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Abstract

We used the RIP1-Tag2 (RT2) mouse model of islet cell carcinogenesis to profile the transcriptome of pancreatic
neuroendocrine tumors (PNET) that were either non-invasive or highly invasive, seeking to identify pro- and anti-
invasive molecules. Expression of multiple components of desmosomes, structures that help maintain cellular
adhesion, was significantly reduced in invasive carcinomas. Genetic deletion of one of these desmosomal components,
desmoplakin, resulted in increased local tumor invasion without affecting tumor growth parameters in RT2 PNETs.
Expression of cadherin 1, a component of the adherens junction adhesion complex, was maintained in these tumors
despite the genetic deletion of desmoplakin. Our results demonstrate that loss of desmoplakin expression and resultant
disruption of desmosomal adhesion can promote increased local tumor invasion independent of adherens junction
status.
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Introduction

The ability of a tumor to invade into the surrounding normal

tissue marks a critical step in the transition from benign to

malignant tumor growth. The acquisition of this hallmark of

cancer is associated with poor prognosis for many human cancers

and is often considered a precursor to the development of

metastases [1]. As such, considerable effort has been directed

towards identifying invasion promoting and suppressing molecules

and the mechanisms by which they modulate a tumor’s invasive

phenotype [2].

Amongst the discernible barriers to the acquisition of an

invasive growth phenotype is cell-cell adhesion, and cellular

alterations that result in disrupted, reduced, or otherwise

functionally altered cellular adhesion are strongly associated with

the progression to a malignant tumor phenotype [3–5]. The

importance of sustaining cellular adhesion for homeostasis,

particularly in epithelial tissues, is evident in the number of

distinct structures whose primary function is to maintain cell-cell

interconnections, which include the adherens junctions (AJs),

desmosomes, and tight junctions [6,7]. These complexes share

many structural similarities, including the presence of transmem-

brane proteins – typified by the cadherins – that mediate adhesive

connections with neighboring cells as well as intracellular

molecules – exemplified by the catenin and the plakin families –

that connect these transmembrane components to the cytoskeleton

[6,7]. In particular, changes in the expression and/or function of

AJ components have been associated with malignant cancers, and

numerous studies have focused on the role of AJs in restricting

invasive growth [3,8,9].

In this study, we utilized the RIP1-Tag2 (RT2) mouse model of

cancer to identify the mechanisms by which tumors acquire

invasive growth capabilities. RT2 mice develop multiple pancreatic

neuroendocrine tumors (PNET) by 12–14 weeks of age due to the

expression of the SV40 T antigen oncoprotein (Tag) in the

pancreatic b cells [10]. This model has proven useful in

characterizing many aspects of tumorigenesis due to its relatively

synchronous and predictable progression through distinctive

lesional stages that culminate in invasive carcinomas [11–13].

We used this model to identify pro- and anti-invasive molecules in

an unbiased fashion by comparing the non-invasive islet tumors to

highly invasive carcinomas using microarray profiling of the

mRNA transcriptome. We identified several components of

desmosomes whose expression was significantly decreased in

invasive tumors, implicating attenuation of desmosomal function

in malignant progression. To assess this hypothesis, we engineered

into the oncogene-expressing cancer cells in RT2 mice a genetic

deletion of desmoplakin (Dsp; MGI: 109611), an intracellular protein

critical for desmosomal stability [14]. Loss of Dsp led to an

increased incidence of invasive carcinomas providing strong

evidence that desmosomal adhesion acts as a distinct barrier to

invasive tumor growth.

PLoS Genetics | www.plosgenetics.org 1 September 2010 | Volume 6 | Issue 9 | e1001120



Results

Expression of desmosomal components is lost in invasive
RT2 tumor lesions

We chose to use the RT2 mouse model of cancer to characterize

mechanisms governing the switch from benign to invasive tumor

growth since a broad spectrum of invasive tumor lesions develop in

end-stage RT2 animals. These include the non-invasive islet tumor

(IT), the focally invasive carcinoma type-1 (IC1), and the broadly

invasive carcinoma type-2 (IC2) [15].

To evaluate potential mechanisms regulating invasive tumor

growth in this model, we isolated tissue from IT and IC2 lesions in

end-stage RT2 animals by laser capture microdissection and then

profiled the mRNA transcriptome. The IC2 class showed

widespread transcriptional changes as compared to the IT class

(Dataset S1). We chose to focus our attention on differentially

expressed genes encoding components of two cell-cell adhesion

structures, namely adherens junctions and desmosomes (Table 1),

since elements of each were prominently downregulated. The

expression of cadherin 1 (Cdh1, also known as E-cadherin; MGI:

88354), a molecule previously demonstrated to restrict invasive

growth in this and other models [8,16], was decreased in IC2

lesions as expected. Interestingly, Cdh1 was the only member of

AJs that was significantly altered in IC2 lesions (Table 1). In

contrast, multiple genes encoding components of desmosomes

were significantly reduced in IC2 lesions (Table 1). Moreover, the

expression of several desmosomal genes in addition to Cdh1 was

progressively reduced in the distinctive stages of PNET tumori-

genesis in RT2 mice as well as in human PNETs as compared to

normal human pancreatic islets, when total lesional stages, in

particular ungraded tumors, were analyzed (Figure S1) [13].

Although the expression of these genes was reduced in ungraded

whole tumors in comparison to normal islets, their levels were

further reduced in the microdissected invasive IC2 lesions

(Table 1). Based on these results, we sought to determine what

role desmosomal adhesion might play in regulating invasive tumor

growth in this mouse model of cancer.

To confirm the microarray results, we performed immunohis-

tochemistry for multiple desmosomal components. Staining for

Dsp and for one of the desmosomal cadherins, desmoglein 2 (Dsg2;

MGI: 1196466), as well as for Cdh1 demonstrated that these

molecules are expressed in the pancreatic islets as well as in the

pancreatic ducts and the exocrine pancreas of wild-type animals

(Figure 1 and Figure S2). In tumors of end-stage RT2 animals, the

expression of all three molecules was maintained in IT lesions and

was largely extinguished in IC2 lesions (Figure 1 and Figure S2). In

contrast to Cdh1, expression of catenin beta 1 (Ctnnb1; MGI: 88276),

another component of AJs, was maintained in both IT and IC2

lesions, comparable to wild-type islets (Figure S3). This result is

consistent both with the microarray result demonstrating that Cdh1

was the only AJ component to show any change in expression and

with a previous study suggesting that Ctnnb1 does not contribute to

RT2 tumorigenesis [17]. Collectively, these data confirm the

microarray results and suggest the hypothesis that loss of

desmosomal adhesion might contribute to the development of an

invasive phenotype.

b cell specific deletion of Dsp in RT2 animals
To address the hypothesis raised by the microarray and

immunohistochemistry results, we asked whether functionally

disrupting desmosomal activity in vivo would promote invasive

tumor growth in RT2 mice. To accomplish this, we chose to

genetically delete Dsp since there is a single Dsp gene as compared

to other components of desmosomes for which there are multiple

Author Summary

The ability of a tumor to invade into the surrounding
normal tissue is one hallmark of a malignant cancer. We
sought to identify factors that either restrict or promote
tumor invasion in a genetically engineered mouse model
of pancreatic neuroendocrine cancer by characterizing the
transcriptional profiles of the non-invasive and invasive
pancreatic neuroendocrine tumors (PNET) that develop in
this model. This analysis demonstrated that multiple genes
encoding components of desmosomes, cellular structures
dedicated to the maintenance of cell-cell adhesion, were
expressed at much lower levels in invasive PNETs,
suggesting that loss of desmosomal adhesion contributes
to the development of an invasive phenotype in these
tumors. Genetic deletion of one of these desmosomal
components in PNET-bearing mice resulted in increased
local tumor invasion. These results are important since the
development of an invasive phenotype is associated with a
poor prognosis for many human cancers and is often a
precursor to the development of distant metastases. Our
findings demonstrate one mechanism by which tumors
can acquire such an invasive phenotype and may prove
useful in evaluating the malignancy of human cancers.

Table 1. Summary of Microarray Results for Components of Desmosomes and Adherens Junctions.

P-value Fold-changea Affymetrix probe IDb Gene symbol Gene name Synonyms Complex

0.017 27.81 1426911_at Dsc2 Desmocollin 2 Desmosome

0.027 27.52 1439476_at Dsg2 Desmoglein 2 Desmosome

0.053 212.61 1435494_s_at Dsp Desmoplakin Desmosome

0.019 214.03 1449799_s_at Pkp2 Plakophilin 2 Desmosome

0.029 212.99 1448261_at Cdh1 Cadherin 1 E-cadherin Adherens junction

0.181 21.33 1437807_x_at Ctnna1 Catenin alpha 1 Alpha E catenin Adherens junction

0.795 21.09 1430533_a_at Ctnnb1 Catenin beta 1 Beta catenin Adherens junction

0.444 1.29 1445830_at Ctnnd1 Catenin delta 1 P120 catenin Adherens junction

0.852 1.30 1426873_s_at Jup Junction plakoglobin Gamma catenin Adherens junction; desmosome

aFold-change represents the widely invasive carcinoma type-2 (IC2) class as compared to the non-invasive islet tumor (IT) class of RIP1-Tag2 tumor lesions.
bAffymetrix probe ID corresponds to the Mouse Genome 430 2.0 Array.
doi:10.1371/journal.pgen.1001120.t001

Desmosomal Adhesion and Tumor Invasion
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non-allelic genes [6]. Furthermore, ablation of Dsp in vivo has

previously been shown to impair desmosome function [14]. Since

the Dsp whole body knockout is embryonic lethal [14], we

employed the Cre/loxP system to ablate the Dsp gene specifically

in the pancreatic b cells, the same cells that express the Tag

oncogene in RT2 mice. In combination with a DspFlox allele [18],

we used a mouse line in which a tamoxifen-regulatable Cre

recombinase is controlled by the pancreatic duodenal homeobox gene 1

promoter (Pdx1-CreER) [19]. Pdx1 is expressed in all pancreatic

lineages during development and is variably expressed in the

adult pancreas, in particular being widely expressed in b cells

[20,21].

Figure 1. Desmoplakin and cadherin 1 expression in wild-type islets and RT2 PNETs. Expression of desmoplakin (Dsp) and cadherin 1 (Cdh1) is
lost in the IC2 but not the IT grade of PNET in RT2 mice. (A–C) H&E staining of a normal islet from a wild-type B6 mouse and of an IT and an IC2 tumor
from an end-stage RT2 mouse. Dashed lines demarcate tumor margins. (D–F) Immunofluorescence staining with DAPI to visualize cellularity. (G–I)
Immunofluorescence staining for Cdh1. (J–L) Immunofluorescence staining for Dsp. (M–O) Merge of Cdh1 and Dsp immunofluorescence staining (G–
L). (P–R) Higher magnification of the boxed regions in M–O. Scale bars represent 200 mm (A–O) and 100 mm (P–R).
doi:10.1371/journal.pgen.1001120.g001
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We intercrossed RT2+; DspFlox/WT with Pdx1-CreER+; DspFlox/WT

mice to generate the appropriate genotypes, and all expected

genotypes and genders were observed in approximate Mendellian

ratios (Table S1 and Table S2). To induce Cre activity, all Pdx1-

CreER positive mice were given tamoxifen for five consecutive days

beginning at 10 weeks of age when incipient tumors are first

observed in RT2 mice [22]. In the absence of the RT2 transgene,

genetic ablation of Dsp resulted in uniform loss of Dsp expression in

the pancreatic islets, as determined by immunohistochemistry

(Figure S4). Deletion of Dsp did not cause any change in Cdh1

expression or in the gross morphological appearance of the non-

oncogene-expressing islets (Figure S4). Loss of Dsp was accompa-

nied by significantly reduced Dsg2 expression in the pancreatic

islets whereas the expression of insulin (Ins), the hormone produced

by b cells, did not appear to be affected (Figure S5). These results

are consistent with compromised desmosomal adhesion, although

we cannot strictly rule out the possibility that some residual

desmosomal function persists in the absence of Dsp. Ablation of

Dsp in normal pancreatic islets did not affect multiple physiological

parameters, such as body mass and fasting glucose levels, and its

expression in this tissue compartment is apparently dispensable in

adult mice (Figure S6), setting the stage to assess the impact of its

loss on PNETs arising from such islets. Lastly, the tamoxifen

induction regimen by itself had no obvious effect on any aspect of

RT2 tumorigenesis examined, including tumor invasion, when

tamoxifen was applied to RT2 mice that lacked the Pdx1-CreER and

DspFlox alleles (Figure S7).

Loss of Dsp does not affect tumor growth parameters in
RT2 mice

Induced loss of Dsp at 10 weeks of age did not affect any of the

tumor growth parameters in RT2 mice that were sacrificed 4 weeks

later. No significant changes were observed in the number of tumors

that developed nor in the collective tumor burden when comparing

RT2+; Pdx1-CreER+; DspFlox/Flox mice and littermate controls

(Figure 2A–B). Furthermore, the rates of tumor proliferation and

tumor apoptosis, as judged by the levels of the proliferation marker

Ki67 and the TUNEL assay respectively, were indistinguishable

between groups (Figure 2C–J). Thus, we conclude that the loss of

Dsp does not affect tumor growth in this model.

Loss of Dsp leads to increased local tumor invasion in RT2
mice

While conditional genetic ablation of Dsp in the angiogenic islet

dysplasias and incipient solid tumors of RT2 mice had no

discernible effects on tumor formation and subsequent tumor

growth parameters, it did lead to an increase in tumor invasion.

RT2 mice develop a spectrum of tumor lesions, including non-

invasive (IT), focally invasive (IC1), and broadly invasive (IC2)

lesions (Figure 3A–F) [15]. Loss of Dsp resulted in a greater

frequency of invasive tumors and a concomitant reduction in the

percentage of non-invasive IT tumors in mice analyzed four weeks

after genetic ablation of Dsp in incipient solid tumors (Figure 3G–

H). Whereas ,40% of total tumors could be classified as invasive

carcinomas in control mice, greater than 60% of all tumors fell

into this category in RT2+; Pdx1-CreER+; DspFlox/Flox mice

(Figure 3G). Interestingly, this shift appears to result from selective

progression to the focally invasive IC1 but not to the widely

invasive IC2 tumors. Indeed, while there is no significant change

in the development of IC2 lesions (approximately 10% of all

tumors fall into this class regardless of Dsp status), more than 50%

of tumors can be classified as IC1 lesions in RT2+; Pdx1-CreER+;

DspFlox/Flox mice versus ,30% in control mice (Figure 3H).

We confirmed that Dsp was in fact lost in these tumors by

examining the recombination status of the Dsp allele by PCR.

Tumors that were genotypically DspFlox/Flox showed near universal

recombination of the Dsp allele, confirming that Dsp was lost in

these tumors (Figure 3I). Tumors isolated from control DspWT/WT

or DspFlox/WT mice showed no recombination or were heterozy-

gous for the recombined and wild-type Dsp alleles respectively.

Thus, we conclude that the conditional genetic ablation of Dsp in

incipient tumors of RT2 mice leads to increased local tumor

invasion.

Cdh1 expression is maintained in IC1 tumor lesions
regardless of Dsp status

We were intrigued that loss of Dsp led to an increase in the IC1

class but not in the IC2 class of invasive tumors. Since Cdh1 also

acts as a dominant invasion suppressor in this model, we examined

its status in the tumors from RT2+; Pdx1-CreER+; DspFlox/Flox mice

and littermate controls by immunohistochemistry. We found that

Cdh1 expression was maintained in the IT and IC1 tumors that

developed regardless of Dsp status (Figure 4I–L). Tumor margins

and regions of invasion were identified by staining for the Tag

oncoprotein (Figure 4E–H). Indeed, Cdh1 appeared to be

expressed at comparable levels in IT and IC1 tumor lesions

regardless of Dsp status (Figure 4M–T). Expression in IT and IC1

lesions of a second component of AJs, junction plakoglobin (Jup, also

known as gamma catenin; MGI: 96650), was also unaffected by Dsp

status (Figure S8), consistent with AJ function being maintained in

these lesions despite the absence of Dsp and impaired/ablated

desmosomal function. Lastly, cadherin 2 (Cdh2, also known as N-

cadherin; MGI: 88355), a marker of epithelial-mesenchymal

transition (EMT), was expressed at readily detectable and

comparable levels in IT and IC1 tumors regardless of Dsp status,

as well as in the IC2 tumors that did not express Cdh1 (Figure S9),

consistent with the results of a previous study investigating

determinants of progression to invasive carcinoma [8]; notably,

there is no indication that activation of the invasive growth

capability in this pathway involves an EMT, as reflected in

differential expression of Cdh2 or other markers of EMT. Given

that the expression of both Dsp and Cdh1 was lost in IC2 lesions,

the most invasive class of RT2 tumors, both in unmodified RT2

mice and in tamoxifen-treated RT2+; Pdx1-CreER+; DspFlox/Flox

mice (Figure 1 and data not shown), we infer that loss of Dsp by

itself is sufficient to promote the development of focally invasive

tumors while the additional loss of Cdh1 is required to develop a

more aggressive invasive tumor phenotype.

Discussion

To date, much of the work on desmosomes in human disease

has focused on their role in maintaining heart and skin integrity,

where desmosomal defects are associated with cardiomyopathy

and skin blistering conditions respectively [23]. More recently, a

potential role for desmosomes in cancer progression has been

suggested based on a variety of experimental clues [24]. For

example, in vitro cell culture assays demonstrated that inhibiting

desmosomal adhesion via blocking peptides caused morphological

disorganization [25] while introduction of desmosomal compo-

nents into a nonadhesive cell line resulted in increased cell

aggregation and reduced cellular invasion in vitro [26]. These

studies suggested that loss of desmosomal function might

contribute to tumor invasion and malignancy, consistent with

their role in maintaining cellular adhesion. (Our attempts to

perform similar in vitro experiments using cell lines derived from

RT2 tumors [bTCs] were hindered by the fact that bTC cell lines

Desmosomal Adhesion and Tumor Invasion
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express desmosomal components at low levels, presumably due to

adaptations to culture, and generally perform poorly in migration/

invasion assays – data not shown). In further support of the

proposed role of desmosomes as a barrier to malignant

progression, several pathology studies characterizing human

cancers have shown that decreased or altered expression of

desmosomal components, including Dsp, correlates with increased

tumor invasion, advanced tumor grade, and poor patient

prognosis, particularly in oral cancers where expression of

desmosomal components are highly expressed in the normal oral

mucosa [4,5,27]. Additionally, our bioinformatic analysis of

human cancer databases confirmed that the expression of

desmosomal genes is often decreased in a variety of human

epithelial cancers as compared to normal tissues and is

occasionally further decreased in more advanced grades of tumors

(Table S3). The present study substantively extends this current

state of knowledge by demonstrating that desmosomal adhesion

can indeed act as a distinct barrier to the development of an

invasive tumor phenotype in the in vivo setting of a genetically

engineered mouse model of cancer.

Figure 2. Genetic deletion of desmoplakin does not affect tumor growth parameters in RT2 PNETs. Conditional genetic deletion of Dsp in
angiogenic islet dysplasias and incipient solid tumors does not affect tumor formation or tumor growth parameters in RT2 mice. (A–B) Tumor burden
and tumor number in RT2+; Pdx1-CreER+; DspWT/WT, RT2+; Pdx1-CreER+; DspFlox/WT, and RT2+; Pdx1-CreER+; DspFlox/Flox mice. Cre activity was induced at
10 weeks, and mice were sacrificed at 14 weeks. Data shown are individual values plus mean. Groups are not statistically different for these metrics.
(C–E) Ki67 staining on tumors from RT2+; Pdx1-CreER+; DspWT/WT, RT2+; Pdx1-CreER+; DspFlox/WT, and RT2+; Pdx1-CreER+; DspFlox/Flox mice. (F–H) TUNEL
staining on tumors from RT2+; Pdx1-CreER+; DspWT/WT, RT2+; Pdx1-CreER+; DspFlox/WT, and RT2+; Pdx1-CreER+; DspFlox/Flox mice. (I) Quantification of C–E.
Data shown are mean plus standard error. Groups are not statistically different. (J) Quantification of F–H. Data shown are mean plus standard error.
Groups are not statistically different. Scale bars represent 100 mm (C–H).
doi:10.1371/journal.pgen.1001120.g002
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Figure 3. Genetic deletion of desmoplakin leads to increased local tumor invasion in RT2 mice. Conditional genetic deletion of Dsp in
angiogenic islet dysplasias and incipient solid tumors increases the rate of progression to focally invasive IC1 tumors in RT2 mice. (A–C) H&E staining
of a non-invasive IT tumor lesion, a focally invasive IC1 tumor lesion, and a broadly invasive IC2 tumor lesion from RT2+; Pdx1-CreER+; DspWT/WT, RT2+;
Pdx1-CreER+; DspFlox/WT, and RT2+; Pdx1-CreER+; DspFlox/Flox mice. (D–F) Higher magnification of the boxed regions in A–C. T indicates tumor region and
Ex indicates exocrine pancreas. Dashed lines demarcate tumor margins. Arrowheads indicate regions of tumor invasion. (G) Quantification of tumor
invasiveness represented as the percentage of IT lesions or total IC lesions (IC1+IC2) in RT2+; Pdx1-CreER+; DspWT/WT, RT2+; Pdx1-CreER+; DspFlox/WT, and
RT2+; Pdx1-CreER+; DspFlox/Flox mice at 14 weeks of age. A minimum of 36 tumors per group was graded. * p,0.01 by Fisher’s exact test. (H) Same as G
except IC lesions are separated into the IC1 and IC2 subclasses. * p,0.01 by the Chi-square test. (I) Tumors from RT2+; Pdx1-CreER+; DspWT/WT, RT2+;
Pdx1-CreER+; DspFlox/WT, and RT2+; Pdx1-CreER+; DspFlox/Flox mice were genotyped for the presence of the Cre recombinase (,530 bp), b2 microglobulin
(,290 bp), and the floxed (,360 bp) or wild-type Dsp allele (,230 bp). These same tumors were assessed for the recombination status of Dsp: wild-
type allele (,960 bp), non-recombined floxed allele (,1200 bp), recombined floxed allele (,650 bp). Scale bars represent 400 mm (A–C) and 200 mm
(D–F).
doi:10.1371/journal.pgen.1001120.g003
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We identified several components of desmosomes – Dsp, Dsg2,

desmocollin 2 (Dsc2; MGI: 103221), and plakophilin 2 (Pkp2; MGI:

1914701) – whose expression was significantly downregulated in

the highly invasive tumor lesions that develop in the RT2 mouse

model of PNET. These changes were reflected at the protein level

as determined by immunostaining of non-invasive IT lesions and

broadly invasive IC2 lesions. The simultaneous decrease in

expression for multiple desmosomal genes suggests that there

may be coordinated transcriptional regulation of desmosomal

components. Prime candidates for such regulation include the

transcription factors that regulate EMT, such as the Snail and

Twist families of transcription factors [28]. Notably, however, we

did not detect significant differential expression of such transcrip-

tion factors in our microarray analysis comparing non-invasive IT

and highly invasive IC2 PNETs (Dataset S1), and the expression of

one prominent marker of EMT, Cdh2, was not obviously different

between IT and IC2 lesions, consistent with the results of a

previous study investigating determinants of the invasive pheno-

type using this same model of PNET [8]. Thus, the current

evidence suggests that the acquisition of an invasive phenotype in

this tumor type does not involve a classical EMT. Our results

clearly demonstrate that the conditional genetic deletion of a single

core desmosomal component, Dsp, promotes increased local tumor

invasion in RT2 mice, producing a phenocopy of such inferred

Figure 4. Genetic deletion of desmoplakin does not affect cadherin 1 expression in RT2 PNETs. Cdh1 expression is maintained in the IC1
grade of tumors in both RT2+; Pdx1-CreER+; DspWT/WT and RT2+; Pdx1-CreER+; DspFlox/Flox mice. (A–D) Immunofluorescence staining with DAPI to reveal
cellularity in IT and IC1 tumors in RT2+; Pdx1-CreER+; DspWT/WT and RT2+; Pdx1-CreER+; DspFlox/Flox mice. (E–H) Immunofluorescence staining for the
oncoprotein T antigen (Tag). (I–L) Immunofluorescence staining for Cdh1. (M–P) Merge of Tag and Cdh1 immunofluorescence staining (E–L). (Q–T)
Higher magnification of the boxed regions in M–P. Arrowheads indicate regions of tumor invasion. Scale bars represent 200 mm (A–P) and 100 mm
(Q–T).
doi:10.1371/journal.pgen.1001120.g004
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transcriptional regulation in the normal circumstances of tumor

progression.

While desmosomes play an integral role in maintaining

epithelial integrity, they are by no means the only structure

involved in cellular adhesion. In addition to desmosomes, several

related structures, including AJs, contribute to maintaining cell-cell

adhesion [7]. However, while desmosomes and AJs play related

biological roles in terms of maintaining cellular adhesion and have

similar structural compositions, it is worth noting that there are

clear differences in the consequences of impaired desmosome

adhesion versus impaired AJ adhesion on tumor phenotypes. An

elegant functional genetic study demonstrated that Cdh1, a core

member of AJs, acts as an invasion suppressor in vivo; targeting a

transgene encoding a dominant-negative Cdh1 molecule to the

oncogene-expressing pancreatic b cells markedly accelerated

tumor progression and led to significantly increased frequencies

of invasive carcinomas and to the development of lymph node

metastasis in this same mouse model of PNET [8]. In comparison,

deletion of Dsp led to an increase in the frequency of the focally

invasive IC1 grade of islet carcinomas but not the more widely

aggressive IC2 carcinomas, and distant metastases were not

observed (data not shown). One possible explanation for the

differences in these phenotypic outcomes is the different roles that

Dsp and Cdh1 play within their respective adhesion complex. While

Cdh1 is a transmembrane protein that directly links cells together

by forming homotypic interactions with other Cdh1 molecules on

neighboring cells [29], Dsp is an intracellular molecule that

contributes to the overall stability of the desmosomal plaque and

links this structure to the intermediate filaments [14]. Therefore,

deletion of Dsp may attenuate but not totally abolish desmosomal

function; if so, then the specific deletion of one of the desmosomal

cadherins, Dsc2 or Dsg2, might have a more pronounced effect on

invasiveness. An additional explanation for the increase in the

focally invasive IC1 fraction but not the broadly invasive IC2

fraction of invasive tumors following ablation of Dsp involves the

observed maintenance of Cdh1 and AJs. Expression of Cdh1 as well

as a second component of AJs, Jup, was retained in both the non-

invasive IT tumors and in the now more prevalent focally invasive

IC1 tumors following genetic deletion of Dsp. It would seem likely,

in light of the aforementioned functional study in this same mouse

model of cancer [8], that the preservation of Cdh1 expression and

of AJ function serves to maintain an additional, stronger brake on

tumor invasion. Thus, while loss of Dsp and impairment of

desmosomal adhesion leads to the focal invasion observed in IC1

lesions, the development of the broadly invasive phenotype found

in IC2 lesions evidently requires the concomitant loss of Cdh1.

Indeed, the IC2 tumor lesions that normally develop in RT2 mice

show a coordinated reduction in the expression of Cdh1 and

multiple desmosomal components (Table 1, Figure 1, and Figure

S2). The apparently independent regulation of desmosomal and

AJ adhesion is notable since AJ stability has been proposed to

affect desmosomal stability and vice versa in other contexts

[18,30,31], whereas Cdh1 and Jup are evidently not affected by the

deletion of Dsp during PNET tumorigenesis in RT2 mice.

Interestingly, the genetic deletion of Dsp had no consequential

effects on the other parameters of RT2 tumorigenesis beyond

invasion. Although it has been suggested that Dsp and other

desmosomal components can affect cellular proliferation and

apoptosis [32,33], we did not observe any changes in tumor

growth parameters following the genetic deletion of Dsp (Figure 2).

Our results are consistent with one of the earliest studies to

examine the role of Dsp in vivo, wherein a skin-specific deletion of

catenin alpha 1 (Ctnna1; MGI: 88274), the AJ homologue of Dsp, led

to increased skin proliferation and hyperplasia whereas ablation of

Dsp did not [34]. Thus, with regards to the RT2 model of PNET

and possibly other forms of cancer, it appears that desmosomes

primarily serve to maintain cell-cell adhesion and hence suppress

the acquisition of an invasive growth capability such that the

observed downregulation of desmosomal genes results in the

impairment of desmosomal function and a concomitant weakening

in cellular adhesion without affecting other parameters of

tumorigenesis.

Finally, it is important to set these results into the broader

context of knowledge about malignant progression to an invasive

growth state in this stereotypical pathway of multistep tumorigen-

esis. While disrupted cell-cell adhesion caused by the reduced

expression of Cdh1 [8] and/or desmosomal genes (this report)

clearly promotes invasive tumor growth, other factors are involved

as well. Thus for example, increased expression of the type-1 insulin-

like growth factor receptor (Igf1r; MGI: 96433) can drive these PNETs

to acquire a highly invasive phenotype [15]. Additionally, the

recruitment of immune cells to the margins of these PNETs has

been shown to promote invasiveness, in part by supplying cathepsin

proteases and heparanase (Hpse; MGI: 1343124) [35–37]. As such,

multiple factors can impact the progression to invasiveness by

varying degrees (Figure 5), and future research may well identify

additional components. Irrespective, our results demonstrate that

loss of desmosomal adhesion, as exemplified by the genetic

deletion of Dsp, can enable a tumor to acquire an invasive

phenotype. The functional study presented herein establishes

desmosomal adhesion as a distinct and ostensibly independent

suppressor of invasive tumor growth. This knowledge will likely

contribute to a better understanding of the mechanisms governing

Figure 5. Progression to an invasive growth state is governed
by multiple factors in the RT2 model of PNET. Multiple factors
impact the progression to an invasive phenotype as illustrated by the
RIP1-Tag2 (RT2) mouse model of pancreatic neuroendocrine tumori-
genesis (PNET). This study demonstrates that the genetic deletion of
desmoplakin (Dsp) and concomitant loss/attenuation of desmosomal
adhesion can promote local tumor invasion, specifically to a focally
invasive state typified by the IC1 tumor class. Other factors have also
been demonstrated to affect tumor invasion in this model. Activation of
heparanase or of cathepsin proteases [35–37] supplied by infiltrating
immune cells or suppression of cadherin 1 (Cdh1, also known as E-
cadherin) [8] can each contribute to invasion. Upregulation of the type-1
insulin-like growth factor receptor (Igf1r) preferentially promotes
progression to the IC2 stage, in part via a branched pathway from
earlier neoplastic stages such as angiogenic islet dysplasias (AI),
bypassing the canonical AIRITRIC1RIC2 progression [15]. Future
research may well identify additional factors that impact tumor
invasion.
doi:10.1371/journal.pgen.1001120.g005
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tumor progression to an invasive growth state and may prove

useful in evaluating invasive states of human cancers.

Materials and Methods

Ethics statement
All mice used in this study were housed and maintained in

accordance with the University of California, San Francisco

(UCSF) institutional guidelines governing the care of laboratory

mice.

Genetically engineered mice
The generation and characterization of the RIP1-Tag2 (RT2)

[10], DspFlox [18], and Pdx1-CreER [19] mouse lines have been

previously reported. All mice were backcrossed a minimum of six

generations into the C57Bl/6 (B6) background (Charles River,

Wilmington, MA) and then intercrossed to generate the specified

genotypes. To induce CreER activity, mice were injected intraper-

itoneally with 100 ml of 10 mg/ml tamoxifen (Sigma, St. Louis,

MO) suspended in peanut oil for five consecutive days beginning

at 10 weeks of age. To relieve the effects of hypoglycemia induced

by the insulin-secreting tumors, all RT2 mice received 50% sugar

food (Harlan Teklad, Madison, WI) beginning at 10 weeks of age.

Tissue preparation, tumor analysis, and histology
Pancreata were isolated from 14-week-old mice and embedded

in OCT (Sakura Finetek, Torrance, CA) on dry ice. Tumor

number and tumor volume were quantified as previously

described [12]. For histological analysis, frozen tissues were

sectioned at 10 mm thickness, and every tenth section was stained

with hematoxylin and eosin (Surgipath Medical Industries,

Richmond, IL) using standard methods. Tumors were classified

as a non-invasive islet tumor (IT), a focally invasive carcinoma

type-1 (IC1), or a broadly invasive carcinoma type-2 (IC2) using a

previously defined grading scheme [15].

Laser capture microdissection and RNA purification and
amplification

Fresh-frozen pancreatic sections (10 mm) from 14-week-old RT2

B6 mice were fixed in cold 70% ethanol for 16 hours prior to laser

capture microdissection (LCM). Sections were stained using a

modified hematoxylin and eosin stain that preserves RNA integrity

while allowing for the microscopic visualization of pancreatic

structures [38]. LCM was performed using an Arcturus PixCell II

laser capture microscope system (Molecular Devices, Sunnyvale,

CA). Total RNA was isolated using the Arcturus PicoPure RNA

Isolation kit (Molecular Devices, Sunnyvale, CA) and DNase I

treated (Qiagen, Valencia, CA). Equal amounts of RNA (8 ng/

lesion) from three independent IT or IC2 tumor lesions were

pooled, and then cDNA was generated, amplified, and biotiny-

lated using the Ovation Biotin System (NuGen, San Carlos, CA).

Three independent pools per tumor class were generated for

subsequent microarray analysis.

Microarray analysis
Labeled cDNA was hybridized to Affymetrix Mouse Genome

430 2.0 arrays (Affymetrix, Santa Clara, CA) according to the

manufacturer’s specifications. Data were analyzed by the UCSF

Helen Diller Family Comprehensive Cancer Center Biostatistics

and Computational Biology Core. The data were normalized

using a robust multi-chip averaging method utilizing the freely

available R language. Linear models were fit for each pair of

groups to be compared with log2 expression as the response and

the tumor phenotype indicator as the independent variable

using the limma package in Bioconductor. Moderated t-

statistics were used, and p-values were adjusted by controlling

the false discovery rate. A change in gene expression was

identified as significant if the false discovery rate was less than

0.05, meaning that fewer than 5% of false findings would be

expected among the genes declared to be differentially

expressed.

Immunohistochemical staining and analysis
Frozen tissues were sectioned at 10 mm thickness. For

immunofluorescence staining, sections were fixed in cold acetone.

For colorometric staining, sections were fixed in 10% Zn-buffered

formalin (Medical Chemical Corporation, Torrance, CA),

subjected to antigen retrieval using the Antigen Unmasking

Solution (Vector Laboratories, Burlingame, CA), and blocked for

endogenous peroxidase activity. Antibodies used in this study

were as follows: rat anti-cadherin 1 (Invitrogen, Carlsbad, CA);

mouse anti-desmoplakin I/II, mouse anti-desmoglein 1/2 (Fitzgerald,

Concord, MA); mouse anti-catenin beta 1, mouse anti-cadherin 2,

mouse anti-junction plakoglobin (BD Biosciences, San Jose, CA);

guinea pig anti-insulin (Millipore, Billerica, MA); rabbit anti-T-

antigen (Hanahan laboratory preparation); rabbit anti-Ki67

(Novus Biologicals, Littleton, CO); rhodamine red-X-conjugated

donkey anti-mouse IgG, rhodamine red-X-conjugated donkey

anti-rabbit IgG, FITC-conjugated donkey anti-rat IgG, FITC-

conjugated donkey anti-guinea pig IgG, biotin-conjugated

donkey anti-rabbit IgG (Jackson ImmunoResearch Laboratories,

West Grove, PA). For mouse antibodies, non-specific binding was

blocked using the Mouse on Mouse Blocking Reagent (Vector

Laboratories, Burlingame, CA). Fluorescently labeled tissues were

mounted with Vectashield mounting medium containing 49,6-

diamidino-2-phenylindole (DAPI) (Vector Laboratories, Burlin-

game, CA) to visualize cell nuclei. The TdT-mediated dUTP-

digoxigenin nick-end labeling (TUNEL) assay was used to assess

tumor apoptosis as previously described [15]. For colorometric

staining, signal was amplified using the Vectastain Elite ABC kit

(Vector Laboratories, Burlingame, CA), visualized using Nova

Red substrate (Vector Laboratories, Burlingame, CA), and

counterstained with hematoxylin. For Ki67 and TUNEL

quantification, two to three random fields were obtained using

a 406 objective lens from at least two tumors per mouse and at

least five mice per group. The proliferation or apoptosis index

was calculated as the percentage of total cells per field that were

Ki67- or TUNEL-positive respectively using the MetaMorph

software package (Molecular Devices, Sunnyvale, CA). For all

other immunohistochemical analysis, two to three tumors per

mouse from a minimum of five mice per indicated group were

analyzed per staining condition. All images were captured using

an Axio Imager bright field microscope or an Axio Scope

fluorescence microscope and the AxioVision LE software package

(Carl Zeiss, Thornwood, NY).

Statistical analysis
Fisher’s exact test and the chi-square test were used to compare

tumor invasion metrics. The Mann-Whitney test was used to

compare tumor burden, tumor number, tumor proliferation rates,

tumor apoptosis rates, and body mass metrics. The Mann-

Whitney and the Wilcoxon matched pairs test was used to

compare fasting glucose metrics. For all statistical tests, a p-value

of p#0.05 was considered significant. All statistics were performed

using the Prism software package (GraphPad Software, La Jolla,

CA).
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Fasting glucose measurements
Animals were fasted overnight for 14–16 hours prior to the first

tamoxifen injection and one week following the final tamoxifen

injection. Fasting glucose levels were measured using a FreeStyle

Freedom glucose meter (Abbott Laboratories, Abbott Park, IL).

Tumor genotype analysis by polymerase chain reaction
(PCR)

Tumor tissue was isolated directly from OCT embedded tissues,

and genomic DNA was isolated using the QIAmp DNA Micro kit

(Qiagen, Valencia, CA). PCR was performed using standard

methods. Primers used were as follows: Cre (forward: 59-CATG-

TTCAGGGATCGCCAGG-39 and reverse: 59-TGCGGTGCT-

AACCAGCGTTTT-39); b2 microglobulin (forward: 59-CACCG-

GAGAATGGGAAGCCGAA-39 and reverse: 59-TCCACACA-

GATGGAGCGTCCAG-39); Dsp-WT/Flox (forward: 59-GG-

TTGGGCCTCTCGAATCATGAGTGTCTAGCG-39 and re-

verse: 59-TGTCTGTTGCCATGTGATGCC-39); Dsp-Recom-

bined/Non-Recombined (forward: 59-ACAGGCCAGATGAG-

ATCACC-39 and reverse: 59-TGTCTGTTGCCATGTGATG-

CC-39).

Real-time quantitative PCR
Normal islets were isolated from six-week-old wild-type B6

mice, and hyperplastic islets were isolated from six-week-old RT2

B6 mice as previously described [39]. Angiogenic islets were

isolated from nine-week-old RT2 B6 mice by selection based on

their red, hemorrhagic appearance following collagenase digestion

of pancreata [39]. Islet tumors were excised from the surrounding

exocrine pancreas from 14-week-old RT2 B6 mice. Total RNA

was purified using the RNeasy Mini kit (Qiagen, Valencia, CA)

and DNase I treated (Qiagen, Valencia, CA). cDNA was

synthesized using the iScript cDNA Synthesis kit (Bio-Rad

Laboratories, Hercules, CA). Real-time quantitative PCR was

performed using a 7900HT system (Applied Biosystems, Foster

City, CA) (see Table S4 for a complete list of primers used in this

study) according to the manufacturer’s specifications.

Supporting Information

Dataset S1 Microarray data for comparison of IT and IC2

classes of RIP1-Tag2 tumors.

Found at: doi:10.1371/journal.pgen.1001120.s001 (8.87 MB

XLS)

Figure S1 Expression of adherens junction and desmosomal

components is decreased during PNET tumorigenesis in RT2 mice

and in human pancreatic neuroendocrine tumors. (A) Real-time

quantitative PCR values for AJ components (cadherin 1 [Cdh1],

catenin alpha 1 [Ctnna1], catenin beta 1 [Ctnnb1], catenin delta 1

[Ctnnd1], junction plakoglobin [Jup]) during the stages of RT2

tumorigenesis - normal, hyperplastic, angiogenic, and tumor

stage. Notably, in this analysis, whole ungraded RT2 PNETs

were analyzed without knowledge of their invasiveness in contrast

to the analysis presented in Table 1, which involved microdis-

sected tissue from either widely invasive IC2 tumors or from non-

invasive IT tumors. (B) Same as A except for desmosomal

components (desmocollin 2 [Dsc2], desmoglein 2 [Dsg2], desmoplakin

[Dsp], plakophilin 2 [Pkp2]). (C) Same as A except for the insulin-like

growth factor 2 (Igf2), a gene whose expression is known to increase

at the mRNA level during the later stages of RT2 tumorigenesis.

(D) Real-time quantitative PCR values for Cdh1, Dsg2, and Dsp in

pools of normal human pancreatic islets and individual human

pancreatic neuroendocrine tumors (PNET). PNETs include

ungraded primary and metastatic insulinomas, glucagonomas,

and non-functional neuroendocrine tumors. Values are shown as

the percent expression of the housekeeping genes ribosomal protein

L19 (L19) (A–C) or glucuronidase beta (Gusb) (D).

Found at: doi:10.1371/journal.pgen.1001120.s002 (1.22 MB TIF)

Figure S2 Desmoglein 2 expression in RT2 PNETs. Expression of

desmoglein 2 (Dsg2) is strongly reduced in the IC2 but not the IT

grade of PNET in RT2 mice. (A–C) H&E staining of a normal islet

from a wild-type B6 mouse and an IT and IC2 lesion from an end-

stage RT2 mouse. Dashed lines demarcate tumor margins. (D–F)

Immunofluorescence staining with DAPI to reveal cellularity. (G–

I) Immunofluorescence staining for Cdh1. (J–L) Immunofluores-

cence staining for Dsg2. (M–O) Merge of Cdh1 and Dsg2

immunofluorescence staining (G–L). (P–R) Higher magnification

of the boxed regions in M–O. Scale bars represent 200 mm (A–O)

and 100 mm (P–R).

Found at: doi:10.1371/journal.pgen.1001120.s003 (9.93 MB TIF)

Figure S3 Catenin beta 1 expression in RT2 PNETs. Expression of

catenin beta 1 (Ctnnb1) is maintained in both the IT and IC2 grades

of PNET in RT2 mice. (A–C) Immunofluorescence staining with

DAPI to reveal cellularity of a normal islet from a wild-type B6

mouse and an IT and IC2 tumor from an end-stage RT2 mouse.

(D–F) Immunofluorescence staining for Cdh1. (G–I) Immunoflu-

orescence staining for Ctnnb1. (J–L) Merge of Cdh1 and Ctnnb1

immunofluorescence staining (D–I). (M–O) Higher magnification

of the boxed regions in J–L. Scale bars represent 200 mm (A–L)

and 100 mm (M–O).

Found at: doi:10.1371/journal.pgen.1001120.s004 (8.42 MB TIF)

Figure S4 Genetic deletion of desmoplakin does not affect cadherin

1 expression in the pancreatic islets. Expression of Cdh1 is

maintained following conditional genetic deletion of Dsp in the

pancreatic islets of control mice lacking the RT2 oncogenic

transgene. (A–C) H&E staining of pancreatic islets in Pdx1-CreER+;

DspWT/WT, Pdx1-CreER+; DspFlox/WT, and Pdx1-CreER+;

DspFlox/Flox mice at 14 weeks. Cre activity was induced at 10

weeks. (D–F) Immunofluorescence staining with DAPI to reveal

cellularity. (G–I) Immunofluorescence staining for Cdh1. (J–L)

Immunofluorescence staining for Dsp. (M–O) Merge of Cdh1 and

Dsp immunofluorescence staining (G–L). Scale bars represent

100 mm (A–O).

Found at: doi:10.1371/journal.pgen.1001120.s005 (8.40 MB TIF)

Figure S5 Genetic deletion of desmoplakin leads to decreased

desmoglein 2 expression but not insulin expression in the pancreatic

islets. Expression of Dsg2 but not insulin (Ins) is strongly reduced in

the adult pancreatic islets following conditional genetic deletion of

Dsp in mice lacking the RT2 oncogenic transgene. (A–C)

Immunofluorescence staining with DAPI to reveal cellularity in

pancreatic islets in Pdx1-CreER+; DspWT/WT, Pdx1-CreER+;

DspFlox/WT, and Pdx1-CreER+; DspFlox/Flox mice at 14 weeks.

Cre activity was induced at 10 weeks. (D–F) Immunofluorescence

staining for Ins. (G–I) Immunofluorescence staining for Dsg2. (J–L)

Merge of Ins and Dsg2 immunofluorescence staining (D–I). Scale

bars represent 100 mm (A–L).

Found at: doi:10.1371/journal.pgen.1001120.s006 (6.84 MB TIF)

Figure S6 Genetic deletion of desmoplakin in the pancreatic islets

does not affect multiple physiological parameters. Conditional

genetic deletion of Dsp has no effect on the physiological

parameters of body mass and islet function in regulating glucose

levels. (A) Body mass of Pdx1-CreER+; DspWT/WT, Pdx1-CreER+;

DspFlox/WT, Pdx1-CreER+; DspFlox/Flox, RT2+; Pdx1-CreER+;

DspWT/WT, RT2+; Pdx1-CreER+; DspFlox/WT, and RT2+; Pdx1-

CreER+; DspFlox/Flox mice at 14 weeks. Cre activity was induced at
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10 weeks. Groups are not statistically different. (B) Fasting glucose

levels in Pdx1-CreER+; DspWT/WT, Pdx1-CreER+; DspFlox/WT,

and Pdx1-CreER+; DspFlox/Flox mice. Cre activity was induced at

10 weeks. Mice were fasted for 14–16 hours. Glucose levels were

measured immediately prior to the first tamoxifen dose and one

week following the last tamoxifen dose. Pre- and post-tamoxifen

glucose levels within and between groups are not statistically

different.

Found at: doi:10.1371/journal.pgen.1001120.s007 (10.19 MB

TIF)

Figure S7 Tamoxifen does not affect the parameters of RT2

tumorigenesis. Tamoxifen does not affect PNET tumorigenesis in

unmodified RT2 transgenic mice. Cohorts of male RT2 mice that

were DspWT/WT and that lacked the Pdx1-CreER allele were

treated with five consecutive daily doses of tamoxifen or vehicle at

10 weeks of age and sacrificed 4 weeks later. (A–C) Tumor burden,

tumor number, and body mass at time of sacrifice for RT2 mice

treated with tamoxifen or vehicle. Data shown are mean plus

standard error. Groups are not statistically different for these

metrics. (D) Quantification of tumor invasiveness represented as

the percentage of IT lesions or total IC lesions (IC1+IC2) in RT2

mice treated with tamoxifen or vehicle. A minimum of 76 tumors

per group was graded. Groups are not statistically different. (E)

Same as D except IC lesions are separated into the IC1 and IC2

subclasses. Groups are not statistically different.

Found at: doi:10.1371/journal.pgen.1001120.s008 (0.80 MB TIF)

Figure S8 Genetic deletion of desmoplakin does not affect junction

plakoglobin expression in RT2 PNETs. Junction plakoglobin (Jup, also

known as gamma catenin) expression is maintained in the IC1 grade

of tumors in both RT2+; Pdx1-CreER+; DspWT/WT and RT2+;

Pdx1-CreER+; DspFlox/Flox mice. (A–D) Immunofluorescence

staining for DAPI to reveal cellularity, Cdh1, Jup, and merge of

Cdh1 and Jup staining in an IT PNET from a RT2+; Pdx1-CreER+;

DspWT/WT mouse. (E–H) Same as A–D except for an IC1 PNET

from a RT2+; Pdx1-CreER+; DspWT/WT mouse. (I–L) Same as A–

D except for an IT PNET from a RT2+; Pdx1-CreER+; DspFlox/

Flox mouse. (M–P) Same as A–D except for an IC1 PNET from a

RT2+; Pdx1-CreER+; DspFlox/Flox mouse. (Q–T) Same as A–D

except for an IC2 PNET from an unmanipulated RT2+ mouse.

Arrowheads indicate regions of tumor invasion. Scale bars

represent 200 mm.

Found at: doi:10.1371/journal.pgen.1001120.s009 (7.80 MB TIF)

Figure S9 Genetic deletion of desmoplakin does not affect cadherin

2 expression in RT2 PNETs. Cadherin 2 (Cdh2, also known as N-

cadherin) expression is maintained in the IC1 grade of tumors in

both RT2+; Pdx1-CreER+; DspWT/WT and RT2+; Pdx1-CreER+;

DspFlox/Flox mice. (A–D) Immunofluorescence staining for DAPI

to reveal cellularity, Cdh1, Cdh2, and merge of Cdh1 and Cdh2

staining in an IT PNET from a RT2+; Pdx1-CreER+; DspWT/WT

mouse. (E–H) Same as A–D except for an IC1 PNET from a

RT2+; Pdx1-CreER+; DspWT/WT mouse. (I–L) Same as A-D

except for an IT PNET from a RT2+; Pdx1-CreER+; DspFlox/Flox

mouse. (M–P) Same as A–D except for an IC1 PNET from a

RT2+; Pdx1-CreER+; DspFlox/Flox mouse. (Q–T) Same as A-D

except for an IC2 PNET from an unmanipulated RT2+ mouse.

Arrowheads indicate regions of tumor invasion. Scale bars

represent 200 mm.

Found at: doi:10.1371/journal.pgen.1001120.s010 (7.83 MB TIF)

Table S1 Genotyping of Pups Resulting from Intercross between

RIP1-Tag2+; DspFlox/WT and Pdx1-CreER+; DspFlox/WT Mice.

Found at: doi:10.1371/journal.pgen.1001120.s011 (0.04 MB

DOC)

Table S2 Gender Distribution of Pups Resulting from Intercross

between RIP1-Tag2+; DspFlox/WT and Pdx1-CreER+; DspFlox/WT

Mice.

Found at: doi:10.1371/journal.pgen.1001120.s012 (0.03 MB

DOC)

Table S3 Bioinformatic Assessment of Desmosomal Gene

Expression in Human Cancers.

Found at: doi:10.1371/journal.pgen.1001120.s013 (0.06 MB

DOC)

Table S4 List of primers used for quantitative PCR.

Found at: doi:10.1371/journal.pgen.1001120.s014 (0.04 MB

DOC)
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