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PURPOSE. A relationship has been reported between the pres-
ence of peripheral neuropathy and the density and shape of
corneal nerve fibers. Peripheral neuropathy is a debilitating
condition that arises from many common health problems, and
its presence is often confirmed with an invasive clinical test
called intramuscular electromyography (EMG). In this study,
the possibility of developing an alternative or adjunct test to
EMG based on the appearance of nerve fibers in corneal mi-
crographs was explored. Since corneal imaging is virtually
noninvasive compared with EMG, such a test may be adminis-
tered more liberally and frequently, before neuropathy symp-
toms occur.

METHODS. A software program that automatically traces nerve
fibers in corneal micrographs and generates measures based on
these traces was implemented. This software was applied to a
database of images collected by confocal laser scanning corneal
microscopy from diabetic subjects whose levels of neuropathy
were measured with EMG and from healthy subjects.

RESULTS. Trends in the nerve fiber density and various measures
of shape were calculated and observed, to explore the possi-
bility of using these measures as a clinical tool for corroborat-
ing symptoms, confirming an evaluation, or evaluating risk
factors for developing neuropathy.

CONCLUSIONS. Preliminary statistical trends show a potential for
measuring and observing neuropathy severity or for providing
an objective risk measure for a patient’s ensuing condition.
More work is needed in the development of the measures and
in their testing to prove that the measures can be made repeat-
able in a clinical environment. (Invest Ophthalmol Vis Sci.
2010;51:4480–4491) DOI:10.1167/iovs.09-4108

Peripheral neuropathy encompasses disease conditions
where the nerve fibers of the peripheral nervous system

degenerate. It is a complication brought on by diabetes, aging,
alcohol overconsumption, and many other causes.1 It is among

the most common complications of diabetes and is prevalent
due to diabetes alone, because diabetes affects �8% of the
North American population,2 and anyone with diabetes for 25
years has a �50% chance of having peripheral neuropathy.3

The most common classification of the condition that occurs in
diabetes is distal symmetric polyneuropathy (DSP). The pain
and numbness that accompany the condition are often debili-
tating. It can be dangerous and sometimes life-threatening,
because it may affect the autonomous nervous system and
thereby may alter physiological functions, most commonly
including cardiovascular, gastrointestinal, and genitourinary
system functions.

DSP and other forms of polyneuropathy are evaluated
mainly from symptoms that include tingling sensations, numb-
ness, and pain, depending on the progression. It may also
present as autonomic abnormalities, such as muscle wasting,
anhidrosis, difficult food digestion, and other conditions af-
fected by peripheral nerves. The diagnosis is confirmed by
using classic neurophysiology techniques, such as electromyo-
graphy (EMG) and electroneurography; quantitative sensory
tests, such as assessment of nerve conduction and study of
vibratory thermal and pain sensitivity; and intraepidermal
nerve fiber density (INFD) evaluation, which involves a biopsy.
These techniques are inadequate for sensitivity in early detec-
tion of the disease, for inability to discriminate the type of fiber
involved (e.g., A-delta or C fibers), and for their invasiveness.
The EMG test cannot discriminate the fiber type and is invasive.
A biopsy can discriminate the fiber type but is invasive. Con-
focal microscopy, which is used in the technique described
herein, can discriminate the fiber type and is noninvasive, and
so it is an attractive option to develop. The discrimination of
type of fiber helps the physician to pinpoint the nature and
cause of the neuropathy. Because of the invasiveness of EMG,
some forms of electroneurography and INFD tests, there is also
the risk of infection, and most important, they are painful and
uncomfortable for the patient to undergo, which in turn causes
the physician to not prescribe the test liberally. We argue that
a test of this sort ought to carry as few complications as
possible, so that a physician can routinely prescribe it to rule
out or confirm neuropathy as the possible cause of symptoms,
and so it can be used to evaluate possible risks for the condi-
tion or even possibly as a screening tool.

The EMG test is also commonly used as a screening test.
Diabetic children in some countries undergo EMG, typically,
once every 1 or 2 years, and older patients (55 and older)
undergo EMG yearly. This screening test is critical for detecting
early signs of neuropathy. Mainly because of the pain and
discomfort, but also because of the invasiveness, it would be
good to have an alternative, noninvasive test that accomplishes
the same screening objective.

There are three main purposes that motivated this study.
One is an early step toward having an alternative or adjunct to
EMG, biopsy, and other tests, so that there may be a less
invasive screening examination and a less invasive corrobora-
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tion of the clinical examination or a complementary further
confirmation of the EMG. Another is an early step toward a
noninvasive and objective way to evaluate at-risk patients for
possible risk indicators or possible early indications that neu-
ropathy may be developing before symptoms occur, so that
early preventive treatments can be prescribed. Most com-
monly, the treatment is of the underlying cause of the condi-
tion. A reversible or treatable underlying cause may be identi-
fied, such as metabolic, hormonal, or infectious disorders or
vitamin deficiencies. With diabetic patients, monitoring and
control of insulin levels is tightened and/or patient compliance
with insulin therapy is addressed. Third, although there is no
widely used treatment today that reverses the underlying neuro-
pathic condition, groups are studying the rudimentary causes4

that implicate potential treatments, such as vascular endothelial
growth factor injection.5 One proposed nonpharmaceutical treat-
ment that was tested—frequency-modulated electromagnetic
neural stimulation6—was reported to reverse measurable neuro-
pathic conditions (pain score, tactile perception, and nerve con-
duction velocity).

The idea of developing software for evaluating the appear-
ance of nerve fibers in the cornea to measure the onset of
peripheral neuropathy was implied by others who have shown
a correlation between nerve fiber appearance and diabetic
neuropathy.7,8 The tests reported herein are an early step
toward automation of this process and establishing a correla-
tion between quantitative measures of nerve fiber shapes and
disease progression. Figures 1 and 2 show example images
where the nerve fiber densities, shapes, and other appearance
measures differ. These densities, shapes, and appearances are
being measured by the software.

METHODS

Image Data

Images were collected with a scanning laser ophthalmoscope (HRT II;
Heidelberg Engineering, GmbH, Heidelberg, Germany) with a Rostock
cornea module, which encompasses a special objective lens that fo-
cuses on the cornea.9

The study involved 45 patients with type 2 diabetes and, as control
subjects, 17 healthy participants. In compliance with the Declaration
of Helsinki, written informed consent was obtained from all the pa-
tients after an accurate explanation of the purpose of the study and the
risks of the procedure. The 45 diabetic patients first underwent a
neurologic examination, and EMG was used to rank them as having no,
mild, moderate, or severe neuropathy, which corresponds to the
rankings denoted as distal symmetric polyneuropathy (DSP) 0, 1, 2, and
3, respectively. Patients who had neuropathy different from DSP,
central nervous system diseases, renal failure, autoimmune diseases
(e.g., Sjögren’s syndrome) and other ocular diseases or previous ocular

surgery were excluded from the study. Other information about the
subjects included age, sex, years of disease and whether the subjects
were symptomatic for neuropathy. Figures 3 and 4 show histograms
illustrating subject information that is useful for understanding trends
observed in the fiber density and shape measures.

Before the examination began, the cornea was anesthetized with 1
drop of 0.4% oxybuprocaine chlorohydrate (Novesina; Novartis Farma
S.p.A, Origgio, Italy). As mentioned earlier, images were then collected
with a confocal scanning laser ophthalmoscope (SLO; HRT II; Heidel-
berg Engineering), on which was mounted the Rostock cornea mod-
ule, an anterior segment adapter containing a 60� water-immersion
objective lens that allows a magnification up to 700� with a transverse
resolution of 1 �m. A sterile plastic lens cover (Tomo-cap; Heidelberg
Engineering) was mounted over the microscope lens after the appli-
cation of a drop of contact gel onto the microscope lens.

With the system focusing on the subbasal nerve plexus, many
images were collected while the field was moved manually around the
center position of the cornea (Fig. 5c). Images were obtained at a large
number of positions radial from the center, so that overlapping images
were avoided as much as possible. Only one eye for each patient was
used, with the selection randomized by coin toss.

A subset of the images for each subject was used for testing trends.
This subset was manually selected according to the following three crite-
ria: First, each image in the subset had to have at least one clearly visible
nerve fiber. Second, if epithelial cells covered more than one third of the

FIGURE 1. Left: HRT image of cornea nerve fibers. Right: fibers iden-
tified by the computer program.

FIGURE 2. Images showing tortuous, lower intensity, and lower con-
trast fibers.

FIGURE 3. Number of subjects versus subject category defined by (1)
nondiabetic, (2) diabetic and no neuropathy according to EMG, (3)
diabetic and mild according to EMG, (4) diabetic and moderate accord-
ing to EMG, and (5) diabetic and severe according to EMG. The
numbers above each level (e.g., 17/0) indicate the number of asymp-
tomatic and symptomatic subjects, respectively.
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image area, that image was discarded. The presence of these cells indi-
cates that the wrong corneal layer is in focus. Third, there could not be too
much overlap between images in the subset. If the distance of the shift
between a pair of overlapping images was less than half the image width,
then the image of lesser quality (evaluated by the viewer based on contrast
and clarity of fibers) is discarded. This method creates greater indepen-
dence between measurements based on different images from the same
subject. In the end, while each subject had a different number of images
used in the analysis, there was a range of 2 to 24 and an average of �9
images per subject.

In an effort to eliminate some of the variability in the data due to
age, some of the statistical tests were run in subjects who were above
specific age thresholds. However, it was not possible to use proper
matching according to age or sex because there was an insufficient
number of subjects in any age group to provide valid P-values in the
statistical significance tests.10,11 The study group contained a large
number of volunteers, and for them to be matched according to age
and sex, the number of participants would have to increase to an
unmanageable size for a first test study. The next step beyond this
study will be to perform a rigorously age- and sex-matched study.

One subject was recruited for a study of some of the difficulties
with repeatability. One eye was scanned. The acquisition schemes
depicted in Figure 5 were performed. Figure 6 shows other schemes
that we favored for obtaining good statistics because they would better
sample the whole cornea area. We had difficulty in implementing
them, however, because of several practical problems that might be
overcome with automated collection. The shapes are difficult to real-
ize, partly because it is difficult to have a reference point, partly
because the eye moves continually, and partly because it is difficult to
see any sort of reference points on the cornea through the camera. A
large number (256) of images were collected from the three patterns.
Each pattern was repeated once so that two independent collections
from each pattern were available for calculating parameters that pro-
vide some information on repeatability. Three pairs of such data sets

were thereby gathered and given the labels of DU1, DU2, TN1, TN2,
R1, and R2, where DU means down-up, TN means temporal-nasal, and
R means random. There were 42, 35, 53, 47, 35, and 44 images,
respectively, for each of the scans.

In gathering all the data sets, the research adhered to the tenets of
the Declaration of Helsinki. Informed consent was obtained from the
subjects after explanation of the nature and possible consequences of
the study. In addition, approval for the research was approved from
the Internal Review Board (IRB) of the Sacco Hospital.

Objectives

The main objectives were (1) to test that the software can automati-
cally reveal trends in the designed nerve fiber measures, presuming
that a trend exists. This capability is shown by testing statistical signif-
icance against parameters wherein one would expect to see trends or
statistical significance, such as age, sex, and visual grading by an
ophthalmologist; (2) to see whether the software detects any trend
against clinical measures of neuropathy severity, albeit with the limi-
tation that age- and sex-matching precautions could not be taken.
Other researchers have already established generally that such trends
exist (Pellegrini M, et al. IOVS 2008;49:ARVO E-Abstract 2807),8,12 and
the objective in the present study was to see whether the software
would show these trends with the automation of nerve fiber detection
and the specific measures described later; and (3) to understand the
practicalities of usable data acquisition in a clinical environment. To
achieve this goal, some parameters reflecting potential repeatability
and statistical power were studied.

Automated Measurements

Software was written that automatically identified the fibers as dem-
onstrated in Figure 1. The nerve fibers were detected by using a
segmentation and skeletonization algorithm based on ridge map calcu-
lation.13 The program creates an intensity gradient image, which is
used to produce a set of labeled pixels in the image called a ridge map.
This operation is followed by execution of rules that automatically edit
the ridge map to produce a set of labeled fibers. The ridge map is
pruned with morphologic operators14 and further processes follow
more rules to find skeletonized branch segments that should be
joined together or arranged as having connecting branch points.
Counts of branch segments and branch points and measurements of
shapes are produced, including those summarized in Table 1 with
some of the definitions illustrated in Figures 7 and 8. Later, we refer
to these measurements as risk factor measurements.

The definitions of some of these risk factor measurements are
according to the equations provided below. A program function re-
turns a list associated with each branch segment of ordered pixel
indices (xn, yn). This ordered list traces the branch segment’s skeleton.
A spatial low-pass filter was applied to the function that this list

FIGURE 4. Distribution of ages in the subject categories defined in
Figure 3.

FIGURE 5. Simple patterns that could be traced by a technician or
automated computer program. In this study, the traces were manual.
The drawing in (c) represents randomly chosen locations.

FIGURE 6. Possible patterns traced by a technician or automated com-
puter program that moves the center of the image field.
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represents to remove rapid shifts from the pixel quantization of the
(xn, yn) positions. The resulting filtered sequence is then processed
according to the following formulas to form several measurements:

�xn � xn � xn�1 (1)

�yn � yn � yn�1 (2)

�2xn � �xn � �xn�1 (3)

�2yn � �yn � �yn�1 (4)

and

TC1 �
1

L �
n

��xn�2yn � �2xn�yn

��xn
2 � �yn

2�3/2 � (5)

where L is the length of the segment defined by

L � �
n

��xn
2 � �yn

2. (6)

The length density, DL, is defined according to

DL �

�
k

Lk

�
i

Ai

(7)

where the index k refers to the branch segment being considered and the
subscript i refers to the ith image used for the subject being measured.

The TC1 parameter is called curvature tortuosity 1 because it is
based on the mathematical curvature of the skeleton of the branch
segment.15 This tortuosity is identical with the Tc(C) measure that is
defined in Hart et al.,16 except that here the term is divided by L which
weights it inversely to the length of the branch segment. We also have
a curvature tortuosity 2 (TC2) defined according to

TC2 �

�
k

TC1kLk

�
k

Lk

(8)

where TC1k is the TC1 measured for branch segment k. A third measure,
called the length-ratio tortuosity,15 is defined according to

TL � L/Le (9)

FIGURE 7. Definitions of terms for specifying measurements. The ob-
jects enumerated from 1 to 9 are branch segments. Circles: branch
points.

FIGURE 8. The difference between curvature tortuosity and length-
ratio tortuosity. The branch segment on the left has higher curvature
tortuosity and the branch segment on the right has a higher length-
ratio tortuosity.

TABLE 1. Candidate Risk Factor Measurements

Measurement Description

Number of branch points, Nb Number of branch points in the image.
Number of branch segments, NS Number of branch segments in the image.
Branch segments per branch point NS/Nb Number of branch segments divided by number of branch points.
Curvature tortuosity 1, TC1 The tortuosity defined in equation 5 and illustrated in Figure 8, left. This parameter is based on the

mathematical curvature of the skeleton of the branch segment.
Curvature tortuosity 2, TC2 The tortuosity defined in equation 8 and derived from TC1.
Length, L Path length of the branch segment.
Length density, DL Sum of lengths of all branches divided by the area as defined in equation 7. This is, de facto, a

measure of total length over the image field. The study could have equivalently recorded the
lengths only, because the area divisor is the same for all images, and so dividing by the area has
no consequence on the trends.

Length ratio tortuosity, TL The tortuosity measurement illustrated on the right of Figure 8. It is the path length of a fiber
divided by the distance between its end points. This measure has been called the arch length
over length ratio.15

Signal to background, S/B Ratio of the mean intensity value within pixels on the fiber to the mean intensity value within
surrounding pixels.

Intensity variance, �2 Variance of intensity values within pixels on the fiber.
Width, W Total fiber area divided by length.
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where Le is the distance between the two endpoints of the branch
segment.

Ophthalmologists in our group described to us the characteristics
that they expected to trend with neuropathy severity, based on their
experience. Most of the risk factor measures were designed to reflect
these characteristics. Fiber length, count, and branch points, they said,
all are expected to lessen with severity. Tortuosity should increase,
according to their expectation, whereas beading and contrast should
worsen. The variance calculation �2 was designed to reflect the bead-
ing, since as beading increases, the variation of intensities in the fiber
appear to increase. The signal-to-background (S/B) was designed to
capture the changes in contrast.

The software performs all the fiber identification and candidate risk
factor measurements automatically. There is an operator intervention
where thresholds of fiber lengths and other measurements can be set
to control rejection. For example, in Figure 9 it is explained that all
fibers with a length �25 �m and having an S/B measurement of �1.25
were rejected, but other than the selection of these thresholds, this
rejection process is automated. An obvious idea is to edit the traces by
manually drawing missing branches, erasing spurious branches or
branch segments, or joining fragmented sections with a point-and-click
drawing interface. With the data presented, there was no such opera-
tor editing. The software makes errors, as is evident by the missed and
spurious fiber identifications in Figures 1 and 2. These errors ought not
to be overlooked, and future improved versions of the software algo-
rithms ought to provide more accurate traces. Ways of doing so are
suggested later.

It is expected that researchers and certain clinics will want to edit
the fiber traces. Clinically, such an editing feature may be desired for
visual inspection and evaluation of the images, aside from statistics and
quantitative measurements and for communicating the condition to
the patient. Even so, it may be better overall for the statistics and the
derivation of the quantitative risk factor measures to accept the auto-
mation mistakes and in the meanwhile to work on improved auto-
mated detection of the fibers, than to edit them manually. Editing
introduces nonrepeatable human error that adds to statistical variabil-
ity. Our experience with other projects17,18 has shown that perfect
nerve fiber tracing is not possible, either manually or automatically and
that attempting to edit the fibers is laborious. Even manual traces,
performed by an ophthalmologist and shown in Figure 10, will contain
mistakes, equally severe, and will not be perfect, but will have the
added variability between ophthalmologists and within the same oph-
thalmologist at different times. Future improved versions of algorithms
will strive to eliminate such automated errors and will have the editing
feature as well.

One of the problems that prevents perfect decisions about what is
a branch, whether the computer or the person decides, is that every
image set contains cases with reflectance, contrast, and branch conti-
nuity that are borderline for being counted. The arrows on the top left

of Figure 10 highlight one such example. There are other examples
apparent in this image. Those that are highlighted could be considered
mistakes, although it is not clear that they are. Both the computer and
the person make similar types of mistakes on such decisions, and in
such cases the correct decision is not clear, which adds to the vari-
ability. However, the person (or persons) will not make the same
decision every time she is presented with the same situation. This
added change-of-mind variability does not happen with the computer.
Mistakes by the computer are a source of variability, but the nonre-
peatability of the decisions is not.

Another argument against editing fragmented branches is that they
reflect the degradation of the fibers caused by neuropathy (of course,
some fragmentations could also be due to the branch’s pathway in and
out of the confocal plane). Perhaps, it is important to capture the
quantitative measure of these fragmentations and correlate them with
the neuropathic condition. If so, it may be better to leave them
fragmented, counted, and measured as smaller branch segments. On
the other hand, an even more elegant measure would be a number that
reflects the nerve fiber breaks per nerve fiber, and this number would
require both the fragmented branches and their correct association
with a corrected, unfragmented branch. Considering these and similar
arguments, research end-users of this software may want the capability
of editing the decisions as to what are branches and of editing the
branch tracings that affect the end measurements. Of particular inter-
est, and the easiest and potentially most relevant feature needed, is the
capability of joining fragmented branches. This type of edit is condu-
cive to automation, although the current software version does not do
so yet. A simple automated postediting scheme could detect that
adjacent branch segments are close to one another and point in
generally the same direction and could make the automated decision to
join them. Of course, such a feature must be investigated, because one
can envision many types of additional mistakes that such a scheme
could introduce. The eventual commercial software product ought to
provide this capability, whether it be an automatic postprocess, a
manual editing feature, or both. Manual edits that rejoin fragmented
branches would be the most benign of edits because the computer has
already decided on where the branches are, and the user can simply
join them. This decision will vary less than decisions about what
constitutes a branch.

RESULTS

Trends

With each subject, the software processed every nonoverlap-
ping image that was selected, as described.

Figure 9 demonstrates trends with age. Similar trends were
seen when these plots were repeated for diabetics only and for

FIGURE 9. Scatterplots and linear regression of measures versus age in all diabetic and nondiabetic subjects age 48 and above. Each point
represents a volunteer subject. The P-value is shown above each plot and is based on the significance test used for regression analysis and outlined
in Sec. 10.3 of Reference 10. Branch segments with L � 25 �m were excluded. Branch segments with S/B � 1.25 were also excluded. For Nb, Ns,
and DL, each scatter-plot point was calculated by first calculating the measurement in each image and then taking the average of that measurement
over the included images of that subject. For L, each scatter-plot point was calculated by summing the lengths of every included branch segment
throughout all included images and then dividing by the number of included branch segments throughout all images.
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nondiabetics only, but the resulting P-values were not as
strong. Figure 11 demonstrates differences between the sexes.

Figure 12 demonstrates trends against graded images. An
ophthalmologist (MP) viewed all the images in the database for
chosen subjects and graded them as one of three levels: mild,
moderate, or severe. The 27 subjects for this test were chosen
randomly from all groups in the database. From each subject,
the image to grade was chosen randomly as well, except that
poor-quality images (those with poor contrast, excessive noise,
or no fibers) were avoided. The ophthalmologist did not follow
any specific instructions except to rank them as mild, moder-
ate, or severe. Afterward, he explained that he considered the
appearance of number of fibers (without actually counting),
the appearance of their collective lengths (without actually
measuring), and their tortuous appearance.

To test trends with neuropathy progression, there are
three tags that were candidates to correlate or trend with
the candidate risk factor measures: the diabetic/nondiabetic
tag, the asymptomatic/symptomatic tag, and the no-neurop-
athy/mild/moderate/severe EMG test output that was per-
formed in all diabetic patients. Figure 13 shows the results of a
test in which the subjects were grouped according to the follow-
ing criteria:

Group A includes subjects who met either of the following
conditions: all nondiabetics older than 55 years or diabetics
with no neuropathy according to EMG and no clinical symp-
toms, and older than 55.

Group B includes subjects who met the following condi-
tions; diabetics who had an EMG evaluation of mild neu-
ropathy, were clinically symptomatic, and were older than
55 years.

The measures were averaged by including only the longest
three branch segments in each image. The P-value shown
above each plot was based on a paired t-test. Averaging for
each subject was performed by measuring every included
branch segment among all included images and then taking the
average over that whole population of branch segments.

Figure 14 shows the results of a test in which the subjects
were grouped according to the following criteria:

Group C was all nondiabetics of all ages.

Group D was all diabetics with an EMG evaluation of no
neuropathy (included both sexes and both asymptomatic
and symptomatic disease).

Group E was all diabetics with EMG evaluation of mild
(included both sexes and both asymptomatic and symptom-
atic disease).

The measures were accomplished by including only the long-
est three fibers in each image. All other fibers were not in-
cluded in the calculation. The P-value shown above each plot
is based on ANOVA.10,11

The measures L, TC1, TL, S/B, �2, and W were averaged for
the box plots and scatterplots of Figures 9 and 11 to 14 by
averaging them over every branch segment within all included
images of the subject. The measures Nb and NS were averaged
for these figures by calculating them for every image of the
subject and then averaging the value over these images. The
length density DL, as shown by equation 7, was calculated by
adding all the lengths of included branch segments of a subject
and dividing by the sum of the areas (micrometers squared) of
all the images of that subject. This measure is equivalent to
calculating the aggregate length of the fibers in each image,
and then averaging that aggregate length over the images, since

FIGURE 10. An example of a manual trace. Note the wide range of
contrast in the fibers, which makes it difficult to decide what makes up
a branch. Arrows: examples of so called branches that result in differ-
ent decisions, depending on the operator and depending on when the
same operator made the decision.

FIGURE 11. Paired t-test of measures
separated by sex. Ages 55 and under
were excluded. Branch segments with
L � 25 �m were excluded. Branch seg-
ments with S/B � 1.25 were also ex-
cluded. The sample point representing
each subject, for Nb, Ns, and DL, was
calculated by calculating the measure-
ment in each included image of that sub-
ject and then taking the average of that
measurement over all the included im-
ages of the subject. The sample point
representing each subject, for TC1, was
calculated by measuring every included
branch segment among all included im-
ages and then taking the average over
the whole population of included
branch segments. The sample point rep-
resenting each subject, for TC2, was cal-
culated by having the summations in
both the numerator and denominator of
equation 8 being taken over all branch
segments throughout all included im-
ages of the subject.
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division by the area simply scales the number. The k index of
TC2 in equation 8 implies that the calculation is performed over
all included branches and all included images. The branch-
segment to branch-point ratio was calculated by finding the
averages of both NS and Nb and then taking the ratio.

Repeatability Considerations

There are two immediate practical concerns that drive the
need for repeatability. First, it is important that the same
evaluation be arrived at with a patient if he is examined twice

FIGURE 12. Measure trends with grad-
ing by an ophthalmologist. The P-value
was based on the ANOVA statistical sig-
nificance test.10,11 Branch segments
with L � 25 �m were excluded. Branch
segments with S/B � 1.25 were also
excluded. The sample point represent-
ing each subject, for Nb, Ns, DL, TC1, and
TC2, was calculated according to the de-
scription in the Figure 11 caption. The
sample representing each subject, for
Ns/Nb, was calculated by first calculating
Ns/Nb for every included image of the
subject and then averaging this ratio
over these images. The sample point
representing each subject, for TL, was
calculated by measuring TL for each
branch segment throughout all included
branch segments of the subject and then
taking the average over the whole pop-
ulation of branch segments.

FIGURE 13. Measures versus clinical
evaluation groups according to the
following criteria. Group A includes
subjects who met either of the fol-
lowing conditions: (1) all nondiabet-
ics older than 55 years, (2) diabetics
with no neuropathy according to
EMG and no clinical symptoms, and
older than 55. Group B includes sub-
jects who met the following condi-
tions: diabetics who had an EMG
evaluation of mild neuropathy, were
clinically symptomatic, and were
older than 55 years. The criterion for
including fibers in the measurements
was that only the longest three fibers
of each image were included. No S/B
criterion was used as with the prior
figures. The P-value shown above
each plot was based on a paired t-
test. The sample point representing
each subject, for Nb, Ns, DL, Ns/Nb,
TC1, and TC2, was calculated accord-
ing to the descriptions in the Figures
11 and 12 captions. The sample
point representing each subject, for
L, S/B, �2, and W, was calculated by
measuring these parameters for each
branch segment throughout all in-
cluded branch segments of the sub-
ject and then taking the average over
the whole population of branch seg-
ments.
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under the same conditions. Second, it is important to reliably
detect a progression of any of these potential measures, and
the more sensitivity in doing so the better. One way of char-
acterizing this sensitivity is by the effect size under realistic
conditions.

An early test of repeatability is summarized in Table 2. The risk
factor parameter values were recalculated for the image sets taken
under identical conditions (i.e., DU1 versus DU2, TN1 versus TN2
and R1 versus R2). The null hypothesis was tested for each of
these pairs. For the paired t-test, the measurement calculated for
an individual fiber made up the sample point L, TC1, S/B, �2, TL,
and W. The measurement averaged over an image made up the
sample point for Nb, Ns, DL, and TC2. For TC2, this average fol-
lowed equation 8. A P-value greater than 0.05 implies that the
difference in means is statistically insignificant. Ideally, we would
like every entry to have high P-values.

Most of the tests showed the desired statistical insignifi-
cance, but 6 of the 30 tests did not. Four of the measures (Nb,
TC2, L, and TL) showed statistical insignificance in all three
tests. For future clinical usage, we think it is important to
collect the baseline and follow-up data in the same way. For

example, the worst repeatability occurred when comparing
the means between DU1 and R1 (not shown in Table 2). In this
case, all 10 of the measures had a statistically significant differ-
ence. A definitive conclusion about repeatability cannot be
arrived at from these tests, but they at least provide some
insight, and they imply that, in the clinic, it will be important
to define and adhere to collection patterns. We think that other
collection patterns and measures could improve repeatability.
A thorough repeatability test necessitates compiling a well-
defined database that represents a longitudinal study including
healthy control subjects, to ensure no change, and subjects
who are expected to show a change.

To roughly estimate a possible realistic sensitivity, we used
the TN1, TN2, DU1, DU2, R1, and R2 data sets as examples for
estimating a possible effect size and concomitant percentage
change in parameters that could be detected. The standard
methods of estimating effect size from desired statistical power
were used.11 Tables 3 and 4 summarize these calculations,
which shows the estimated percentage change needed for a
statistical power of 0.8, estimated from the DU1 data set. The
DU1 set was chosen arbitrarily. Table 3 summarizes the param-

FIGURE 14. Measures versus clinical
evaluation groups according to the
following criteria: Group C was all
nondiabetics of all ages. Group D
was all diabetics with an EMG evalu-
ation of no neuropathy (included
both sexes and both asymptomatic
and symptomatic disease). Group E
was all diabetics with EMG evalua-
tion of mild (included both sexes and
both asymptomatic and symptomatic
disease). The measures were accom-
plished by including only the longest
three fibers in each image. All other
fibers were not included in the cal-
culation. No S/B criterion was used
to filter fibers as was done for previ-
ous figures. The P-value shown
above each plot is based on ANOVA.
Refer to earlier figure captions (Fig-
ures 9–13) for an explanation of the
calculation of each sample point that
represents each subject in these
plots.

TABLE 2. Calculation of Repeatability

Measure

TN1 vs. TN2 DU1 vs. DU2 R1 vs. R2

% Difference P % Difference P % Difference P

Nb 13.2 0.348 �10.3 0.516 �21.3 0.058
NS 24.6 0.016* 1.8 0.879 �3.3 0.695
DL 25.1 0.012* 5.9 0.546 �5.5 0.341
TC2 0.72 0.844 �3.4 0.25 18.0 0.054
L 2.6 0.649 13.4 0.062 �6.0 0.375
TC1 2.4 0.602 �3.3 0.263 10.9 0.002*
S/B 4.1 �0.001* �0.83 0.568 �2.8 0.077
�2 3.3 0.469 20.0 0.001* �9.7 0.072
TL �16.2 0.285 �1.89 0.543 3.5 0.081
W 10.7 0.021* 13.1 0.027* 2.2 0.568

* Statistically significant.
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eters that are averaged over all included fibers. Parameters
needed for the Table 3 estimates included the number of fibers
(441, taken from the number of fibers automatically identified
in DU1), the desired null-hypothesis P-value (0.05), and the
desired statistical power (0.8). The required effect size (per-
centage change over the SD) for this P-value, statistical power,
and number of fibers is 0.168. Table 4 summarizes the param-
eters that are averaged for each included image and then
averaged over the images. Parameters needed for the Table 4
estimates include the number of images (42, which is the
number of images used for DU1), desired null-hypothesis P-
value (0.05), and desired statistical power (0.8). The estimates
shown for the mean, standard deviation, and required change
in the mean were also calculated from the DU1 data set. The
required change in the mean is calculated by multiplying the
estimated standard deviation by the required effect size. The
required percentage change in the mean is calculated by divid-
ing the required change in the mean by the estimated mean.

Table 5 provides a summary of how the numbers calculated
in Tables 3 and 4 vary over all six of the data sets (DU1, DU2,
TN1, TN2, R1, and R2) by showing their ranges over these data
sets. Also shown in the second and third columns of Table 5
are estimates of a possible typical percentage change that can
be expect from a patient when the severity progresses. These
expected percentage changes cannot be known without a
complete study, but at least they may serve as first estimates
based on the representations of ranges provided in Figures 13
and 14. The percentages in these two columns were estimated
by calculating the percentage differences between the median
values shown in the box-and-whisker plots of Figures 13 and
14, respectively. For the Discussion these calculated percent-
ages serve as a surrogate for estimating what might be possible
in a real situation. They do not report what percentages will
actually be reached, because more data would be needed to
determine those statistics.

DISCUSSION

Figures 9 and 11 to 14 show that the software is capable of
showing trends in measures against parameters where a trend
would be expected. Although there is no prior determination
that corneal nerve fiber shapes are, on average, different be-
tween males and females, it is not surprising to find. Other
researchers have documented differences in nerve fiber size,
shape, number, and function between males and females in
animals and humans, in a variety of tissues.19–24 This includes
the documentation of increased fiber counts (Nb, Fig. 11) in
cadaveric skin specimens of human females compared with
those in males.23

The linear regression plots versus age shown in the first
three plots of Figure 9 trend in the opposite direction from
what was expected, but are consistent with those in a pub-
lished study in which nerve fiber length densities were mea-
sured in skin biopsies of diabetic patients.25 We expected the

number of branch segments, branch points, and length density
to decrease with age, since we thought that they were indica-
tors of fiber health and further assumed that general health
declines with age. On the other hand, we confirmed these
trends with the visual appearances of the fibers in the images,
and these trends appear to be real. A possible explanation is
that the nerve fibers are in continual flux,26–28 and so it is
believable that the fibers could generate continually, and the
number could, on average, increase over time and thereby over
the age of the subject. Before drawing conclusions based on
this finding, a regression analysis on a wider range of popula-
tion has to be performed. Data sets of subjects of age �55 years
were not included in Figure 9, because there were no diabetic
subjects in this lower age category, and there was a good mix
of both diabetics and nondiabetics in the range of 55 years and
above. A further corroboration of this trend is provided in
Figure 1 in Reinisch et al.,25 where a regression analysis shows
an increase in fiber length density (length per unit area) of the
subepidermal nerve plexus in diabetic subjects on the order of
50% between the ages of 50 and 90, similar to that shown in
Figure 9. The main difference in our data, other than being
extracted from different tissue, is that our pool of subjects was
a mixture of both diabetics and nondiabetics (although most
were diabetic), whereas the data in Reinisch et al.25 are from
diabetic persons only.

Figures 13 and 14 offer hope that it may become feasible
to use risk factor measurements of this sort. A determination
of the usefulness of these candidate risk factor measures,
beyond just showing feasibility, requires several more stud-
ies. A longitudinal study is needed, in a group of control
subjects and a group of diabetic subjects, to verify that the
software will accurately follow progressing conditions. Fu-
ture studies should include age- and sex-matching as well as
other precautions, to remove variability in the data. One
ultimate clinical application is to confirm the likelihood of
neuropathy after the information has been gathered from
clinical neurologic or other examinations, such as EMG.
Another is to periodically perform preventive examinations,
or risk screening, of diabetics and other at-risk patients, as is
done now with EMG and electroneurography.

EMG is used for this preventive purpose, but it is relatively
invasive and causes anxiety and discomfort to the patient. The
confocal microscopy that collected the measures in this study
would not have this problem, because it is essentially nonin-
vasive. The most invasive factors are that an optical-coupling
gel is applied to the cornea, which carries a small risk of
infection. Light is injected into the eye, but the amount of light
is well below safety limits.

In any of the expected applications, a baseline examination
is needed. The alternative of establishing a normative database
of risk factor measurements, to know progression states from
an absolute measure, does not seem likely, considering the
variance indicated by the box-and-whisker plots in Figures 13
and 14. There will be too much variability in the measurements

TABLE 3. Percentage Change Needed for a Statistical Power of 0.8,
Estimated from the DU1 Data Set. These Are Measures Whose Means
Are Calculated over All Included Fibers in the Image Set.

Measure
Estimated

Mean
Estimated

SD

Required
Change in
the Mean

Required
Percentage

Change

L 93.17 70.76 11.86 12.7
TC1 0.139 0.048 0.008 5.8
S/B 1.48 0.226 0.038 2.6
�2 1198.8 770.14 129.06 10.8
W 5.84 3.67 0.616 10.5

TABLE 4. Percent Change Needed for Statistical Power of 0.8,
Estimated from the DU1 Data Set. These Are Measures Whose Means
Are First Calculated per Image and Then Averaged over All Included
Images in the Set.

Measure
Estimated

Mean
Estimated

SD

Required
Change in
the Mean

Required
Percentage

Change

Nb 5.10 3.40 1.86 36.5
NS/Nb 2.85 2.14 1.17 41.2
DL 978.2 443.9 242.9 24.8
TC2 0.13 0.017 0.009 7.0
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from subject to subject to establish nonoverlapping ranges of
the indices that classify disease state. With a baseline examina-
tion, it is hopeful that changes in the measures compared with
a patient’s own baseline values will be detectable. We envision
establishing ranges of these changes from baseline for indicat-
ing mild to severe classifications.

Although the topic of this article is primarily focused on
diabetic neuropathy, there are other applications to the
automated measurement of nerve fibers in the cornea. Such
applications include peripheral neuropathy as a complica-
tion due to other conditions, including genetic diseases29

and many inflammatory diseases including lupus erythema-
tosus and Sjögren’s syndrome, vitamin deficiencies, HIV
(Sabato L, et al. IOVS 2008;49:ARVO E-Abstract 2804), che-
motherapy, and others. As explained in Scarpa et al.,12

corneal surgical interventions, including LASIK, photore-
fractive keratectomy, and transplantation disrupt the integ-
rity of the nerve fibers, and regeneration of these fibers
occurs after surgery (Midena E, et al. IOVS 2008;49:ARVO
E-Abstract 2261). The capability of automatically identifying
nerve fibers and measuring them may provide an objective
means of evaluating reinnervation after these surgeries.

There are several sources of potential variability that may
have degraded the trends in Figures 13 and 14. The image fields
were located randomly, as described earlier, and it is known
that the nerve fiber appearances vary widely across the cor-
nea.26–28 It is possible that, in some subjects, good sampling
over all regions of the cornea was not obtained. Considering
that the nerve fiber numbers and shapes change across the
cornea positions, especially radially, a better collection scheme
would use a pattern like one of those illustrated in Figures 5a,
5b, and 6, and would collect a whole stack (i.e., axially) at each
location. The ideal would be to image exactly the same fields
between baseline and follow-up visits and thereby ensure that
the same fibers are measured. One may think of ways of doing
so, but there is one problem that is impossible to circumvent.
The nerve fibers are not stationary. They are in continual flux,
moving and changing shape from one visit to the other.26–28

The best hope is to strive for stationary statistics by using
schemes like those shown in Figures 5 and 6. The schemes in
Figure 6 are better for more thorough sampling of the cornea,
but work is needed on the software that automates the collec-
tion of these patterns. The schemes are difficult to execute
manually because it is hard to determine a reference point on
the cornea, and it requires a relatively long time to collect.
With a contact microscope, the schemes in Figure 5 are more
practical because they require shorter contact time with the
cornea. The scheme of Figure 5c was used for collecting the

data pools of Figures 13 and 14. All three of the schemes in
Figure 5 were used to examine repeatability.

Criteria for selecting which image in the stack to measure
must be designed, such as finding the one with the highest
contrast, longest fibers, or largest number of fibers. Criteria for
selecting which fibers to include in the statistics of a risk factor
measurement must be determined. For example, we learned
that including just the longest three fibers from each image
produced the most significant trends shown in Figures 13 and
14. One can think of other filtering schemes that may be even
more effective at eliminating variability.

Age and sex matching were generally not used, although
some of the tests (Figs. 9, 11, 13) excluded participants under
a specific age. Figures 9 and 11 indicate that the nerve fiber
appearances change with age and sex, so matching of these
two parameters would be important and helpful in designing a
useful clinical tool.

Most of the subjects who were known to have neuropathy
were being treated for the condition and therefore the mild,
moderate, and severe rankings may not have represented a
wide enough range of severity. Using treated subjects probably
contributed to the difficulty in trending the measurements
against these rankings by themselves. Second, some subjects
who may have a relatively advanced progression may appear
asymptomatic because they are receiving medication to sup-
press the symptoms, making it difficult to trend against the
asymptomatic/symptomatic tag by itself. There were few mod-
erate or severe disease subjects (7 and 6, respectively), which
further made it difficult to trend against these categories.

As mentioned, the software makes some mistakes in iden-
tifying the fibers. Spurious and missing fibers can be seen in
Figures 1 and 2. Realistically, the philosophy behind improving
the software’s capability is to continually strive for improve-
ment in eliminating mistakes and to understand that mistakes
will never be completely eliminated. Perfection in tracing the
fibers without error can be approached and should be a goal,
but such perfection will never be achieved. Such has been our
experience in other projects.17,18 These mistakes probably do
not contribute significantly to difficulties in establishing
trends, because such mistakes are repeatable and systematic
and because the other sources of variability are obvious and
significant. It is an obvious suggestion to place a human
operator in the process by editing the nerve tracings as
discussed earlier in the Automated Measurements section,
but doing so may reduce repeatability and, as a result, the
capability of detecting trends and thereby recognizing pro-
gression of a condition.

TABLE 5. Ranges of Required Percentage Changes

Measure

Range of
Required

Percentage
Change

Percentage Change Estimated
from the Difference between

Categories A and B in Figure 13

Percent change Estimated from
the Difference between

Categories C and E in Figure 14

L 11.8–14.0 15.3 �15%
TC1 5.1–24.8 13.1 �12%
TC2 6.5–24.2 13.7 11.9
S/B 2.3–3.0 4.9 6.24
�2 9.3–10.8 11.2 NA
W 8.9–11.2 10.5 NA
Nb 28.5–47.7 32.2 NA
NS/Nb 24.0–41.2 47.7 NA
DL 14.1–24.8 15.3 11.8

Calculated by repeating the calculations in Tables 3 and 4 for all the DU1, DU2, TN1, TN2, R1, and
R2 data sets.
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As shown in Figures 3 and 4, within the relatively wide
range of subjects who were examined, there was little unifor-
mity in sampling various age groups, and this factor must have
adversely affected the ability to accurately determine trends.
Therefore uniform and fair sampling of diabetics, nondiabetics,
sex, age, image fields, and many other factors were not repre-
sented in these data sets.

CONCLUSIONS

This article demonstrates a step toward a potential novel tech-
nology for measuring and observing potentially important risk
factors of peripheral neuropathy. Probably the most compel-
ling aspect of the work is that the fiber identifications and their
measures are automated, which eliminates the manual labor,
tedium, and human operator variability. If proven to be valu-
able, it is envisioned to be used as an adjunct to other clinical
examinations and measurements, such as EMG and electroneu-
rography tests. It is less invasive than other tests that are
currently used for similar purposes, such as the EMG and skin
biopsy. On the other hand, because it requires images of
cornea tissue from an SLO, it will have any risks associated with
capturing cornea images with an SLO that has a lens in contact
with the cornea. Risks are infection or injury to cornea tissue
due to the contact. The Confoscan 4 model (Nidek Co., Ltd.,
Gamagori, Japan) uses a noncontact objective lens, and so it
does not have this risk. The Rostock cornea module (Heidel-
berg Engineering) that is an add-on to the HRT II has this risk,
but it produces clearer images.

The driving hope is that the measures proposed in this
article, or variants of them, will serve as indicators of the
development of underlying precursory risk factor condi-
tions, that could be used to evaluate whether a patient ought
to be treated. It cannot be concluded that a correlation has
been established between the proposed measures and neu-
ropathy progression, because these data are only of limited
extent and preliminary. On the other hand, the plots shown
in Figures 13 and 14 show a potential and warrant further
study.

Based on the wide intersubject variability shown by the
vertical extent of the boxes in Figures 13 and 14, it seems
daunting to expect any absolute index that has any correla-
tion with risk factor. For such an absolute index, the boxes
from one level to the next would have to be nonoverlap-
ping. The idea of establishing a baseline set of measures of
a patient and then evaluating a progression from follow-up
examinations does seem plausible, albeit not proven.

Work is needed to reduce the required percentage changes
shown in Table 3. The smaller that these percentage changes
can be made, the more sensitive will be the clinical test. For the
type of baseline and follow-up examination indices described
in the paragraph above, it is important to improve the tech-
nology so that the percentages in column 2 are a fraction of the
percentages in columns 3 and 4 of Table 5. Work is also needed
to improve the repeatability that is indicated by the P-values in
Table 2. Higher P-values are needed in more of the entries,
which would indicate that the means of the measures are
virtually unchanged (statistically speaking) from one data col-
lection (i.e., examination) to the next. By “work” we mean that
the following factors should to be designed, implemented, and
tested. Better patterns (e.g., Figs. 5, 6) are needed that provide
repeatability measurement means. Variants on measures, be-
sides those in Figures 13 and 14, may provide smaller effect
sizes. There are many measures that we thought about after
completing this study. One such measure is a fragmentation
measure that counts the number of fragmented branch seg-
ments after automatically detecting and rejoining branches that

have been segmented due to contrast degradation. Another
such measure is a linear combination of several of the existing
measures.

Although this work is an early step that offers promise,
improvement of the repeatability implied by Table 2 and the
sensitivity implied by Table 5 is needed for the clinical use of
the algorithm. Tables 2 and 5 are only estimates, so we do not
know what the true repeatability and sensitivities may be. Even
so, if Table 5 is assumed to be prototypical of how the cur-
rently designed measures would perform, the percentages
shown in column 2 must be a small fraction of the percentages
shown in columns 3 and 4. The purpose of any clinical test,
ideally, would be to detect that the underlying neuropathic
condition, or risks thereof, are worsening before symptoms
worsen, and if the percentages in column 2 are on the same
order as the percentages in columns 3 and 4, then the most we
could hope for is that the neuropathic condition can only be
confirmed. Improved methods, such as linear combinations of
the currently designed measures, improved image collection,
and improved fiber filtering may provide these needed sensi-
tivity improvements.
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