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Abstract
High throughput metabolic profiling via the metabolome-wide association study (MWAS) is a
powerful new approach to identify biomarkers of disease risk, but there are methodological
challenges: high dimensionality, high level of collinearity, the existence of peak overlap within
metabolic spectral data, multiple testing and selection of a suitable significance threshold.

We define the metabolome-wide significance level (MWSL) as the threshold required to control
the family wise error rate through a permutation approach. We used 1H NMR spectroscopic
profiles of 24 hour urinary collections from the INTERMAP study. Our results show that the
MWSL primarily depends on sample size and spectral resolution. The MWSL estimates can be
used to guide selection of discriminatory biomarkers in MWA studies.

In a simulation study, we compare statistical performance of the MWSL approach to two variants
of orthogonal partial least squares (OPLS) method with respect to statistical power, false positive
rate and correspondence of ranking of the most significant spectral variables. Our results show that
the MWSL approach as estimated by the univariate t-test is not outperformed by OPLS and offers
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a fast and simple method to detect disease-related discriminatory features in human NMR urinary
metabolic profiles.

Introduction
The use of post-genomic technologies in large-scale molecular epidemiology is proving
fruitful in detecting associations between molecular markers (genes, proteins, metabolites,
etc.) and disease. For example, genome-wide association studies (GWAS) have found
associations between genotype variation and disease phenotypes,1,2 and analogously, the
metabolome wide association study (MWAS) has revealed associations of metabolic
phenotypes with disease risk.3,4 In such studies, many hundreds to tens of thousands of
molecular markers are assayed for each individual, leading to data which are highly
multivariate, noisy and collinear. A key difficulty is the detection of statistically significant
relationships between molecular variables and phenotype, while minimising risk of false
positive associations at adequate power. The problem has received considerable attention in
the statistical genetics and genomics literature,5,6 but has not been the subject of detailed
investigation in metabolic profiling and MWAS, where the level of collinearity within data
is much higher.

Arguably the most popular and conservative approach is to control the family wise error rate
(FWER), which is the probability of one or more significant results under the null
hypothesis of no association. For a test applied at each of n molecular variables
simultaneously, the simplest way to control the FWER is to apply the Bonferroni or Šidák
correction. These set the significance level for the entire family of n hypotheses equal to α
by taking the significance level for each comparison as α′ = α/n for Bonferroni correction or
α′ = 1 − (1 − α)1/n for Šidák correction. Less conservative FWER procedures are also
available.7–9 A popular approach in genomics is to estimate and control the false discovery
rate (FDR), i.e., the expected proportion of falsely rejected null hypotheses.10 The FDR has
been successfully applied to the analysis of gene expression data, for which many true
positive associations are typically expected, but it has been less successful in the context of
GWAS due to the small number of true positive associations and the presence of linkage
disequilibrium with flanking SNPs.

Metabolic profiling employs spectroscopic techniques such as nuclear magnetic resonance
(NMR) spectroscopy and mass spectrometry (MS) to measure hundreds or thousands of
metabolites in cells, biofluids or tissues. Metabolic profiling at the epidemiological scale
requires optimization of experimental protocols to maximize reproducibility, sensitivity,
accuracy and to reduce analytic drift.4 When complex metabolic spectra are analyzed,
control for false positive associations is essential for effective data exploitation and
biomarker discovery. Permutation procedures can yield the correct FWER even when the
tests are dependent. However, they are computationally intensive and their application has
been limited by the large size of data sets typical of GWAS, and are problematic also for
MWAS, although the number of variables is an order of magnitude lower. This has led to
approximations to reduce the computational effort,11–13 although such approximations are
still problematic when dealing with multiple molecular variables. Moreover the results of
permutation procedures apply only to the data set under investigation and must be
recomputed when the data set is altered.

In modelling spectroscopic data, two complementary approaches can be taken: direct
modelling of the raw spectral profiles, or estimation and modelling of individual compound
concentrations. Both approaches often use multivariate projection methods such as principal
components analysis (PCA) and partial least squares (PLS) regression because of their
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ability to cope with highly multivariate, noisy, collinear and possibly incomplete data.
Typically, the metabolic profiles of disease cases and non-disease controls are compared
with the aim of identifying spectral features, and ultimately metabolites, which discriminate
the classes. With PLS-discriminant analysis (PLS-DA), identification of discriminatory
variables proceeds from an analysis of the PLS weights or regression coefficients.
Orthogonal PLS (OPLS and O2PLS)14,15 improves interpretability of models by removing
variation uncorrelated to the response variable and reducing the complexity of the model.
Methods of interpreting the weights and coefficients vary, and despite some attempts to
assess loading significance levels,16 probabilistic measures of significance or association
are not frequently used.

As a fast and simple alternative to the OPLS-DA approach, we estimate metabolome-wide
significance levels (MWSLs) to control the FWER, where two-sample t-tests are used for
detection of associations between metabolic variables and phenotype. We adopt an approach
similar to the genome wide significance level recently introduced in GWAS.5

To assess the accuracy of the MWSL approach, we then compare the results it provides with
those obtained from two variants of the O2PLS algorithm, which have already been applied
to data from the INTERnational study of MAcro nutrients and blood Pressure
(INTERMAP).17 Specifically, we perform a simulation study using spectroscopic data from
the INTERMAP study in which 24 hour urinary collections were obtained and profiled
by 1H NMR spectroscopy for 4,630 free-living individuals from 17 population samples in
four countries (China, Japan, UK, US). We compare the statistical performance of (i)
univariate t-tests with MWSL and (ii) O2PLS-DA procedures with p-values calculated using
either bootstrap resampling (O2PLS-Bootstrap), or a standard permutation test (O2PLS-
Permutation).

Materials and Methods
Definition of the Metabolome-Wide Significance Level (MWSL) and Effective Number of
Tests (ENT)

We propose a metabolome wide significance level approach to identify association between
metabolic variables and disease status. Analogous with the genome wide significance level,
we define the MWSL (α′) as the per-test significance level to be considered for each
univariate two-sample t-test, to reach the target overall significance level FWER α.5 Its
calculation relies on n permutations of the case-control status (here n = 50,000). For each
permutation we draw a sample of N cases and N controls from our reference population, we
then calculate the p-value for each spectral variable, using a univariate t-test and record q,
the minimal p-value calculated over all variables. The per-variable significance level α′ that
corresponds to a FWER α satisfies α = Pr(min{pi} < α′), where pi denotes the p-value from
the i-th variable. Point estimates for α′ are defined as α′ = qnα, where qnα denotes the n × αth

smallest value for q, among its n realizations. Continuing with this notation, the 95%
confidence limits for α′ can be deterministically approximated by .

The effective number of tests ENTB and ENTS are defined as the number of independent
tests that would be required to obtain the same significance level using Bonferroni or Šidák
corrections respectively: ENTB = α/α′ and ENTS = log(1 − α)/log(1 − α′). The ENT
implicitly quantifies the level of dependency within the data.

Results corresponding to the Šidák correction were calculated but are not reported as they
were qualitatively similar to those obtained using Bonferroni correction.
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The Use of INTERMAP Data
To determine the MWSL, based on real-world data, we exploited the rich variety of human
metabolic phenotypes available in the INTERMAP dataset; a unique resource providing a
large-scale standardized set of urinary metabolic profiles which captures variation within
and between human populations in China, Japan, UK and US.

Two timed 24 h urine specimens were obtained from each individual according to a standard
protocol described elsewhere.17 Only data from the first collection are used here. Metabolic
profiles were acquired by 1H NMR spectroscopy at 600 MHz and automatically phased,
baseline corrected and chemical shift referenced using an in-house MATLAB script.3
Spectra were normalized to unit integrated intensity to account for large variations in overall
urinary dilution between participants.

We chose the Chinese (N = 836 spectra) sample as a reference population. We investigated
the influence of the spectral digital resolution, i.e., the number of variables in the spectrum,
by considering both high and medium resolution representations of the NMR spectra
(16,118 and 7,100 variables respectively). The high resolution corresponds to the native
digital resolution of the acquired spectra. The medium resolution data were obtained by
integrating the NMR signal intensities in adjacent bins of width 0.001 ppm (0.6 Hz), for the
regions δ0.5–9.5 (excluding δ4.5–6.4 containing the residual water and urea resonances).
Since the typical peak width at half height is 1 Hz, this corresponds approximately to two
intensity variables per peak, thus retaining the majority of information in the spectra. We
also examined population heterogeneity by repeating the analysis using the US population
(N = 2,164 spectra) at medium resolution (7,100 variables).

Disease Model Simulations
To assess their reliability, results from the MWSL approach are compared, by means of a
simulation study, to those provided by two variants of the O2PLS algorithm, which is well
established in metabolic profiling.15

Disease Model—From the reference population we randomly sampled a set of N cases
and N controls, assigning case/control status according to a logistic (multiplicative) disease
model, which was chosen, for its simplicity and flexibility. Specifically, let Xi j be the peak
intensity at location j for individual i. The probability that individual i is a case given a
subset of m peaks (one peak for each metabolite) is given by

(1)

where Yi denotes the case/control indicator for individual i and each peak intensity is
standardized to have unit variance in the reference population.

The intercept β0 relates to the underlying risk in the population and the slope β j mimics a
form of metabolite (log) relative risks for each individual. Note that in the disease model
defined in eq. (1), to create association between the disease and a particular metabolite, we
use just one of the spectral variables from one of its NMR resonances. In our simulations we
vary the following parameters: the sample size of cases and controls N (N = 50,100,200); the
number m of metabolites associated with the disease (m = 0,1,3) and prevalence of disease K
in the population (K = 10,30,50%). For m = 1, association strength was defined by β1 =
logit(K) − β0 and for m = 3, we chose |β1| = 1, |β2| = 2, and |β3| = 4 to examine a range of
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association strengths. In both cases β0 was set such that the disease probability within the
population ranged from 0 to 1.

When m = 0, there is no metabolite-disease association, therefore any peak estimated as
significantly associated with disease is a false positive. In this setting, case/control status
was randomly assigned to each individual with a probability of being a case equal to 0.5.

Furthermore, as the spectral fingerprint of a metabolite may be represented by more than one
spectral variable, and some NMR resonances are subject to small variations in chemical shift
(caused by differences in sample pH or ionic concentration), we consider as a true positive
any significant variable which is located in a range Δ of any of the reference peaks of the
‘causal’ metabolite. For a metabolite with several multiplets, Δ consists of several separate
ranges of chemical shift. The width of ‘true positive’ range Δ is influenced by the spectral
line width and multiplicity of each resonance, here computed from the mean spectrum for
the whole Chinese sample (SI Table 1).

We define statistical power as the proportion of the 50 replicates yielding at least one
significant association within the range Δ. Additionally, we define the false positive rate as
the mean ratio of the number of significant peaks outside the range Δ to the total number of
significant associations.

Assessing Significance in the O-PLS-DA Approach—We fitted the O2PLS model
using an in-house O-PLS-DA code in MATLAB, and obtained estimates of the regression
coefficients b j, which represent the contribution of the jth spectral variable to case-control
discrimination. We first used a bootstrap resampling technique to estimate the uncertainty of
each regression coefficient (O2PLS-bootstrap). Based on the bootstrap samples we then
used the estimates of the standard deviation of each regression coefficient bj to perform an
approximate t-test and determine p-values for each bj as described previously.16 A second
variant of the O2PLS-DA approach, based on permutation tests, was also implemented
(O2PLS-permutation). As for O2-PLS-bootstrap, we fitted the O2PLS model using an in-
house O-PLS-DA code in MATLAB to obtain estimates of the regression coefficients bj. To
estimate the p-value associated with each regression coefficient, we performed a standard
permutation test by taking permutations of the case/control indicator for each data set.

Results and Discussion
Metabolome-Wide Significance Level and Effective Number of Tests

We considered three sample sizes: 50, 100 and 200 cases, with equal numbers of controls,
typical of sample sizes reported in metabolic profiling studies.18,19 For the larger US
sample, it was also possible to consider 500 cases and controls. For each statistic, mean and
2.5th and 97.5th percentiles were calculated over 50,000 re-samplings. Table 1 gives
estimates of the per-spectral variable significance level α′ for the corresponding FWER α of
1 or 5% for the Chinese and US populations.

In all scenarios considered, our estimate of α′ is larger than that estimated from a
metabolome-wide Bonferroni correction. The corresponding ENT is always less than the
actual number of tests, due to dependence between variables.

As expected α′ increases with α, while ENTB seem insensitive to the overall error rate for
given population and sample size, since their values depend mainly on the extent of
correlation within the data. Typically α′ decreases as the case-control sample size increases.
For example, an increase in sample size from 50 to 500 cases and controls in the US
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population resulted in α′ decreasing by almost a factor of two, and an approximate doubling
of the ENT.

Comparing high and medium resolution data, roughly halving the number of spectral
variables approximately doubles the MWSL. The proportion of effective/actual tests is
slightly higher for the medium resolution data, suggesting that, as expected, the lower
resolution decreases the correlation between spectral variables.

When comparing the results obtained from the Chinese and US populations at the lower
resolution, we note that the MWSLs are fairly close, although slightly higher ENT (and
correspondingly more stringent MWSL) is found for the Chinese population, possibly
reflecting the larger population size in the US dataset and/or a country-specific patterns in
the spectral data.

Stability of these estimates was investigated further by calculating the MWSL based on all
4,630 metabolic profiles available within the INTERMAP study, i.e. pooling individuals
from China, Japan, UK and US samples (SI Table 2). Results confirm that, for given FWER
level, sample size and spectral resolution, estimates of the MWSL are stable regardless of
the population on which estimates are based. As a general rule, assuming 35% independent
tests, regardless of spectral resolution and sample size, conservative but credible values for
MWSL are 9 × 10−6 and 1.5 × 10−6 for FWERs of 0.05 and 0.01 respectively, at a
resolution of 16,118 spectral variables; and 2 × 10−5 and 4 × 10−6 at a resolution of 7,100
variables.

Performance Comparison
Here we assess and compare the performance of (i) independent t-test with Bonferroni
correction or MWSL, (ii) O2PLS-bootstrap and (iii) O2PLS-permutation methods. P-value
calculations for the O2PLS methods are based on 1,000 bootstrap samples and 1,000
permutations respectively. For both O2PLS methods, a Bonferroni correction was used to
correct significance levels. We used the Chinese sample from the INTERMAP database as
the reference population, and used high resolution spectral data. The following results are
averaged over 50 replicates of the disease model.

Assessing False Positive Rates
Table 2 shows the estimates of the false positive rates under the scenario of no association
(null hypothesis). The t-test, corrected for multiple testing, performs better than the
multivariate methods in terms of false positive rates. Over 50 replications, the t-test with
either Bonferroni correction or exact MWSL does not detect any significant association.

O2PLS with permutation tests picks on average less than 20 false positive associations. This
is an over-estimation of the number of significant associations found by the O2PLS-
permutation method since (i) with 1,000 permutations, p-values are estimated with a
precision 10−3, and (ii) the Bonferroni corrected threshold to which p-values are compared
is approximately 3 × 10−6 (based on 16,118 variables).

The O2PLS-bootstrap procedure seems to detect a larger number of false positive
associations than the other two approaches (mean number of false positive associations >
25), for all sample sizes. This might be because the Gaussian assumption for the distribution
of the test statistic underlying the bootstrap estimation method is not a good approximation
of the true distribution.

When the FWER is set to 5%, regardless of the sample size, the mean number of false
associations under the null is > 45 for O2PLS-bootstrap. For O2PLS-permutation, due to
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estimation precision, numbers remain unchanged. No false positive associations are found
under the null hypothesis for t-test with Bonferroni correction, while there are no more than
2 false positive findings when the exact MWSL is applied (SI Table 3).

Statistical Power
We first consider the scenario in which m = 1, i.e., only one metabolite associated with
disease. We chose hippurate as the associated metabolite, in particular the peak at 7.846
ppm. Results are summarized in Table 3.

Both O2PLS approaches yield a power > 98% in all scenarios, while for the univariate
analysis the power is > 65% (and > 80% when the exact MWSL is used). As expected power
increases with sample size, and for the largest sample sizes, all the methods perform equally
regardless of disease prevalence. The O2PLS-bootstrap approach has high false positive
rates (ranging from 30 to almost 70%), while false positive rates for O2PLS-permutation are
< 10% and appear unaffected by sample size. False positive rates for O2PLS-bootstrap and
univariate t-test appear to increase as sample size and disease prevalence increase. We
conclude that, although there is a slight advantage in terms of false positive rates for
O2PLS-permutation in large samples, both t-test and O2PLS-permutation offer a satisfactory
and comparable solution for the single metabolite model. This is confirmed by the receiver-
operator curves (ROC) in Figure 1 (for K=30%), and SI Figures 1 (for K = 10%) and 2 (for
K = 50%). When setting α to 5%, false positive rates and power are both similar, although
slightly higher (SI Table 4).

Next we considered a multi-metabolite association model, in which m = 3 metabolites
(hippurate, alanine and formate) are assumed to be associated with the disease. We chose
these three metabolites as examples as each was found to be associated with blood pressure
in previous analyses of INTERMAP data3. The prevalence was set close to 50% (K =
45.6%), with different relative risks for each metabolite (|β1| = 1, |β2| = 2, and |β3| = 4 for
hippurate, alanine and formate respectively) to assess performance over a range of signal
strengths.

Although similar trends to the single metabolite disease model are seen in Table 3-b for the
multi-metabolite model, there is a trade-off between power and false positive rate. For all
three metabolites, O2PLS approaches result in high false positive rates (> 68 and 46% for
O2PLS-bootstrap and permutation, respectively), while this proportion is < 14% for the t-
test with exact MWSL. Per spectral variable statistical power reflects the absolute value of
the logistic coefficient that measures the strength of the association between peak intensity
and disease. Statistical power for formate (the metabolite which was set to have the strongest
disease association), is always high and reaches 100% for all methods when sample size
exceeds 50 cases/controls. For hippurate and alanine, power is < 10% for the t-test. For both
O2PLS approaches, statistical power is higher and peaks at 60% for O2PLS-bootstrap when
N = 200 (corresponding value for the O2PLS-permutation is 34%). In most scenarios,
despite its stronger association with disease, statistical power for alanine is lower than for
hippurate, which might reflect the smaller number of alanine peaks.

From a computational perspective, the multivariate methods are more demanding than
univari-ate analysis: for S bootstrap or permutation re-samples, the t-test is over 3S times
faster than either O2PLS approaches. This may become rate-limiting for large sample sizes.

The MWSL is designed to control the number of false positive associations under the null
hypothesis of no association, i.e. to control the type I error. In practice, high levels of
correlation within the data can yield a large number of positive signals, as variables
correlated with the causal metabolites will likely also be significantly associated with the
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outcome (see for example false positive rates in Table 3). Therefore, it is essential to
develop methods accounting for the correlation structure: as a first approach, we estimated
here the independent number of tests. In GWAS, it is common practice to replicate positive
findings in different cohorts to guard against false associations. A similar strategy was
adopted for the INTERMAP MWAS: two urine collections were available per person, and
only metabolites that were significantly associated with the outcome in both specimens were
declared true positives.3 An extension of our simulation study showed that in that situation,
for a FWER of 1%, the O2PLS-bootstrap method would yield a power of 100% and false
positive rates <7%, and the MWSL approach, a power of 100%, and false positive rates
<0.4%, regardless of sample size and prevalence.

Ranking of Variables
One important goal of MWAS is to rank metabolites in terms of their strength of association
with disease, in order to improve detection of biologically meaningful metabolites and
reduce the false positive rate.

In SI Figures 4–5 we show the mean spectrum with each variable colored according to
median p-value over the 50 replicates for the single metabolite model. The figures show that
the ‘true positive’ ranges are associated with lower p-values (colored green), suggesting that
the three methods (t-test, O2PLS-bootstrap, O2PLS-permutation) are able to correctly locate
the causal metabolites; including when metabolite signals comprise different multiplets
across the spectrum, as in the case of hippurate. The bootstrap approach detects more
variables with low p-values, consistent with the higher false positive rate associated with
this method. The p-value distributions across the spectrum seem comparable for the
permutation and t-test, consistent with their similar performance (Figure 1, and SI Figures 1
and 2). The plot for the multi-metabolite disease model is presented in SI Figure 6. The p-
values corresponding to hippurate and alanine spectral variables are large, reflecting the low
power of all methods for correspondingly low association strengths. On the other hand, all
methods were successful in detecting formate (which corresponds to a strong association
signal) and this is reflected by the concentration of low p-values in the formate region (8.46
ppm). In the plot, high false positive rates correspond to a large number of variables with
low p-values outside the true positive range and SI Figure 6 confirms the poor performance
of O2PLS-bootstrap in terms of false positive rate.

We now consider how the different methods rank the metabolites in order of strength of
association with disease. In Figure 2 the top 100 variables for each method and sample size
are colored according to their ranking for the single metabolite model at a prevalence of
30%.

Regardless of method or simulation parameters, the top 100 variables (i.e., the variables with
lowest p-values whether significant or not) all correspond to the hippurate reference peak.
The variables with the lowest p-values are located mainly in the [7.827 – 7.854] region
(corresponding to the reference peak used in the disease model). Some of the top 20
variables are also located in the [3.966 –3.984] region which corresponds to the aliphatic
doublet of hippurate, while most of the variables ranked between 20 and 100 are located in
the remaining three hippurate regions. The sample size clearly affects the distribution of the
top ranked variables. For all three methods, the top 100 variables are distributed across all
four regions at sample sizes of n = 50 and n = 100, but at n = 200 none are found in the
aliphatic doublet region [3.966 – 3.984] for either O2PLS approach. Additionally, with
increased sample size, the top ranked variables are found more towards the low field (high
ppm) regions; this is more apparent for the O2-PLS based methods than for the t-test. For
example, based on n = 50, the top 20 variables are found in all four regions while for n =
200, they are located exclusively in the region of the reference peak. Similar behavior is
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seen at a prevalence of 50% (SI Figure 7). Results for the multi-metabolite model are shown
in SI figure 8. All methods have a similar performance in terms of ranking metabolites in
order of strength of association with disease.

Conclusion
Identification of metabolites that contribute significantly to discrimination between classes
in MWAS is problematic. We find that the MWSL accounts appropriately for the high
degree of correlation in spectral data, and provides a practical threshold that can be used as a
benchmark for future MWAS of human urine. A conservative estimate of the independent
number of tests is 35% regardless of spectral resolution and sample size. This leads, for
example, to an estimated MWSL of 2 × 10−5 and 4×10−6 for a FWER of 0.05 and 0.01
respectively, at medium spectral resolution (7,100 variables). While the work presented here
focuses on NMR metabolic profiles, our method may be applied to other metabolic profiling
technologies such as liquid/gas chromatography-MS.

It is well known that spectral variables from metabolic profiles exhibit a high degree of
collinearity, and this is supported by our finding that the computed MWSL greatly exceeds
the Bonferroni or Šidák corrected value across all three data sets. The extent of collinearity
is summarized by the ratio of effective to actual number of tests which varies between 15
and 30% across diverse spectral resolutions, sample sizes and populations. The number of
independent variables might give an indication of the number of independent metabolic
processes exhibited by the system, since each independent process might be expected to
manifest itself through multiple metabolic variables. If the data are interpreted this way, our
analysis suggests that there are between one and four thousand separate metabolic processes
being captured by NMR metabolic profiles of urine among free living humans in these two
populations.

The univariate approach with MWSL seems to perform satisfactorily in the task of
discovering features discriminating case-control samples when compared to multivariate
methods in terms of false positive rates and statistical power. Both the t-test and O2-PLS-
permutation methods had comparable sensitivity and specificity for the populations tested.
However, the multivariate approaches may have other benefits such as the ability to detect
and remove outliers, rejection of noise, dimension reduction, intuitive visualizations, and
construction of a predictive framework which allows a train/test set validation of the
resulting model. In addition, orthogonal filtering methods, such as those examined here,
enable greater interpretability of the models by partitioning the variance according to its
correlation with the response, allowing, for example, the filtering out of potential
confounding effects. In this paper we focused on a two-class response, and it is possible that
multivariate methods may show an improved relative performance when applied to multi-
class or continuous outcomes. Furthermore, due to our simple disease model, we were
restricted to a limited number of causal metabolites. It is possible that multivariate models
may show improved performances in more complex situations where many metabolites are
responsible for the discrimination between case and control samples. Nonetheless, for
detection of discriminatory features in NMR metabolic profiles of human urine, univariate
methods such as the t-test used with an appropriate MWSL, may be recommended as a fast
and simple alternative to the more complex and computationally intensive multivariate
approaches.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
ROC curves for the single metabolite model, prevalence is set to 30%. Figures are based on
500 data points corresponding to α ∈ [10−10;10−1].
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Figure 2.
Location of the 100 metabolites with the lowest mean p-values using the three methods,
single metabolite model (hippurate). For all simulations, none of the top 100 metabolites
were found outside the ‘true positive’ range (represented in light grey in the figure). Points
are colored according to their rank. Results are provided for a prevalence set to 30%
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Table 2

Mean number of false positive associations under the null hypothesis of no association. The results shown are
averages over 50 replicates (minimum and maximum values over the replicates are given in parentheses). Both
O2PLS approaches are based on a Bonferroni corrected threshold. T-test results are reported uncorrected,
Bonferroni corrected, using the exact metabolome-wide significance level (MWSL), and using the general
MWSL we estimated. Estimates of the MWSL are based on a FWER α of 1%.

# Cases/Controls 50/50 100/100 200/200

O2PLS - Bootstrap 40.3 (4–163) 48.5 (4–526) 25.0 (0–128)

O2PLS - Permutation 16.1 (1–65) 15.9 (0–49) 14.9 (0–48)

T-test uncorrected 104.4 (17–322) 173.1 (35–921) 139.5 (33–424)

T-test Bonferroni 0.0 (0–0) 0.0 (0–0) 0.0 (0–0)

T-test exact MWSL 0.0 (0–0) 0.0 (0–0) 0.0 (0–0)

T-test general MWSL α′ = 1.5 × 10−6 0.0 (0–0) 0.0 (0–1) 0.0 (0–0)
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