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ABSTRACT Sound processing begins at the peripheral auditory system, where it undergoes a highly complex transformation
and spatial separation of the frequency components inside the cochlea. This sensory signal processing constitutes a neurophys-
iological basis for psychoacoustics. Wave propagation in the cochlea, as shown by measurements of basilar membrane velocity
and auditory nerve responses to sound, has demonstrated significant frequency modulation (dispersion), in addition to tonotopic
gain and active amplification. The physiological and physical basis for this dispersion remains elusive. In this article, a simple
analytical model is presented, along with experimental validation using physiological measurements from guinea pigs, to identify
the origin of traveling-wave dispersion in the cochlea. We show that dispersion throughout the cochlea is fundamentally due to
the coupled fluid-structure interaction between the basilar membrane and the scala fluids. It is further influenced by the variation
in physical and geometrical properties of the basilar membrane, the sensitivity or gain of the hearing organ, and the relative
dominance of the compression mode at about one-third octave beyond the best frequency.
INTRODUCTION
Hearing relies on the coding of intensity, frequency, and
timing of acoustic signals. In mammals, sound processing
begins at the outer and middle ear, which improves the effi-
ciency of the delivery of vibrations to the cochlea. The
cochlea spatially and temporally separates various frequen-
cies, which are encoded by activity at the auditory nerve (1).
Except in the outer and middle ear, the encoding and trans-
fer of sound information is a highly nonlinear process.
These nonlinearities are important to perception.

The fundamental mechanism of wave propagation in the
cochlea, the slow basilar membrane (BM) displacement
waves, was discovered by Von Bekesy in human cadavers
(2). In the context of mammalian cochlear physiology, the
term traveling waves refers to these displacement or pres-
sure waves, which are slower by orders of magnitude than
ordinary acoustic pressure waves that propagate in the
cochlear fluids at nearly 1500 m/s and traverse the entire
cochlea in just a few microseconds (3). Measurements of
BM motion using a laser Doppler velocimeter and other
in vivo methods in the sensitive cochleae of many species
have further confirmed Von Bekesy’s traveling-wave theory
(4–6), including its spatial representation (7). It is little
appreciated that one of the fundamental nonlinearities is
obvious in the measurements of BM velocity and auditory
nerve responses to broadband acoustic input, where the
derived impulse responses show that the instantaneous
frequency of the waveform reaching the measured location
changes with time. This behavior is sometimes referred to
as frequency modulations (8) or glides (5,8,9), which is
a manifestation of the traveling-wave dispersion in the coch-
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lea.(The BM response to acoustic stimulation demonstrates
spatial dispersion in addition to frequency dispersion.
Unless specifically mentioned, the terms dispersion and
glides in this article refer to frequency dispersion.) De
Boer and Nuttall (9) observed glides in the BM velocity
impulse response at the 4-mm tonotopic (basal) location
in the guinea pig cochlea. Similar glides have also been
reported at basal locations in other species (e.g., at 3.5 mm
in Chinchilla (5)). In the apical region with best frequency
(BF) below 1.5 kHz, the instantaneous frequency has
sometimes been observed to decrease with time (10). Glides
have been observed in passive as well as in active responses,
and in many species. Further, glides have been found to
be nearly invariant until the passive BF with stimulus inten-
sity, which is also seen in the near-invariance of the phase
with level (9). These observations suggest that glides are
not the consequence of physiologically active processes.
However, glides change with stimulus level beyond the
passive BF, thus demonstrating nonlinear behavior.

Both linear and nonlinear aspects of traveling-wave
dispersion are important to auditory perception, affecting
masking (11–13) and loudness (14). The dispersion influ-
ences monaural and binaural encoding of complex sounds
(15–17) and has been incorporated into auditory filterbank
models, such as the so-called gammachirp (18), for speech
processing. In addition, in clinical practice, traveling-wave
velocities derived from auditory-evoked brainstem response
recordings could be used for diagnosis of Meniere’s disease
in humans (19). It is also crucial to be able to infer the wave-
propagation paths involved in spontaneous and evoked
sound emissions from the cochlea to utilize them as tools
for studying the biomechanical feedback process known
as the cochlear amplifier.
doi: 10.1016/j.bpj.2010.07.004
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Although substantial theoretical and modeling work on
hydrodynamics has supported the existence of cochlear
traveling waves (20–22), the physiological basis of active
and passive traveling-wave dispersion in the cochlea remains
obscure (9). Wave dispersion could be influenced by many
factors, such as the nature of elastic coupling and forcing
(e.g., beam versus bar or plate versus membrane), acoustic-
elastic coupling, geometry and frequency (e.g., nonplanar
acoustic modes propagating in a semi-infinite rigid duct),
as well as by variations in physical properties, making it diffi-
cult to unravel in a complex system such as the cochlea.
Using the cochlear model from Zweig (23), Shera (24)
proposed that the glides observed in BM velocity responses
arise out of glides in the pressure response, and that they
result therefore from the global dispersive character of
wave propagation in the cochlea. However, the origin of
glides in pressure or BM velocity is not explained.

In this article, traveling-wave dispersion is explored in
depth by making new physiological measurements in the
passive guinea pig cochlea to determine the phase of the
BM velocity relative to the stapes to about one octave above
the BF. A simple analytical model is presented to explain the
observed dispersion in the cochlea. We first show that the
basic phenomenon of glides is a fundamental property of
any coupled system, where a flexible plate interacts with
fluid (even air) in a duct. Spatially varying properties are
not necessary to demonstrate the basic frequency dispersion
phenomenon. More important, however, we then show how
the dispersion in the cochlea is unique and different from the
generic coupled plate-duct system. In conclusion, we show
how the same analytical model also elucidates traveling-
wave dispersion in the active response from a sensitive
cochlea.
MATERIALS AND METHODS

Surgical preparation

Young, pigmented guinea pigs weighing 250–400 g were used in this study.

To focus on the basic underlying biomechanical properties for wave disper-

sion, only postmortem animals were used. This avoided any contribution

from active mechanics of the organ of Corti. An opening ~300 mm wide

was made on the scala tympani side of the cochlear basal turn to allow

for measurement of BM velocity in anesthetized animals. To avoid optical

distortions and fluid vibrations affecting the optical path length, a glass

coverslip was placed over the opening. Other surgical details are the

same as described previously (25). The experimental protocols used were

in accordance with the rules established by the Committee on Use and

Care of Animals at the Oregon Health and Science University.

Instrumentation

Acoustic stimuli were generated using a ½-inch condenser microphone

(model 4134, Bruel & Kjaer, Norcross, GA) operated as a speaker with

a þ200-V bias. The condenser microphone was coupled to the external

ear of the animal with a plastic speculum, creating a closed sound field.

Voltage control to the speaker via an amplifier was from the oscillator

output of a lock-in amplifier (model SR830, Stanford Research Systems,

Sunnyvale, CA). Individual tones were presented as tone bursts in the
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frequency range from 1 kHz to 40 kHz in 100-Hz steps. BM velocity

measurement was accomplished by directing a laser beam (model 1102,

Polytec OFV, Irvine, CA) through a compound microscope at a gold-plated

glass bead of diameter 10–30 mm placed onto the basilar membrane.

The LDV microscope design is described in a previous article (25).

A 100-mm glass bead was used to measure stapes velocity at the incus-

stapes joint. The voltage output of the velocimeter was directed to the input

of the lock-in amplifier.
Dispersion curves

Dispersion phenomena can be represented as changes in instantaneous

frequency with time, as typically used in discussing glides in the BM and

auditory nerve responses in the cochlea (5,9,10). In this article, for ease

of comparison with the model, an analogous representation of phase speed

versus frequency is used. Phase speed is the speed at which the wave front

propagates. The effective phase speed, cp, is derived from velocity measure-

ments simply as cp ¼ x/tp, where tp ¼ �4/u is the phase delay, x is the

effective distance between the stapes and the BM location in the measure-

ment, 4 is the measured BM phase referenced to the stapes, and u is the

radian frequency of excitation. The effective distance from the stapes to

the BM location measured is ~1 mm smaller than the tonotopic distance

along the BM. This is due to the bending of the BM profile in the hook

region. The phase speed derived from published data for BM velocity refer-

enced to stapes glides down with frequency until above the BF, analogous to

the instantaneous frequency glide from low to high as a function of time.
RESULTS

New measurements of BM and stapes velocities were made
in postmortem animals to determine the phase speed of the
traveling wave to at least one octave above the BF. To ensure
the passive condition, seven guinea pigs were sacrificed
after surgery and before data recording. In two of these
animals, velocity recordings from both BM and stapes
were obtained. Both animals had similar responses, and
just one is shown here. We used high sound levels around
85–115 dB sound pressure level (SPL) to measure BM
and stapes velocities. This enabled a high signal/noise ratio
up to more than one octave above the passive BF.

The measured gain and phase of BM velocity normalized
to stapes is very similar to other measured data in the
published literature, except that our data extend to higher
frequencies (Fig. 1 left). At all the four beads shown in the
figure (within 200 mm longitudinal spacing), the amplitude
increased up to the passive BF and decreased steeply imme-
diately above theBF and at a slower rate at very high frequen-
cies. The phase showed traveling-wave delay increasing to
above the BF; the phase remained nearly flat above one-third
octave beyond the BF, at a frequency we refer to as the cross-
over frequency (COF). At the COF, a notch in magnitude can
be observed in the measured data. Both the notch and the
nearly flat phase at high frequencies have been attributed
to the relative dominance of the compression mode beyond
the COF (26–28). It has been speculated that the notch at
the COF arises from canceling of the traveling-mode compo-
nent by the compression-mode component (27,28).

The effective phase speed at the measured location (Fig. 1
right, Current data, derived from the phase shown at lower



FIGURE 1 (Left) Our measurements of passive

BM velocity toward scala vestibuli referenced to

stapes. Magnitude (upper) and phase (lower) at

multiple beads located within 200 mm tonotopic

spacing. Multiple beads used in the same experi-

ment demonstrated tonotopicity (a bead 200 mm

apical has BF smaller by ~700 Hz) and larger delay

with increasing tonotopic distance. In addition, it

formed a test for robustness of the data. (Right)

Effective coupled phase speeds derived from pub-

lished data in different species at the base (4,50,51)

and at the apex (6). All data are for BM motion

toward scala vestibuli; basal data are referenced

to the stapes, whereas apical data are referenced

to the incus. The effective distance from the stapes to a measured location for the apical data (BF z 250 Hz) is 16 mm (the apical data from Khanna

and Hao (52) are very similar and not shown); for current measured data, the distance is 2.3 mm; for the data from Narayanan and Ruggero (50), it is

1.7 mm; for the data from Overstreet et al. (51), it is 1.2 mm; and for the data from de Boer and Nuttall (4), it is 2 mm.

Traveling-Wave Dispersion 1689
left) decreases from around the BF (13 kHz) to 18.5 kHz (the
COF). Beyond the COF, the effective phase speed increases
quite rapidly, approximately linearly with frequency. The
phase speeds derived from four other published reports in
various species (guinea pigs, gerbils, and chinchilla
(Fig. 1)) for BM velocity toward scala vestibuli relative to
stapes show a similar trend at the base, although this trend
appears to have been disregarded by earlier investigators.
At the apex, the phase speed has a different character-
istic—it is almost flat or only slightly decreases around
the BF, but increases at high frequencies, similar to basal
data. The physical basis for these observed trends is not
immediately apparent, and it is explored here. The effective
phase speed at the basal locations is not shown at low
frequencies, because small deviations in the low-frequency
measured phase could lead to large deviations in the corre-
sponding phase speeds.
Traveling-wave dispersion in the cochlea

If coiling is neglected, the mechanics of the passive cochlea
is similar to that of the two fluid-filled ducts scala vestibuli
(SV) and scala tympani (ST) separated by a flexible plate,
the BM. Even though the BM interacts with both fluid-filled
ducts, the dispersion behavior is similar for BM interaction
with only one, owing to the nearly symmetric geometry. The
slow forward propagating wave in the cochlea along the BM
faces negligible reflection from the apex, as the wave nearly
perfectly cuts off at its frequency-dependent best place
along the BM. Therefore, the dispersion of the wave propa-
gating along the BM can be approximated by that for a semi-
infinite plate-duct system.
FIGURE 2 First coupled mode in a uniform thin brass plate clamped

along the lateral edges and forming one side wall of an otherwise rigid,

air-filled rectangular duct (see inset). The duct is acoustically excited at

one end. In general, the plate width could be less than or equal to the

duct width, although in this example the width of the plate is the same as

that of the duct.
Dispersion in a uniform plate-duct system

The coupled phase speeds due to fluid-structure interaction
between a flexible plate and fluid in a duct (Fig. 2, inset) can
be approximated analytically. For a wave propagating along
the longitudinal (x) direction in an isotropic plate interacting
with fluid in a single duct, the governing differential
equations are

g

"�
d2

dz2
� k2x

�2

�k4B

#
U ¼ Pp on the plate surface;

V2P þ �
k2 � k2x

�
P ¼ 0 in the fluid: (1)

Here, U is the outward plate displacement, P is the acoustic
pressure in the fluid, Pp is the pressure on the plate surface,
kx is the coupled wavenumber for propagation along the
plate, k ¼ u=c is the acoustic wavenumber, b is the plate
width, kB ¼ (mu2/g)1/4 is the plate-bending wavenumber
in vacuum, m ¼ rph is the mass/unit area of the plate, g ¼
Eh3/12(1 � v2) is the flexural rigidity of the plate, E is the
Young’s modulus of the plate, h is the plate thickness, r is
Biophysical Journal 99(6) 1687–1695
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the fluid density, c is the speed of sound in the fluid, and V2

is the Laplacian operator in two dimensions (y and z). In
addition, the plate displacement and fluid normal displace-
ment are equal at the interface.

In this article, a variational (or integral) formulation of the
governing equations shown in Eq. 1 is adopted from Martin
et al. (29) by defining the variational functional

J ¼ ru2

Z
C
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2
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dR;

(2)

where the region within the duct cross section is denoted R;
C represents the flexible plate portion in the cross section
and V is the gradient operator in two dimensions. Here, J
can be interpreted as an error function to be minimized
with respect to the pressure and displacement degrees of
freedom. At low frequencies, a simple 2 degrees of freedom
Rayleigh-Ritz formulation could be used by taking a
uniform amplitude trial function for the sound pressure
and a simple trial function for the plate displacement to
approximate its first radial mode shape. The stationary
values of the variational functional J with respect to the
plate displacement and the acoustic pressure degrees of
freedom lead to the approximate coupled dispersion relation
for a uniform isotropic plate coupled to fluid in a single duct.
For a plate with clamped boundary condition at the lateral
(radial) edges vibrating only in the first lateral mode,
assuming a squared half-sine radial mode shape for the plate
displacement, the dispersion equation is
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Here, R is the duct cross-sectional area. This equation,
which implicitly assumes that the pressure field in the
duct is nearly planar, is valid only at low frequencies until
the cut-on frequency of the first higher cross mode in the
equivalent rigid-walled duct (30), and for the first structural
cross mode only. For these low-frequency conditions, it has
been verified numerically and experimentally (29,30). The
dispersion curves are determined as roots of the dispersion
equation. Of the three roots (the other three are for waves
in the opposite direction viz. reflected waves), only the prop-
agating wavenumber whose imaginary part is significantly
less than its real part is used. The coupled phase speed
(cp ¼ u=kx) changes with frequency in a plate-duct system,
showing that it is a dispersive system. It can be shown
from Eq. 3 that the low- and high-frequency asymptotes
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of the phase speed of the first coupled mode for a clamped
plate are
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This equation shows why the low-frequency phase speed,
cLp , in a duct with a flexible wall is smaller than the speed
of sound in the fluid, c, and it describes the parameters on
which this depends. The phase speed is smaller for a denser
fluid, wider plate, lower plate modulus, lower duct cross
section, and thinner plate. Above the resonance frequency,
the phase speed asymptotes to cHp , the in vacuo bending
phase speed of the plate. Depending on the parameters,
the phase speed of the first coupled mode may or may not
decrease near the coupled resonance frequency of the
system. The decrease in phase speed around the resonance
will be seen only if the low-frequency phase speed is higher
than the plate in vacuo bending phase speed near the reso-
nance frequency. As an example, consider a rigid-walled
air-filled duct of rectangular cross section 0.0254 m �
0.0254 m with one of the walls replaced by a 25.4-mm-thick
brass plate. The first coupled-mode dispersion curve for
wave propagation along the length of the plate is determined
using Eq. 3 coded in MATLAB (The MathWorks, Natick,
MA) and shown in Fig. 2. In this system, the low frequencies
propagate at a speed ~4.25 times smaller than the speed
of sound in air until the first coupled plate resonance at
135 Hz. This resonance frequency is analogous to the BF
of the BM response. The phase speed decreases further
around the resonance frequency, and at higher frequencies,
it asymptotes to the in vacuo plate-bending phase speed
(according to Eq. 4) over the frequency range shown. At
even higher frequencies, higher duct cross modes and higher
plate modes contribute to the dispersion curve, and this
effect is not shown here. This example demonstrates that
frequency dispersion and glides occur even in a uniform
duct with air coupled to a flexible plate.

Adopting the variational method from Martin et al. (29)
for a plate with simply supported edges (assuming half-
sine radial mode shape), the coupled dispersion relation
can be derived as

hk6x þ h
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In addition to the simply supported boundary condition,
Eq. 5 also includes the effect of plate orthotropy by



FIGURE 3 Measured phase speeds at the base (see Fig. 1 for references)

are compared with the phase speed predicted for a uniform plate with BM

local tonotopic properties (4 mm tonotopic location) coupled to fluid-filled

ducts representing scala vestibuli and scala tympani. Model parameters:

the boundary condition at the two radial edges of the BM is assumed to

be simply supported (clamped does not change the qualitative results, but

increases the quantitative phase speeds (not shown)). Fluid and duct prop-

erties: r ¼ 1000 kg/m3 and c ¼ 1500 m/s, R ¼ 1 mm2. BM properties:

density accounting for effective additional mass from other Organ of Corti
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introducing the parameter h, which is the ratio of longitu-
dinal to radial Young’s modulus; h ¼ 0 for a strongly ortho-
tropic plate (no longitudinal coupling) and h ¼ 1 for an
isotropic plate. The low-frequency dispersion relation for
an orthotropic plate is derived by replacing the isotropic
plate structural operator with its orthotropic counterpart.
From Eq. 5, for a simply supported isotropic plate (h ¼ 1),
the high-frequency asymptote of the phase speed is the same
as for a clamped isotropic plate (Eq. 4) and the low-
frequency asymptote is similar to that for a clamped plate
(Eq. 4) with 8g in the denominator replaced by (p2/8)g.
The second term in the denominator of cLp in Eq. 4 can be
seen as the ratio of mass loading of the fluid to stiffness of
the plate. For an orthotropic plate (h < 1), the low-
frequency asymptote of the phase speed does not depend
on h, but the high-frequency asymptote is smaller in propor-
tion to the fourth root of h, which leads to a steeper drop in
the phase speed around the coupled resonance frequency.
This is consistent with the observations of Naidu and
Mountain (31), who estimate that the BM longitudinal
coupling cannot be neglected when the wavelength is small,
especially near the BF, and that it is negligible for frequen-
cies less than the BF.
structures is 2000 kg/m3; Young’s modulus decreases exponentially from

base to apex: E¼ 1.5e7 (base)–1.55e6 (apex). The hysteretic plate damping

factor is 0.05; thickness decreases exponentially from 20 mm (base) to 1 mm

(apex); width increases exponentially from 140 mm (base) to 210 mm (apex)

and length is 17 mm. BM is assumed to be isotropic for these results; the

effect of longitudinal coupling is discussed later.
Dispersion for uniform BM

Using local tonotopic BM properties for the plate, the
coupled dispersion curves for a hypothetical uniform BM
interacting with scala fluids are shown in Fig. 3. In the
cochlea, because there are two ducts, the total pressure
acting on the BM exciting the traveling wave mode is two
times that in a single duct. To take this into account, the
Young’s modulus and plate density used in the single-duct
equations (Eq. 5) are half of the actual values. Up to the
BF, the predicted phase speed for a uniform BM at a
4-mm tonotopic basal location is qualitatively similar to
that of the effective phase speeds from measured data
(Fig. 3). Beyond the BF, the uniform BM model shows
that phase speed tends to the in vacuo bending phase speed
of the plate (as shown in Fig. 2), whereas the measured data
are significantly higher, especially above the COF. At a
more apical location (not shown), the predicted dispersion
curves retain the same basic character but shift to lower
resonance frequency and smaller phase speed due to lower
flexural rigidity (Eq. 4).
Effect of varying BM properties

At any frequency, the local phase speed of the traveling wave
varies along the cochlea due to varying properties of the BM.
To incorporate the decrease in the local phase speed along
the BM, its 17-mm length is numerically subdivided into
hundreds of sections, each with different BM properties. At
each frequency, the net delay experienced by the traveling
wave to reach a given location is calculated as the sum of
the delays in the basal sections. The effective phase speed
incorporating the varying BM properties is then given as
the ratio of the effective distance from the stapes to the net
phase delay. Because basal regions have higher local phase
speeds, the effective phase speed for propagation to the
apex is higher than if the BMwere uniform with apical prop-
erties. This brings the predicted effective phase speeds closer
to the measured phase speeds up to the COF, but there is
significant discrepancy above the COF.
Traveling-wave cut-off

In the cochlea, the coupled traveling wave is nearly extin-
guished at and around the best place corresponding to
each frequency. At a location apical to the best place,
referred to as the crossover place (COP), the coupled trav-
eling wave has negligible energy. The compression-wave
magnitude is therefore relatively larger, and the little energy
beyond the COP would possibly propagate as a compression
wave (26–28) (Fig. 4, inset). Note that the COP is more
basal at higher frequencies because the best place is more
basal. Likewise, at any given location along the BM, for
frequencies greater than the COF (approximately one-third
octave above the best frequency), the compression mode
may be dominant.
Biophysical Journal 99(6) 1687–1695



FIGURE 4 Predicted effective phase speeds at multiple tonotopic loca-

tions along the BM. This result includes fluid-structure coupling, varying

plate properties, plate orthotropy of 1:10 (the trends are similar for other

orthotropy values), and compression mode above the COF. It has been

estimated that the orthotropy could vary from base to apex (31) and could

be up to ~1:100 (53) at the base. (Inset) Spatial variation of the phase speed

of a single frequency component.

FIGURE 5 Effective phase speeds (two solid curves) predicted for

varying BM and assuming compression mode for frequencies greater

than the COF matches the measured data (dashed curves) quantitatively

at base and qualitatively at apex.
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When the speed of propagation at frequencies beyond the
COF for each location is set as 1500 m/s (the speed of sound
in water) to incorporate the compression mode, the pre-
dicted effective phase speeds increase more rapidly beyond
the COF at basal and apical locations, as shown in Fig. 4.
The effective phase speed at low frequencies decreases
from base to apex, whereas it increases at high frequencies.
The higher effective phase speed at the apex compared to
the base at high frequencies comes from contributions
over a longer stretch of the BM from fast-wave (Fig. 4,
inset). The effective phase speeds predicted by including
all three factors (fluid-structure coupling, variation in BM
properties, and compression mode beyond the COF) and
for a plate orthotropy of 1:10 (h ¼ 0.1) are very similar
to the measurements at the base, as well as qualitatively at
the apex, as shown in Fig. 5. The quantitative difference at
the apex could be due to a different boundary condition
(clamped instead of simply supported) along the BM radial
edges in that region. Even though we have considered only
passive responses so far, the model also agrees with the
measured phase speeds in the active response, as discussed
in the next section.
FIGURE 6 Predicted phase speeds for sensitive response (COF ¼ 1.2

times the active BF, which is equal to 1.4 times the passive BF in this

case) and insensitive response (COF ¼ 1.2 times the BF) with h ¼ 0.1

are compared with gerbil data published in Ren and Nuttall (32).
Dispersion in a sensitive cochlea

It is well known that the active response magnitude of the
BM velocity is higher than the passive response (5), partic-
ularly above the passive BF. The current understanding is
that the higher magnitude comes from the energy added to
the traveling wave by the hypothetical active amplification
mechanism termed the cochlear amplifier (3). Therefore,
in the active response, the traveling wave continues to domi-
Biophysical Journal 99(6) 1687–1695
nate until a higher frequency. In other words, the COF
would be higher for an active cochlea at low sound levels,
presumably proportional to the increase in the BF. In a
more sensitive response, the compression-wave contribution
would therefore be significant beyond a higher COF. The
phase speeds thus predicted for sensitive (higher COF)
and insensitive responses are compared with published
experimental data from Ren and Nuttall (32) in Fig. 6.
The effective phase speed in response to lower SPL
continues to drop further than the response to higher SPL,
because the former has a higher COF owing to higher
traveling-wave magnitude. However, beyond its COF, the
sensitive (lower-SPL) effective phase speed increases at
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nearly the same rate as the insensitive (high-SPL) effective
phase speed.
FIGURE 7 Predicted phase speeds at the 4-mm tonotopic location (using

Eq. 5), including the varying BM and transition to fast wave above the COF,

for three different values of the BM longitudinal coupling factor (h¼ 1, 0.1,

and 0.01).
DISCUSSION

Physiological origin of traveling-wave dispersion

We show that the dispersion of the stapes-induced traveling
wave in the cochlea, and as measured in BM velocity, scala
pressure adjacent to the BM (26), and auditory nerve fibers,
is fundamentally due to the fluid-structure coupling between
the scala fluids and the BM. A somewhat similar dispersion
and frequency glides occur even in a generic uniform plate
coupled to fluid (even air) in a duct. However, there are
some unique features to the traveling-wave dispersion
observed in the cochlea. The tonotopic variation in BM
properties causes the local phase speeds at a given frequency
to decrease with increasing distance from the stapes until
the COP, which increases the effective phase speed of
the traveling wave up to the COP. In addition, in the cochlea,
traveling waves almost completely lose their energy to
damping, and there is negligible energy beyond the COP.
The little energy that reaches the more apical regions is
likely due to the fast wave, which travels at 1500 m/s
(27,28) (Fig. 4 right). These three factors all contribute to
the overall traveling-wave dispersion (note that the overall
phenomenon is collectively referred to as traveling-wave
dispersion, although strictly speaking, the terminology
may be imprecise, because of the fast-wave contribution)
seen in the cochlea (Fig. 5). The analytical model discussed
in this article also suggests that the drop in active phase
speed around the BF is steeper than that of its passive
counterpart because the COF for active response is higher
owing to a larger traveling-mode component and higher
BF (Fig. 6).

Coupled fluid-structure waves

Unlike earlier analytical models of cochlear hydrodynamics,
the formulation presented here was adopted to satisfy the
governing equations of the coupled plate-duct system in an
integral or variational form. Fluid compressibility is also
included so that the same formulation can be used to demon-
strate dispersion even in air-filled ducts with a flexible plate.
Furthermore, BM longitudinal coupling is also included
here. In some earlier models of passive cochlear hydrody-
namics, concern was raised regarding the validity of the
long-wave model (which assumes that the wavelength is
long compared to the duct height (23)) in the vicinity of the
BF (33,34). These earlier analytical models represented
the BMmass and stiffness as lumped quantities, a representa-
tion that neglects the BM longitudinal coupling, which
causes the coupled phase speed to drop very steeply to nearly
zero around the BF (Eq. 5 and Fig. 7). Some of the questions
regarding these long-wave models, such as a sharper jump in
phase around theBF compared to experiment (see, e.g., Fig. 2
in Zweig (23)) could be attributed to neglecting the BM
longitudinal coupling. The predicted effective phase speed
drops more steeply around the BF for smaller BM longitu-
dinal coupling (smaller h in Fig. 7). Although the variational
formulation presented here is different from the earlier
long-wave models, it is worth reviewing one relevant point
here. In a coupled duct, the pressure-mode shape along the
height is of the form exp(�a� y0), exponentially decreasing
from the surface of the BM. Here, y0 is the distance from
the BM along the duct height. The pressure-mode shape
deviates from being planar for large a, but note that it is
confined to the near field at the BM surface. In coupled
acoustic ducts, including the cochlea, such an evanescent
mode along the height (but propagating longitudinally) is
associated with subsonic longitudinal phase speed that
is smaller than the speed of sound in the fluid. Capturing
the near field requires higher-order pressure modes along
the height, but the energy in the fluid pressure is carried
mainly by plane waves at these frequencies. At these
subsonic phase speeds, significant energy is coupled to the
structure, which thereby enables the dissipation of that
energy. (This phenomenon is used to design engineered
biomimetic silencers (35).) The current variational formula-
tion, which satisfies the governing equations in the integral
form using nearly planar pressure field, is a good approxima-
tion for predicting the dispersion even around the BF region,
as is clear from the results presented in this article. Based
on their analysis of an isotropic plate, Cummings et al. (30)
showed that their variational formulation, which is adopted
in this article, compares very well with the dispersion
curves predicted by finite element analysis, even where the
subsonic waves occur, including the resonance-frequency
region (BF in the cochlear terminology), and up to the cut-on
frequency of the higher-order pressure mode in an otherwise
Biophysical Journal 99(6) 1687–1695
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rigid-walled duct (which is ~750 kHz in the 1-mm-sized
cochlear ducts).
Relevance of dispersion to diagnosis
and perception

The passive and active coupled dispersion described in
this article has broad significance to the research on wave
propagation in the cochlea. In particular, the physiological
origin of the fundamental phenomenon discussed here will
help us differentiate the forward traveling wave from
other waves that might arise in an active cochlea, such as
during stimulated or spontaneous emissions. The origin of
the dispersion phenomenon in the cochlea could help expli-
cate the debate on qualitative differences between species
(36), such as, for example, directing the focus to their rela-
tive geometry and quantitative differences in the relevant
physical properties. In humans, the traveling-wave veloci-
ties derived from auditory-evoked brainstem response could
be used to diagnose Meniere’s disease (19).

The latency behavior of the cochlear traveling wave could
provide the means through which different components of
the acoustic signal are placed into appropriate temporal
register for the central brainstem and cortex to code and
analyze (17,37). Using controlled chirp signals, which
attempt to compensate for the traveling-wave delay, it has
been shown that the neural synchrony increases due to
synchronized contributions from apical regions (38–40)
and influences our perception. Pitch is one of the primary
attributes of auditory sensation, playing a crucial role in
music and speech perception and in analyzing complex
auditory scenes, but our perception of pitch is not well
understood (41). In particular, the use of envelope informa-
tion and the relevance of phase information are still widely
debated. Better representation of pitch and temporal fine
structure in cochlear implants and hearing aids remain
important goals. The importance of phase- or frequency-
modulation information for cochlear implant users to
perceive pitch under background noise has been shown
recently (42). Utilizing synthesized stimuli with the enve-
lope of one sound and the fine structure of another, Smith
et al. (43) conducted psychoacoustic experiments to show
that the envelope of the speech signal is important for its
reception, whereas the fine structure (which has phase infor-
mation) is essential for pitch perception and sound localiza-
tion. Conveying fine-structure information to implant users
would require novel processing schemes that attempt to
simulate some of the properties of the mechanical traveling
wave that propagates along the BM of the normal cochlea
(44), because the dispersion changes the internal representa-
tion of the sound before the information is sent to higher
levels of the auditory nervous system (45). Such an internal
representation could be predicted using the analytical model
presented in this article. According to the place-time theory
of pitch perception (45,46), the patterns of phase differences
Biophysical Journal 99(6) 1687–1695
along the BM could be used by the auditory system to derive
the frequency of a pure tone. Recently, Smith and Lewicki
(47) have suggested that the acoustic composition of speech
might be adapted to the auditory system, as indicated by
the striking similarity between the auditory filters based
on efficient coding theory and the measured auditory nerve
revcor (approximate impulse response) data in the cat (10).
Psychoacoustic experiments adopting harmonic complexes,
such as Schroeder-phase waveforms, have shown that the
traveling-wave dispersion may be perceived as masking
(11–13) by ~20 dB and loudness (14) of ~10 dB. The neuro-
physiological connection between traveling-wave disper-
sion and higher levels of auditory processing in humans
has been discovered at the brainstem level (38) and even
at the level of the auditory cortex (48,49). Our under-
standing of pitch perception and design of speech processors
for auditory prostheses and speech-recognition systems
could benefit from the physiological basis for dispersion
in the inner ear elucidated in this article.
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