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ABSTRACT

It is a significant challenge to predict RNA secondary structures including pseudoknots. Here, a new algorithm capable of
predicting pseudoknots of any topology, ProbKnot, is reported. ProbKnot assembles maximum expected accuracy structures
from computed base-pairing probabilities in O(N2) time, where N is the length of the sequence. The performance of ProbKnot
was measured by comparing predicted structures with known structures for a large database of RNA sequences with fewer than
700 nucleotides. The percentage of known pairs correctly predicted was 69.3%. Additionally, the percentage of predicted pairs
in the known structure was 61.3%. This performance is the highest of four tested algorithms that are capable of pseudoknot
prediction. The program is available for download at: http://rna.urmc.rochester.edu/RNAstructure.html.
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INTRODUCTION

There is a diverse world of functional RNA sequences. Origi-
nally in the central dogma of biology, RNA was considered
to play a transient role in expressing inherited information
as proteins. It was later discovered that, besides this role in
generating proteins, RNA has a variety of other functions,
such as regulating gene expression (Tucker and Breaker 2005;
Storz and Gottesman 2006; Wu and Belasco 2008), catalyzing
reactions (Nissen et al. 2000; Doudna and Cech 2002), and
trafficking proteins (Walter and Blobel 1982). RNA sequences
that do not code for proteins are referred to as noncoding
RNA, or ncRNA (Eddy 2001). Many of these ncRNA se-
quences have well-defined structures, and to understand how
these ncRNA sequences perform their functions it is impor-
tant to know their structure.

Determination of RNA structure is challenging. Primary
structure is an ordered sequence of nucleotides. Secondary
structure consists of canonical base pairs, i.e., AU, GC, and GU
pairs. Secondary structure prediction involves predicting the
base pairs that occur in a specified sequence of nucleotides.

RNA tertiary structure is the three-dimensional arrangement
of atoms. Because RNA structure is generally hierarchical, the
secondary structure can be largely determined without know-
ing the tertiary structure (Tinoco and Bustamante 1999).

Many secondary structure prediction methods are avail-
able. The most accurate method is comparative sequence
analysis (Pace et al. 1999), which determines base pairs con-
served among homologous sequences. The method is highly
accurate (Gutell et al. 2002) but requires a large number of
homologous sequences and significant human insight, and
thus is limited in use. When a single sequence is available, the
most popular approach for structure prediction is to predict
the lowest free energy structure with a dynamic program-
ming algorithm (Zuker 2003; Mathews et al. 2004; Mathews
and Turner 2006; Gruber et al. 2008).

A more recent approach to predict RNA secondary struc-
tures is called maximum expected accuracy structure pre-
diction (Knudsen and Hein 2003; Do et al. 2006; Hamada
et al. 2009; Lu et al. 2009). Roughly, maximum expected ac-
curacy structures are structures composed of pairs that pro-
vide the maximal sum of pairing probabilities. The pairing
probabilities can be derived by machine learning methods or
by thermodynamic methods using partition functions. Max-
imum expected accuracy structures have improved accuracy
compared with free energy minimization because it has been
observed that highly probable base pairs are more likely to be
correctly predicted pairs (Mathews 2004).
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One important topology for RNA secondary structures
is a pseudoknot. This is a type of secondary structure that
contains nonnested base pairs. Specifically, a pseudoknot is
defined by at least two base pairs, i–j and i9–j9, such that
nucleotide i appears before i9, i9 before j, and j before j9 in the
sequence. Base pairs in pseudoknots represent a small frac-
tion of base pairs in known RNA secondary structures, but
pseudoknots occur in a number of functional RNA sequences
(van Batenburg et al. 2001; Condon and Jabbari 2009).

The prediction of secondary structures including pseudo-
knots is a difficult task. For example, the most popular dy-
namic programming algorithms for finding low free energy
structures do not allow pseudoknots. This allows those
dynamic programming algorithms to run quickly and scale
well, i.e., O(N3) in time where N is the length of the sequence.
Including pseudoknots in the structure prediction requires
higher-order scaling, the use of heuristics, and/or a compro-
mise on the energy model.

It has been proven that the prediction of lowest free energy
secondary structures with pseudoknots is NP-hard (Lyngsø
and Pederson 2000). In spite of this, a number of innovative
and practical approaches have been developed to predict
structures with pseudoknots. These approaches can roughly
be summarized in six categories. One approach is to use a
dynamic programming algorithm to predict structures with
a limited topology (Rivas and Eddy 1999; Uemura et al. 1999;
Akutsu 2000; Dirks and Pierce 2003; Reeder and Giegerich
2004). A classification of topologies and an explanation of
topologies handled by several dynamic programming algo-
rithms are available (Condon et al. 2004). A second approach
to predicting pseudoknots is to construct structures using
multiple iterations of algorithms that would otherwise not be
capable of predicting pseudoknots (Ruan et al. 2004; Ren
et al. 2005; Jabbari et al. 2008). One of these algorithms is also
capable of using an alignment of multiple homologous se-
quences to improve its accuracy by finding a consensus struc-
ture (Ruan et al. 2004). A third approach is to either simulate
a folding pathway or sample structures with a stepwise ad-
dition of helices (Abrahams et al. 1990; Gultyaev et al. 1995;
Isambert and Siggia 2000; Dawson et al. 2007; Meyer and
Miklos 2007). A fourth approach uses the maximum weight
matching algorithm to construct structures composed of
pairs that give a maximum score (Tabaska et al. 1998;
Witwer et al. 2004). These algorithms use alignments of
multiple homologous sequences and scoring functions that
summarize free energies associated with pairs and covaria-
tion of pairs. Recently, a sixth approach, using constrained
integer programming has also been applied to finding lowest
free energy structures (Poolsap et al. 2009).

Many of the above algorithms use rules for predicting the
free energy change—i.e., stability—of pseudoknots. Signif-
icant progress has been reported in this area as well using
several approaches. Two sets of empirical rules were designed
for use with dynamic programming algorithms (Rivas and
Eddy 1999; Dirks and Pierce 2003). A set of parameters was

developed using polymer theory and calibrated to experi-
mentally measured stabilities (Wyatt et al. 1990; Nixon and
Giedroc 1998; Theimer et al. 1998; Gultyaev et al. 1999;
Theimer and Giedroc 1999, 2000). Another set of parameters
was developed using lattice models and self-avoidant walks
(Cao and Chen 2006, 2009). Additionally, a set of parameters
was developed using polymer theory (Aalberts and Hodas
2005). A recent report provides a technique for refining
parameters for predicting pseudoknot stability that utilizes
experimental data and the database of sequences with known
structure (Andronescu et al. 2010).

This contribution reports ProbKnot, a new RNA second-
ary structure prediction algorithm that is capable of predict-
ing RNA secondary structures of any topology in O(N3) time.
Base-pair probabilities are first predicted using a partition
function (Mathews 2004), which does not include pseudo-
knotted structures, in O(N3) time (Xia et al. 1998; Mathews
et al. 2004). ProbKnot then assembles a type of maximum
expected accuracy structure in O(N2) time from the base-
pairing probabilities, but does so without using a dynamic
programming algorithm. By assembling structures from
base-pair probabilities determined without pseudoknots,
ProbKnot does not require a set of rules for predicting the
stability of pseudoknots.

The performance of ProbKnot was benchmarked against
other freely available programs that predict pseudoknots:
pknotsRG-mfe (Reeder and Giegerich 2004), ILM (Ruan
et al. 2004), and HotKnots (Ren et al. 2005); and programs
that do not predict pseudoknots: MaxExpect, a maximum
expected accuracy approach (Lu et al. 2009) and Free Energy
Minimization (Mathews et al. 2004). ProbKnot was able to
predict the largest fraction of known base pairs.

RESULTS

ProbKnot

ProbKnot is an algorithm that predicts RNA secondary
structure by finding the structure with the most probable
base pairs. It assembles structures composed of base pairs, i–j,
where the probability of the i–j pair is higher than any i–k or
j–k base pair, where k is any other nucleotide in the sequence.
This is performed in O(N2) time by first calculating and
storing the pairing probability of the most probable pair for
each nucleotide, Pmax(i). Then each base pair is considered for
inclusion in the structure. If the probability of the i–j pair is
equal to both Pmax(i) and Pmax(j), that pair is included in the
structure. The algorithm is additionally capable of support-
ing multiple iterations in a similar manner by finding the
most probable i–j pair for nucleotides that remained un-
paired after previous iterations. For benchmarks shown here,
only a single iteration was performed.

As a post-processing step, after the structure is obtained,
the algorithm removes helices composed of two or fewer
stacked base pairs. For these calculations, single nucleotide
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bulges are considered stacked and therefore do not interrupt
helical stacking. So, for example, two pairs separated by a
single bulged nucleotide would be considered stacked.

Structure prediction accuracy

The accuracy of ProbKnot was evaluated by predicting
structures for sequences with known structure as determined
by comparative sequence analysis. Both sensitivity and
positive predictive value (PPV) were determined. Sensitivity
is the percent of known pairs correctly predicted and PPV is
the percent of predicted pairs in the known structure.

For a diverse set of sequences with known secondary
structure, ProbKnot had an average of 69.3% sensitivity
(Table 1). The performance was compared against three
other programs that are capable of pseudoknot prediction
and freely available for download. These programs were
demonstrated to be among the top performers in structure
prediction accuracy in a previous benchmark (Ren et al.
2005). The programs are ILM version 1.0 (Ruan et al. 2004),
HotKnots version 1.2 (Ren et al. 2005), and pknotsRG
version 1.3 (Reeder and Giegerich 2004). Each was run using
default parameters. Additionally, the performance was com-
pared against two other algorithms from RNAstructure,
which predicts structures without pseudoknots, free energy
minimization (Mathews et al. 2004), and maximum expected
accuracy structure prediction (Lu et al. 2009). Overall,
ProbKnot had the highest average sensitivity for all methods
and the highest PPV among methods that are capable of
predicting pseudoknots.

ProbKnot had an average PPV of 61.3% (Table 2), per-
forming best in six out of 10 RNA families including two
families with pseudoknots, and performing on the same level
with pknotsRG-mfe on the group I intron family that is also
known to have pseudoknots. This was the best performance
among algorithms that predict pseudoknots, but not as high
as MaxExpect, which does not predict pseudoknots. This is
consistent with previous observations. Algorithms that pre-
dict pseudoknots consider a larger space of possible struc-
tures, which leads to a tendency for lower fidelity of structure
prediction.

Pseudoknot prediction

The accuracy of pseudoknot prediction was evaluated sep-
arately. First, the number of predicted pseudoknotted pairs
was tabulated (Table 3). These pairs were found using the
method of Smit et al. (2008) to identify the fewest pairs that
need to be removed to remove the pseudoknots from a
structure. The number of pseudoknotted pairs reported in
Table 3 is the sum of the number of pairs that are removed to
remove the pseudoknot. Then, the number of these predicted
pseudoknotted pairs that are both in the known structure
and pseudoknotted in the known structure was determined
and reported as the number of correctly predicted pseudo-
knotted pairs (Table 3).

The accuracy of pseudoknot prediction for structures was
also tabulated (Table 4). The number of predicted structures
with pseudoknotted pairs was determined. The number of
the predicted structures with pseudoknots that were correct
was then tabulated as correctly predicted pseudoknotted
structures. A predicted pseudoknotted structure was con-
sidered correct if it contained at least one correctly predicted
pseudoknotted pair. For structures with multiple pseudo-
knots, such as tmRNA sequences, a structure can be consid-
ered correctly predicted if only one pseudoknot is correctly
predicted.

ILM has the highest number of correctly predicted
pseudoknotted structures and the highest number of cor-
rectly predicted pseudoknotted base pairs. Of the predicted
pseudoknotted pairs, pknotsRG-mfe has the highest portion
of correctly predicted pairs. All algorithms, however, cor-
rectly predict only a small fraction of the pseudoknotted base
pairs that are in the known structure.

Structure prediction example

Figure 1 shows an example of predicted structure, the
Tetrahymena thermophila group I intron structure predicted
by ProbKnot. Thick lines between the base pairs represent
correctly predicted pairs. As can be seen from Figure 1,
ProbKnot correctly predicts almost all base pairs with
probabilities >70%. Helixes S1 and S2 that form pseudoknots
in the structure are correctly predicted by ProbKnot.

Time benchmarks

Time trials were performed on sequences ranging in length
from 77 to 2904 nucleotides (nt) (Table 5). On the longest
sequence, ProbKnot showed the second best time perfor-
mance, requiring 63 min of runtime to predict both the base-
pair probabilities and to assemble the predicted structure.
ILM had the best time performance and the dynamic pro-
gramming algorithm (pknotsRG-mfe) had the slowest time
performance.

DISCUSSION

ProbKnot assembles maximum expected accuracy structures
using base-pairing probabilities determined from a partition
function calculation. Previous approaches for predicting
maximum expected accuracy structures used dynamic pro-
gramming algorithms that do not allow pseudoknots (Do
et al. 2006; Hamada et al. 2009; Lu et al. 2009), but ProbKnot
is not limited in the topology of structures it can predict.
Although the partition function algorithm does not account
for pseudoknotted structures, each of the helices in the
pseudoknot can occur in different structures (Mathews
2004). ProbKnot takes advantage of this fact to assemble
both helices into a single structure.

ProbKnot has some similarities with the maximum weight
matching (MWM) methods previously explored to find
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secondary structures conserved among multiple sequences
(Tabaska et al. 1998; Hofacker et al. 2004). The MWM algo-
rithm takes pairing weights as input, where weights are a
function of folding free energy change and covariation, and
outputs a structure with the greatest sum of these weights.
MWM runs in O(N3) time and is also not limited in to-
pology. It has been noted that MWM methods tend to have
poor PPV because the structures are saturated with pairs, but
post-processing can remove pairs and improve performance.
ProbKnot is distinct because it uses pair probabilities and not
folding free energy changes as input. Additionally, the re-
quirement that the pairs included in the structure be the
highest pairing probability for pairs possible by either nu-
cleotide provides a stopping rule so that structures are not
oversaturated with pairs.

Based on the benchmarks in Tables 1 and 2, ProbKnot has
the highest average accuracy for RNA secondary structure
prediction among algorithms that predict pseudoknots. It
performs on average 2%–4% better in sensitivity and 2%–3%
better in PPV. These improvements are considerable, but
they leave room for improvement. For example, the average
performance for structure prediction on tmRNA, with four
pseudoknots, is only 47.2% in sensitivity.

The performance results for ProbKnot were also com-
pared with the performance of two algorithms, MaxExpect
(Lu et al. 2009) and free energy minimization (Mathews et al.
2004), which are unable to predict pseudoknots. This com-
parison was performed to evaluate the benefit for increasing
the range of topologies predicted to include pseudoknots.
In sensitivity, ProbKnot outperformed both algorithms by

z0.5%–1%. This was expected because ProbKnot has a wider
predicting range of possible topologies, and thus it should
predict more correct base pairs than other algorithms.
Because of the wider range of possible prediction topologies,
however, there is wider latitude for incorrectly predicting
base pairs and, because of this, PPV decreases compared with
MaxExpect.

Given the poor performance of the methods benchmarked
here on tmRNA and telomerase RNA, including ProbKnot,
there is a need for continued research in predicting pseudo-
knotted structures. One possible approach for improving
ProbKnot is to use a partition function that explicitly includes
pseudoknots to predict the base-pairing probabilities. For
example, the algorithm reported by Dirks and Pierce is O(N4)
in time and includes a restricted set of pseudoknots (Dirks and
Pierce 2003, 2004; Condon et al. 2004). These pair probabil-
ities could be used by ProbKnot to assemble structures of any
topology and may yield more accurate structures.

ProbKnot is available in the RNAstructure package (Reuter
and Mathews 2010). This includes the source code in
C++; text interfaces for Linux, Unix, and Windows; a JAVA
graphical interface for Linux and Mac OS-X; and a graphical
interface for Microsoft Windows.

MATERIALS AND METHODS

Prediction of base-pairing probabilities

Base-pair probabilities were predicted using a partition function
algorithm that includes coaxial stacking (Mathews 2004). This

TABLE 4. Pseudoknot prediction statistics on structures

Type
of RNA Sequences

Pseudoknotted
structures

Pseudoknotted structures predicted
Correctly predicted

pseudoknotted structures

ProbKnot ILM
pknotsRG-

mfe
HotKnots

v1.2 ProbKnot ILM
pknotsRG-

mfe
HotKnots

v1.2

SSU rRNA 88 21 34 40 26 2 0 2 0 0
(22) (22) (18) (21) (9) — (0) (0) (0) —

LSU rRNA 27 2 7 10 1 0 0 0 0 0
(5) (2) (5) (5) (1) — (0) (0) (0) —

5S rRNA 309 0 26 25 4 17 0 0 0 0
Group I intron 16 16 10 10 10 0 1 2 2 0
Group II intron 3 0 1 2 0 0 0 0 0 0
RNase P 6 6 4 4 0 0 1 1 0 0
SRP RNA 91 23 21 25 34 0 1 2 1 0
tRNA 484 0 75 99 10 54 0 0 0 0
tmRNA 462 459 276 313 54 2 65 64 39 2
Telomerase

RNA
37 37 12 23 19 0 0 0 1 0

Total 1523 564 466 551 158 75 68 71 43 2

Pseudoknotted structures predicted is the sum of predicted structures that contain at least one pseudoknotted pair. Correctly predicted
pseudoknotted structures is the sum of structures with at least one pseudoknotted pair that is correctly predicted. Sequences in SSU rRNA and
LSU rRNA subtypes were split into domains of no larger than 700 nt. In parentheses are sums for small and large subunit rRNAs when the whole
sequence is folded at once and these sums are not used in the total.
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program uses the thermodynamic parameters assembled by Xia
et al. (1998) and Mathews et al. (2004) to predict the stabilities of
secondary structures. Similar to Lu et al. (2009), the multibranch
loop parameter bonus for each branching helix was not optimized
as done by Mathews et al. (2004) but was kept at �0.6 kcal/mol,
the value suggested by optical melting experiments (Diamond
et al. 2001; Mathews and Turner 2002).

Accuracy

All algorithms were tested on 1550 RNA sequences from 10
different families: small subunit rRNA (Gutell 1994), large subunit
rRNA (Gutell et al. 1993; Schnare et al. 1996), 5S rRNA
(Szymanski et al. 1998), group I intron (Waring and Davies
1984; Damberger and Gutell 1994), group II intron (Michel et al.
1989), RNase P RNA (Brown 1998), SRP RNA (Larsen et al.
1998), tRNA (Sprinzl et al. 1998), tmRNA (Zwieb et al. 1999), and
telomerase RNA (Chen et al. 2000). This database is an expansion

of a database of structures assembled previously (Mathews et al.
1999) to include the telomerase RNA and the tmRNA, which are
pseudoknotted RNA structures. Vertebrate telomerase RNA sec-
ondary structure alignments were obtained from the Rfam 9.1
database (Griffiths-Jones et al. 2003, 2005; Daub et al. 2008;
Gardner et al. 2009). tmRNA secondary structures were obtained
from the tmRDB database (Zwieb et al. 2003). Structures with
unknown nucleotides were omitted from the full list of structures
in the tmRDB database. Small and large subunit rRNA sequences
were divided into domains of #700 nt as previously reported
(Mathews et al. 1999).

The performance of secondary structure prediction algorithms
was evaluated by calculating sensitivity and PPV. Sensitivity
measures the percent of known base pairs correctly predicted:

Sensitivity =
Number of true positives

Number of true positives + Number of false negatives
:

FIGURE 1. Predicted secondary structure of group I intron from T. thermophila by ProbKnot. Thick lines represent correctly predicted base
pairs; thin lines represent incorrectly predicted base pairs. The boxed helices, labeled S1 and S2, are the two helices that define the pseudoknot.

Secondary structure prediction with pseudoknots

www.rnajournal.org 1877



PPV measures percent of predicted base pairs that are correctly
predicted:

PPV =
Number of true positives

Number of true positives + Number of false positives
:

Both sensitivity and PPV were evaluated with an allowance for
incomplete knowledge of the exact pairing in the known structure.
A predicted base pair between nucleotides i and j was considered
correctly predicted if i was paired to j, j � 1, or j + 1, or if j was
paired to i � 1 or i + 1 (Mathews et al. 1999). Average values were
calculated per RNA family and then overall averages were
calculated as the mean of the values reported for each family.

Tabulation of pseudoknot content

The number of base pairs in pseudoknots was counted using an
implementation of the optimization approach of Smit et al. (2008)
as implemented in the RNA class component of RNAstructure
(Reuter and Mathews 2010). In this implementation, the scoring
function is pairs, so the algorithm counts the fewest number of
pairs that would need to be removed to remove the pseudoknot.
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