the general perception that mitochondrial depolariz-
ation per se may be insufficient to elicit apoptotic cell
death®**'%2 in the absence of other causative factors
that may include a p53-regulated mediator of mitochon-
drial apoptosis such as bax-1.2

Although the mechanisms underlying the antitumoral
effects of chloroquine are only beginning to emerge, it
has now become clear that chloroquine has antineoplas-
tic effects in different types of cancers including gliomas.
The ability to induce apoptosis and inhibit glioma
growth as well as the long history of safe clinical use
suggest chloroquine as a candidate drug in the treatment
of malignant gliomas.
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