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Abstract
In standard treatments of atomic multipole models, interaction energies, total molecular forces,
and total molecular torques are given for multipolar interactions between rigid molecules.
However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise
due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole
moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole
models. In the current study, atomic force expressions for geometry-dependent multipoles are
presented for use in simulations of flexible molecules. The atomic forces are derived by first
proposing a new general expression for Wigner function derivatives ∂Dl

m′m/∂Ω. The force
equations can be applied to electrostatic models based on atomic point multipoles or Gaussian
multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular
electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab
initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their
reference ab initio values. It is shown that both static and geometry-dependent multipole models
are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-
dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic
force can be used in simulations of flexible molecules with atomic multipoles. In addition, the
results presented in this work should lead to further development of next generation force fields
composed of geometry-dependent multipole models.
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Supplementary Information
There is a three part supplementary information available. In part I, additional mathematical details are given, including discussions/
derivations of 1) Cartesian rotation matrix derivatives, 2) Cartesian rotation matrix gradients with respect to atomic position

, 3) application of the general formula for ∂Dlm′m/∂Ω to the cases when Ω is an infinitesimal rotation, an Euler
angle, and a quaternion, and 4) proofs of other various equations used in the main text. In part II, additional results are given.
Electrostatic energies, atomic forces, molecular forces, and molecular torques for hydrogen bonded dimers calculated by both HF/
6-31G* and HF/aug-cc-pVTZ Gaussian multipoles are compared to their respective ab initio values. Lastly, the Gaussian multipole
parameters and dimer geometries are given in part III, along with the energies, forces, and torques calculated by both Gaussian
multipoles and ab initio.
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Introduction
Over the past few decades, molecular dynamic simulations have been routinely used to
investigate the structure and dynamics of liquids1–3 and large molecular systems such
biochemical structures4,5. For systems of this size, ab initio methods are too costly and
empirical force fields are used to model intermolecular interactions. In recent years, much
effort has been devoted to improving the accuracy and sophistication of force fields. For
example, polarization models6–10 have been proposed in order to improve point charge
force fields11–13. Models14–17 for the exchange-repulsion energy are being investigated.
Atomic multipoles18–22 have been used in force fields23–28 in order to account for the
anisotropy missing in atomic point charge models. Models29–34 for molecular charge
density, such as Gaussian multipoles34–38, have been studied in order to accurately account
for the penetration error18,39 associated with atomic point multipoles at short range
separations. Alternatively, damping functions39–41 have been proposed in order to correct
for short range inter-molecular interactions. In addition, geometry-dependent electrostatic
models, in which the charge parameters are a function of geometry, are being explored42–
46. In order to implement the force field models into molecular dynamics simulations,
analytic derivatives of energy are needed to calculate atomic forces.

In standard treatments of multipolar torque and force, the interacting molecules are assumed
to be rigid47–49. For rigid molecules, the problem of calculating forces is simplified since
only the total molecular force and total molecular torque are required50,51. Stone47,48 and
co-workers have derived first and second derivatives for total molecular force/torque
expressions between rigid point multipoles by expressing the multipolar energies as a sum of
Cartesian components. Hättig49 has found efficient expressions for first and second
derivatives for total molecular force/torque by directly differentiating the spherical tensor
multipole interactions. The expressions given in these works are valid for rigid molecules or
rigid molecular fragments. However, for flexible molecules, additional terms contribute to
the atomic multipolar force, which arise due to the dependence of multipole moment  on
atomic position ra′. A major aim of this report is to provide compact expressions for
evaluating atomic multipolar forces by proposing a method to evaluate .

In order to better illustrate the above description of atomic multipolar force, suppose  is a
set of atomic multipole moments evaluated in the global frame on atom a at position ra in a
molecule A. Similarly, let  be a set of atomic multipoles on atom b at position rb in a
molecule B. The multipole interaction energy U between molecules A and B is given by18

(1)

where rab ≡ ra– rb and  is a multipole interaction matrix. For atomic point multipoles,

 is expressed in terms of spherical harmonics YLM by18,52

(2)

where L ≡ l + l′ and M ≡ m + m′. Recently, Giese and York37,38 have derived a similar

expression for  and its Cartesian gradient for contracted solid harmonic Gaussian
multipole functions.
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The multipolar interaction energy U in eqn. 1 can be re-expressed as

(3)

where  is the ‘multipolar potential’ on atom a arising from molecule B. The atomic
force on atom a′ in molecule A is given by the negative gradient of energy U with respect to
ra′ as

(4)

The gradient of  with respect to ra′ can be expressed using the known

expressions34,37 for the Cartesian gradient of the interaction matrix . In order to
calculate the atomic force Fa′ for flexible molecules, a method of evaluating  in
eqn. 4 is needed. However, for rigid molecules, only the total molecular force Ftot given by

(5)

is needed. The term containing  does not contribute to Ftot, since  depends on

relative atomic positions and is translationally invariant, i.e. .

The functional dependence of  on atomic position ra′ is described below. Since
the atomic multipole moment in the global frame  can assume an arbitrary orientation,

the standard convention18 is to define multipole moments in a local frame of the atom 
and rotate to the global frame

(6)

where Dl
m′m is a Wigner rotation matrix53–57 and Ra is a Cartesian rotation matrix defining

the local to global frame transformation for atom a. The multipoles in the local frame of the

atom  are assumed to be an explicit function of internal geometry variables η (bond

lengths, bond angles, etc.) for ‘geometry-dependent’ multipoles. Thus,  depends on
atomic positions ra′ through the internal degrees of freedom. If the local frame multipoles

are constant and do not depend depend on η, i.e. , then the multipoles are
called ‘static’.

The Wigner rotation matrix  is a function of the local to global Cartesian rotation
matrix Ra, which in turn is a function of atomic positions ra′. For a given atom, the local
frame is commonly defined with respect to the relative positions of the atom and its
neighbors23,58,59. For example, the local frame of a nitrogen atom in an ammonia molecule
is given in Figure 1. The local frame for the nitrogen atom with label a is defined with
respect to the relative positions of the H1 hydrogen with label ‘N1’ and the H2 hydrogen

Elking et al. Page 3

J Comput Chem. Author manuscript; available in PMC 2011 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with label ‘N2’. This type of local reference frame definition is general and can be applied to
any atom in a non-linear molecule.

Interestingly, the local frame definition in terms of neighboring atoms is arbitrary, since the
local frame of the nitrogen in ammonia from Figure 1 could have also been defined with
respect to the relative positions of the H1 and H3 hydrogens or the H2 and H3 hydrogens.
Different local frame definitions lead to different functional dependencies of the local to
global Cartesian rotation matrix Ra on neighboring atomic positions ra′, which lead to

different atomic forces if the multipoles are static, i.e. . However, if the
multipoles are geometry-dependent, the atomic forces are shown to be independent of how
the local frames are defined (see the SI for an example).

The gradient of atomic multipole with respect to atomic position can be found by
differentiating eqn. 6

(7)

Expressions for Wigner function derivatives ∂Dl
m′m/∂Ω are known53 for the special cases

when Ω is an Euler angle or represents an infinitesimal rotation. In principle, one could
employ Euler angles as an intermediate variable and calculate ∂Dl

m′m/∂ra′ by a chain-rule
argument. However, this procedure is complicated, and it can be shown that the necessary
transformations involving Euler angles contain singularities at certain discrete orientations.
In this study, a general expression for ∂Dl

m′m/∂Ω is presented given its corresponding
Cartesian rotation matrix derivative (∂R/∂Ω)R−1, where Ω is an arbitrary variable. By
letting Ω be a component of atomic position, an expression for (∂R/∂ra′)R−1 is derived and
used to evaluate ∂Dl

m′m/∂ra′ directly. Our result for ∂Dl
m′m/∂ra′ does not suffer from the

singularity problems associated with a procedure based on Euler angles.

The term containing  in eqn. 7 can be evaluated from atomic gradients of
internal geometry variables60–64 ∂η/∂ra′

(8)

where η is a bond length, bond angle, improper dihedral angle, or dihedral angle. In the
present study, the expressions for multipolar atomic force are tested on geometry-dependent
atomic multipoles fit to the electrostatic potential (ESP). The geometry dependence of the

atomic multipoles in the local frame  is represented by a truncated linear Taylor
series in internal geometry η

(9)

where η0 represents an internal geometry variable of the molecule for any reference

geometry which is taken to be the optimized equilibrium geometry,  is an ESP-
fitted atomic multipole in the local frame of atom a at the equilibrium geometry, and

 is the finite difference derivative of  with respect to perturbing the variable
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η0 at the equilibrium geometry. In addition, static multipoles are studied by setting

 equal to zero.

The expressions for atomic multipolar force are applied to models based on atomic point
multipole and Gaussian multipole34–38 charge density. In a recent work34, we have
proposed an electrostatic model based on charge density which is composed of a single
Slater-type65,66 contracted Gaussian multipole34,37 and positive nucleus on each atom.

The Gaussian multipoles  and a single Slater-type exponent parameter λ are fit to the
ab initio ESP and tested by comparing electrostatic dimer energies, inter-molecular density
overlap integrals, and molecular multipole moments with their ab initio values.34 In contrast
to atomic point multipole models which suffer from the penetration error18,39 at short range
separation, Gaussian multipoles are able to accurately account for electrostatic interactions
at short separation distances. However, atomic point multipoles can be studied by taking the
large exponent limit of Gaussian multipoles35. In addition, the local frame atomic Gaussian

multipole moments  were shown to be smooth functions of bond length and bond
angle for the case of water.34

In the present study, inter-molecular electrostatic energies and atomic forces are calculated
on hydrogen bonded dimers using geometry-dependent multipole models and compared to
their ab initio reference values. The inter-molecular ab initio electrostatic energies are
calculated at the Hatree-Fock level by the Restrained Variation Space67,68 (RVS)
decomposition method, while inter-molecular ab initio electrostatic atomic forces are
calculated as finite difference derivatives of RVS electrostatic energies. In contrast to static
multipole models, it is shown that geometry-dependent atomic multipoles are capable of
reproducing ab initio electrostatic forces. However, both static and geometry-dependent
multipole models are able to reproduce total molecular forces and total molecular torques
with respect to ab initio.

This work will be organized as follows. In the following Methods section, the atomic
multipole force expressions are evaluated. A general expression for ∂Dl

m′m/∂Ω is derived
from elementary properties of spherical harmonics69,70 Ylm and Wigner53–57 functions
Dl

m′m, which are summarized in the appendix. The general result for ∂Dl
m′m/∂Ω is used to

derive an equation for the torque and atomic force on a multipole. Computational details
describing the ab initio calculations and how the multipoles are fit to the ESP are given. In
the Results section, intermolecular electrostatic energies atomic forces, molecular forces,
and molecular torques calculated on hydrogen bonded dimers are given for static/geometry-
dependent multipole models and compared to their respective ab initio values. In addition,
the molecular moments calculated by static/geometry-dependent atomic multipoles are
plotted as a function of bond length and bond angle for the illustrative case of water. Lastly,
the results are summarized in the Conclusion section. There is supplementary information
(SI), which contains additional results and mathematical details not included in the main
text.

Methods
Atomic Multipolar Forces

The atomic mutipolar forces are found by inserting the gradient of multipole moment in eqn.
7 into eqn. 4. For convenience, the atomic force is separated into three terms, which we call
the ‘translational’, ‘orientational’, and ‘geometry-dependent’ parts:
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(10)

(11)

(13)

The translational force is found from the gradient of  which can be calculated by the

known expressions34,37 for the gradient of the interaction matrix . For the
orientational force, the sum over atom a only includes atoms in which a′ is used to define
the local to global transformation for atom a. An expression for the orientational force is
given in a later section after ∂Dl

m′m/∂ra′ is evaluated.

The geometry-dependent force can be found by inserting eqn. 8 into eqn. 13

(14)

where Eη is defined by

(15)

The expressions for geometry-dependent force in eqn. 14 and 15 are valid for arbitrary, but

explicit functions of local frame multipole moment  about internal geometry η. In

the present study,  is a truncated linear Taylor series in internal geometry given by

eqn. 9, where the constant values  and  are fit to the ab initio
electrostatic potential. Note the internal geometry variables η are translationally invariant,
∑a′ ∂η/∂ra′ = 0, which implies the total molecular geometry-dependent force is zero,

(16)

Wigner Rotation Matrix Derivatives
In this section, a general expression for ∂Dl

m′m/∂Ω is derived. In the appendix, mathematical
background information needed in the following derivation is given. Properties of spherical
harmonics Ylm (θ,φ) 69,70, Wigner rotation matrices53–57 Dl

m′m[R], and Cartesian rotation
matrix derivatives (∂R/∂Ω) R−1 are summarized.

Elking et al. Page 6

J Comput Chem. Author manuscript; available in PMC 2011 November 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The expression for the Wigner rotation matrix in eqn. A.12 can be expressed symbolically as
an integral over a unit sphere in terms of spherical harmonics Ylm and the ξ variables defined
in eqns. A.4 by

(17)

Since ξi is proportional to Y1i by eqn. A.5, the transformed ξi′ variables are given by eqn. A.
11 with l = 1 as

(18)

If the Cartesian rotation matrix R is a function of an orientation variable Ω, then the
transformed coordinates ξi′ are also functions of Ω, i.e. ξi′ = ξi′(Ω), and the derivative of ξi′
with respect to Ω is given by differentiating eqn. 18 as

(19)

The last step follows from the fact that D1
ji[R] is a linear function of the matrix elements of

R(Ω) by eqns. A.14 – A.16.

The functional dependence of Dl
m′m on Ω is given by

(20)

The derivative ∂Dl
m′m/∂Ω can be found by differentiating both sides of eqn. 20 and applying

eqns. 19 and A.9

(21)

The inverse relation  is substituted into the right side of eqn. 21 and
eqn. A.6 is applied to obtain the desired result for ∂Dl

m′m/∂Ω in terms of Dl
m′m

(22)

This central result is a complete expression for ∂Dl
m′m/∂Ω in terms of the constants Bk

lm
(eqn. A.8) and Ci

lm (eqn. A.10) and the Cartesian rotation matrix derivative R−1(∂R/∂Ω).
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A second relation can be found by first expressing eqn. 22 as

(23)

After taking the complex conjugate of eqn. 23, interchanging m′ with m, interchanging R
with R−1, and applying eqn. A.13, a second expression for ∂Dl

m′m/∂Ω becomes,

(24)

It is straightforward to show that second and higher order derivatives can be expressed in
terms of lower order derivatives. In sections S6, S7, and S8 of the SI, eqns. 22 and 24 are
evaluated for the special cases when Ω represents an infinitesimal rotation, an Euler angle,
and a quaternion, respectively. For the special cases when Ω is an Euler angle or represents
an infinitesimal rotation, the results for ∂Dl

m′m/∂Ω agree with those found in
Varshalovich53 et al. However, neither the results for Euler angles or quaternions are
needed in the following discussions on torque and force.

Torque and Infinitesimal Rotations
In this section, an expression for the torque applied to a multipole in an external field is
derived using the expression for ∂Dl

m′m/∂Ω (eqn. 24) given in the previous section. The
results for torque are needed in the following section on orientational force. A similar result
for torque has been given by Hättig49 for the case of two interacting point multipoles, which
are evaluated in a rotated coordinate frame. Below, an expression for torque is found when
the multipoles are evaluated in the global frame.

The pth component of torque τa,p acting upon a multipole  on atom a with respect to ra is
defined by the negative partial derivative of energy U (eqn. 3) with respect to a rotation of
the multipole  about the pth coordinate axis as48 while keeping the molecule fixed

(25)

In the following section, this definition for torque is shown to reproduce the mechanical
expression for torque τ ≡ r × F. After inserting eqn. 6 into eqn. 25 and applying eqn A.13,
the torque on multipole a becomes

(26)

It is shown in Goldstein50 that a partial derivative of a vector ν with respect to a rotation
about the pth coordinate axis x̂p (p = 1, 2, 3 for x, y, z) is given by

(27)
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where x̂p × ν represents a vector cross product between x̂p and ν, and Mp is an antisymmetric
infinitesimal rotation matrix about x̂p defined by

(28)

By comparing eqns. 27 and A.18, it can be inferred that

(29)

After inserting eqns. 29 and 24 into eqn. 26, the torque becomes

(30)

After evaluating D1[Mp] from eqns. A.14 – A.16 and inserting the constants for Bk
lm (eqn.

A.8) and Ci
lm (eqn. A.10) into eqn. 30, the explicit expressions for torque becomes

(31)

(32)

(33)

where . Eqns. 31 – 33 can also be derived by inserting the result for

the Wigner function derivative with respect to infinitesimal rotations  given by
Varshalovich53 et al. or in section S6 of the SI into eqn. 26.

Orientational Force
The expression for orientation force in eqn. 11 can be rewritten as

(34)

where  is the orientation force contribution to atom a′ from Ra(ra′) given by

(35)
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Note that  is non-zero only if a′ is used to define the local to global transformation for
atom a, i.e. a′ = a, N1, N2. The result for  is found by first calculating ∂Dl

m′m/∂ra′,q (a′
= a, N1, N2; q = 1, 2, 3 for x, y, z) for the general type of local frame definition given in
Figure 1. From eqn. 24, ∂Dl

m′m/∂ra′,q can be evaluated by first calculating .
In the SI,  is derived for the type of local coordinate system defined in Figure
1 and given by

(36)

where Mt are the infinitesimal rotation matrices given in eqn. 28 and  are geometric
functions defined by

(37)

where α ≡ rN1 – ra and β = rN2 – ra are bond vectors. Note that the  coefficients are
finite if α and β are linearly independent (i.e. the local frame is well-defined).

The result for ∂Dl
m′m/∂ra′,q is given by inserting eqn. 36 into eqn. 24 to give

(38)

The qth component of  is found by inserting eqn. 38 into eqn. 35 to give

(39)

where the expression for torque (eqn. 30) has been used in the last step. This central result
for orientational atomic force is expressed in terms of torque. The torque τa on multipole a

imparts force to atoms a′ (a′ = a, N1, N2) through geometric functions  which have

units of inverse distance. Since , the total orientational force arising from τa is
zero, i.e.

(40)

The mechanical expression for torque on atom a can be recovered by inserting eqn. 37 into
39 (see section S9 of the SI for more details), i.e.
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(41)

where the definitions for α and β and eqn. 40 has been used in the last step.

Total Molecular Force and Torque
The total molecular force Ftot is the total translational atomic force, since both the
orientation and geometry-dependent atomic forces sum to zero (see eqns. 40 and 16). The
total molecular torque with respect to the center of mass RCOM (COM) is given by

(42)

The geometry-dependent contribution to eqn. 42 is zero. This result follows from eqn. 14
and noting ∑a ra × ∂η/∂r a = 0 (see section S10 of the SI for a proof). By eqns. 41 and 40,
the orientation force contribution to the total molecular torque can be expressed in terms of
atomic torques τa (eqns. 31 – 33) by

(43)

Computational Details
The expressions for atomic forces are tested by calculating inter-molecular electrostatic
energies and forces on hydrogen bonded dimers using atomic point and Gaussian multipoles
fit to the ab initio electrostatic potential (ESP). The geometries of the monomers are
optimized. Atomic point multipole and Slater-type contracted Gaussian multipoles are fit to
the ESP calculated at the HF/6-31G* and the HF/aug-cc-pVTZ levels using methods
described in our recent work34. All geometry optimizations and ab initio ESP calculations
are performed using the Gaussian 03 software package71.

Internal geometry derivatives of the local frame multipole moments  are
calculated by finite difference

(44)

where h = 0.01 Å for bond lengths and 1° for angles. The perturbed moments 
are found by perturbing the η variable on the optimized monomer geometry by ±h and
calculating a new set of atomic multipoles for the perturbed geometry. For the Gaussian
multipoles, the atomic Slater exponents are kept at their equilibrium geometry values during
the geometric perturbations.

The dimer geometries are optimized, while keeping the monomer geometries rigid in their
respective monomer-optimized geometries. Inter-molecular electrostatic energies and atomic
forces calculated by the atomic multipoles are compared with their ab initio reference
values. Ab initio electrostatic energies are calculated by the Reduced Variation Space67,68
(RVS) decomposition method using the GAMESS quantum chemistry program72. Ab initio
electrostatic forces are calculated by finite difference of RVS electrostatic energies
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(45)

where hQM = 10−3 Å. In addition, analytic multipole atomic forces are compared to
numerical finite difference derivatives of atomic multipole energies by a similar expression
with hGM = 10−6 Å. Note that in the calculation of finite difference multipole forces, the
local moments are re-calculated at each perturbed geometry through eqn. 9 and then rotated
to the global frame through eqn. 6 with updated rotation matrices calculated from the
perturbed geometries.

The internal geometry variables for bond length, bond angle, improper torsion angle, and
torsion angle are chosen so that the following two conditions are satisfied: 1) the number of
internal geometry variables is Nv = 3Natom – 6, and 2) each variable can be perturbed
independently of the other variables. The first condition arises because only 3Natom – 6
variables are needed to completely specify the internal geometry of the molecule for non-
linear molecules73,74. Condition 2 is used in order that finite difference derivatives of

multipole moments  with respect to internal geometry variable (eqn. 44) can be
calculated. Because of condition 2, the angle variables must be carefully chosen so that
changing one angle variable will not change the other angle variables. Water is a simple
example, since the two bond lengths and one bond angle constitute a set of internal variables
which satisfy conditions 1 and 2. For the case of ammonia, the 3 bond lengths N-H1, N-H2,
N-H3, the two bond angles θ1 = H1-N-H2 and θ2 = H1-N-H3, and the ω = H2-H1-N-H3
improper torsion angle satisfies conditions 1) and 2) as illustrated in Figure 2. In typical
valence force fields, the internal geometry variables for ammonia are usually chosen to be
the set of 3 bond lengths and 3 bond angles for symmetry reasons. Though this set of
variables satisfies condition 1, it does not satisfy condition 2, i.e. if one bond angle is varied,
it will change at least one other bond angle. In the SI, internal geometry variables which
satisfy 1) and 2) are given for the other molecules studied in this work, such as acetone and
dimethyl ether. From the examples given, it should be apparent how internal variables which
satisfy conditions 1) and 2) can be chosen for an arbitrary size non-linear molecule.

Results
Intermolecular electrostatic energies and forces calculated by atomic multipole models are
compared to their respective ab initio values. Following our recent work34, electrostatic
dimer energies calculated by ESP-fitted atomic point and Gaussian multipoles are presented
for molecules hydrogen bonded to water. Atomic forces calculated by static and geometry-
dependent multipoles are compared to ab initio electrostatic atomic forces. Total molecular
electrostatic forces and total molecular torques calculated by static Gaussian multipoles are
compared to their respective ab initio values. Lastly, the molecular multipole moment
calculated by static and geometry-dependent multipoles are plotted as a function of bond
angle for the case of water.

Electrostatic Energy
The electrostatic energies calculated by ESP-fitted atomic point multipole and Gaussian
multipoles for hydrogen bonded dimers are compared with their respective ab initio values.
In the dimer geometry, the monomers are kept at their monomer optimized geometries, and
therefore, the geometry-dependent contribution to the electrostatic energy is zero. For the
water-water dimer, the electrostatic energy calculated by atomic point octapoles (lmax = 3),
Gaussian octapoles, and ab initio is plotted as a function of H..O distance in Figure 3. Recall
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that octapoles (lmax = 3) also include multipoles of lower order, i.e. monopoles, dipoles, and
quadrupoles. For large H..O separations (≥ 2.5Å), the electrostatic energies calculated by
both atomic point octapoles and Gaussian octapoles agree with their reference ab initio HF/
6-31G* values. However, at the equilibrium H..O separation of 2.02 Å, the water-water
electrostatic dimer energies are −6.53 kcal/mol for point octapoles, −7.52 kcal/mol for
Gaussian octapoles, and −7.55 kcal/mol for ab initio. The under-estimation of the point
octapole electrostatic energy at short range is an example of penetration error18,39 for point
multipoles.

In Table I, the electrostatic dimer energy for various molecules hydrogen bonded to water
are given at equilibrium separations. The electrostatic energy calculated by Gaussian
monopoles (lmax = 0), dipoles (lmax = 1), quadrupoles (lmax = 2), octapoles (lmax = 3), and
hexadecapoles (lmax = 4) are compared to their ab initio HF/6-31G* reference values. In
general, there is a significant improvement in going from Gaussian monopoles to Gaussian
quadrupoles. For example, the electrostatic dimer energies for the ammonia-water dimer are
−8.59, −9.13, and −9.98 kcal/mol for Gaussian monopoles, dipoles, and quadrupoles,
respectively. These values can be compared to the ab initio electrostatic dimer energy of
−10.03 kcal/mol. On average, there is a small improvement for energy in going from
Gaussian quadrupoles to hexadecapoles. For this small set of hydrogen bonded dimers, the
root mean square deviations (rmsd) in electrostatic dimer are 0.713, 0.734, 0.140, 0.117, and
0.078 kcal/mol for Gaussian monopoles, dipoles, quadrupoles, octapoles, and
hexadecapoles. Additional results, including electrostatic energies calculated by HF/aug-cc-
pVTZ Gaussian multipoles, can be found in the SI.

Electrostatic Atomic Force
Atomic forces calculated by static and geometry-dependent atomic point and Gaussian
multipoles are compared with their ab initio values. As a first test, the analytic and
numerical finite difference atomic forces calculated by geometry-dependent Gaussian
hexadecapoles on an oxygen atom in the water-water dimer are given in Table II. The
analytic and numerical atomic forces agree to a precision of 10−7. In Table III, the atomic
electrostatic forces on an oxygen atom in the water-water dimer calculated by static and
geometry-dependent multipole models are compared with their respective ab initio atomic
electrostatic forces. At the equilibrium water-water dimer geometry (H..O distance = 2.02
Å), the atomic forces for Gaussian octapoles are given, while the forces for atomic point
octapoles are calculated when the waters are separated by a longer distance (H..O distance =
3.0 Å). In both cases, the atomic forces calculated by geometry-dependent multipole models
are comparable with their ab initio atomic forces, while there is a significant discrepancy for
the atomic forces calculated by static multipoles. For example, the y-component of force on
oxygen Fy at the equilibrium separation is 0.247 kcal/mol/Å for static Gaussian octapoles
and 4.504 for geometry-dependent Gaussian octapoles. These values can be compared to the
ab initio result for Fy of 4.972 kcal/mol/Å. The rmsd errors in atomic force over all atoms in
the dimer is 1.567 and 0.147 kcal/mol/Å for static and geometry-dependent Gaussian
octapoles, respectively.

The results given above for the water-water dimer are indicative of the other cases studied.
In Table IV, the rmsd errors in atomic forces with respect to ab initio are given for hydrogen
bonded dimers calculated by static and geometry-dependent Gaussian dipoles, quadrupoles,
octapoles, and hexadecapoles. In all cases, there is a significant improvement in going from
static to geometry-dependent models. The rmsd errors (kcal/mol/Å) averaged over all dimers
is 1.216, 0.369, 0.143, and 0.148 for geometry-dependent Gaussian dipoles, quadrupoles,
octapoles, and hexadecapoles, respectively. Additional results, including atomic forces
calculated by HF/aug-cc-pVTZ Gaussian multipoles, can be found in the SI.
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Total Molecular Force and Torque
The total molecular force Ftot and total molecular torque τtot on a methanol molecule in a
methanol-water dimer are calculated by Gaussian quadrupoles and compared to their
reference HF/6-31G* values in Table V and Table VI, respectively. The results for Ftot and
τtot calculated by Gaussian quadrupoles are comparable with their reference ab initio values.
For example, the x component of Ftot (kcal/mol/Å) is −12.90 for Gaussian quadrupoles and
−12.57 for ab initio. The rmsd errors in Ftot and τtot with respect to ab initio are 0.193 kcal/
mol/Å and 0.081 kcal/mol, respectively. Similar results are obtained for the other hydrogen
bonded dimers (see the SI for more details). Since the geometry-dependent contribution to
both Ftot and τtot are zero (at the equilibrium monomer geometries), the results for Ftot and
τtot calculated by static and geometry-dependent multipole models are identical. Thus, both
static and geometry-dependent multipole models are capable of reproducing total molecular
forces and torques. Additional results, including molecular forces and torques calculated by
HF/aug-cc-pVTZ Gaussian multipoles, can be found in the SI.

Molecular Multipole Moment Geometry-Dependence
The molecular dipole moment of water is plotted as a function of bond angle in Figure 4.
The molecular dipole calculated by static and geometry-dependent Gaussian dipoles are
compared to their reference HF/6-31G* values. At the equilibrium geometry, both static and
geometry-dependent Gaussian dipoles reproduce the molecular dipole moment for water. As
the bond angle increases, the molecular dipole of water decreases. However, static dipoles
significantly overestimate the amount by which the molecular dipole decreases. For
example, at a bond angle of 111°, the HF/6-31G* dipole moment (D) of water is 2.099 D.
This value can be compared to the values predicted by static Gaussian dipoles of 1.971 D
and geometry-dependent Gaussian dipoles of 2.096 D. Similar results are obtained for
higher order molecular multipole moments calculated by static and geometry-dependent
Gaussian monopoles, dipoles, and quadrupoles, (See the SI for more details).

Conclusions
Atomic force expressions are found for geometry-dependent atomic point multipole and
Gaussian multipole models for use in simulations of flexible molecules. The multipolar
forces are tested by comparing to numerical finite difference derivatives of multipolar
energy. In addition, the multipolar energies and atomic forces are compared to ab initio
electrostatic energies and forces. In contrast to static multipoles, it is shown that geometry-
dependent multipoles are comparable with ab initio electrostatic atomic forces. However,
both static and geometry-dependent models are able to reproduce total molecular forces and
total molecular torques. Another advantage of using geometry-dependent multipole models
over static multipole models is that electrostatic interactions can be accounted for over a
range of intra-molecular geometries for flexible molecules. For example, geometry-
dependent models are able to accurately account for the ab initio molecular multipole
moments as a function bond length and bond angle for the case of water. In the present
study, the geometry-dependent multipoles are represented by expanding the local frame

multipole moments  as a truncated linear Taylor series in internal geometry
variables η (bond lengths, bond angles, etc.) about equilibrium geometry values. However,

the expressions for atomic multipole force can be used in other functional forms of 
(e.g. higher order Taylor series and/or a Fourier series for dihedral angles).

In order to arrive at the result for orientational force, a general expression for Wigner
rotation matrix derivatives ∂Dl

m′m/∂Ω for arbitrary Ω is proposed. The general result for
∂Dl

m′m/∂Ω is applied to the special cases when Ω represents an infinitesimal rotation, an
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Euler angle, and a quaternion in the SI. For the special cases when Ω is an Euler angle or
infinitesimal rotation, the results for ∂Dl

m′m/∂Ω agree with those given by Varshalovich53 et
al. By letting Ω be an atomic position, an expression for ∂Dl

m′m/∂ra ’,q is evaluated and used
to find a compact equation for atomic orientational force, which does not contain the
singularity problems associated with a procedure based on Euler angles.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix: Mathematical Background
In this section, background information needed in the derivation of ∂Dl

m′m/∂Ω is given.
Properties of spherical harmonics69,70 and Wigner functions53–57 are summarized. This is
followed by a brief summary of Cartesian rotation matrix derivatives (∂R/∂Ω)R−1.

Spherical Harmonics
The complex spherical harmonics Ylm (θ,φ) ≡ Ylm (r ̂) are functions on a unit sphere which
can be defined in terms of Associated Legendre functions Plm(cos θ) by

(A.1)

Many useful properties of Associated Legendre functions and spherical harmonics can be
found in Arfken70. An especially useful result can be found in Hobson69, in which Plm(cos
θ) is expressed as a homogeneous polynomial of degree l in sin θ and cos θ for 0 ≤ m ≤ l

(A.2)

This result can be used to express spherical harmonics as a homogeneous polynomial in
terms of a new set of variables ξ ≡ (ξ−1, ξ0, ξ+1) by

(A.3)

where

(A.4)

which satisfy ξ0
2 – 2ξ1ξ−1 = 1 on a unit sphere. It is straightforward to evaluate eqn. A.3 for

l = 1
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(A.5)

In terms of the new variables, recurrence relations70 for spherical harmonics can be
expressed as

(A.6)

where  and  are defined to be non-zero for i = −1, 0, 1 and |m| ≤ l by

(A.7)

(A.8)

Since Ylm is a homogeneous polynomial of degree l in terms of ξ ≡ (ξ−1, ξ0, ξ+1), the
derivative of Ylm with respect to ξi is a polynomial of degree l – 1. Through the polynomial
expression in eqn. A.3, it is straightforward to verify the following relationship for
derivatives of Ylm for all complex values of ξi

(A.9)

where  is defined to be non-zero for i = −1, 0, 1 and |m| ≤ l by

(A.10)

Wigner Rotation Matrices
Spherical harmonics transform under rotations through Wigner53–57 functions Dl

m′m. If r ̂ =
(sin θ cos φ, sin θ sinφ, cosθ) is a point on a unit sphere and R is a Cartesian rotation matrix,

(A.11)

Since spherical harmonics are orthonormal when integrated over a unit sphere, the Wigner
rotation matrices can be represented by the following integral over a unit sphere

(A.12)

Note that Dl
m′m[R] is unitary and satisfies
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(A.13)

Recursion formulae53,57 have been developed to evaluate Dl
m′m[R]. For l = 1, D1 can be

expressed as a unitary transformation of R by

(A.14)

(A.15)

(A.16)

For l ≥ 2, Dl
m′m[R] can be evaluated by the following three recursion expressions

(A.17)

where  is nonzero for i = −1, 0, 1 and |m − i| ≤ l by eqn. A.7. The recursion
relationships 5.9, 5.1, and 5.14 from Choi et al.57 correspond to i = −1, 0, 1, respectively.

Cartesian Rotation Matrix Derivatives
The general expression for ∂Dl

m′m/∂Ω assumes the corresponding Cartesian rotation matrix
derivative AΩ ≡ (∂R/∂Ω)R−1 is given. Since this result is needed, a brief discussion is given
for the rotation derivative of a Cartesian vector ν. Suppose a Cartesian rotation matrix R
which transforms a vector ν′ to ν, i.e. ν = Rν′. If R is a function of one or more rotation
variables Ω (e.g. an Euler angle, quaternion, atomic position, etc.), then ν also becomes a
function of Ω, i.e. ν(Ω) = R(Ω)ν′. Since ν′ = R−1ν, derivatives of ν with respect to Ω can be
expressed as a linear transformation of ν as

(A.18)

For many cases, AΩ is an antisymmetric matrix (e.g. Ω is an Euler angle, rotation about a
coordinate axis). In particular, the AΩ matrices for torque and orientational force are
antisymmetric. For more discussion on this point, see section S2 in the SI.
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Figure 1.
The local coordinate system on a nitrogen atom with label ‘a’ in an ammonia molecule is
defined with respect to its neighboring hydrogen H1 with label ‘N1’ and another hydrogen
H2 with label ‘N2’. The local x̂′ axis is defined along the N1-a bond length, the ŷ′ axis is
defined in the N1-a-N2 plane, and the ẑ′ axis is the cross product of x̂′ and ŷ′. This type of
local frame can be defined for any atom in a non-linear molecule.
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Figure 2.
Bond angle variables for ammonia: θ1 (H1-N-H2) and θ2 (H1-N-H3) (left). Improper torsion
angle ω (H2-H1-N-H3) (right)
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Figure 3.
Electrostatic dimer energy for the water-water dimer as a function of H..O distance. The
electrostatic energies calculated by Gaussian octapoles and point octapoles are compared to
their ab initio HF/6-31G* values. The HF/6-31G* equilibrium dimer H..O distance is 2.02 Å
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Figure 4.
Molecular dipole moment of water as a function of bond angle for static Gaussian dipoles,
geometry-dependent Gaussian dipoles, and the reference HF/6-31G* values. The HF/
6-31G* equilibrium bond angle for water is 105.0°
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Table II

Analytical and Numerical Finite Difference Forcesa (kcal/mol/Å)

Fx Fy Fz

Analytic −1.3664760 4.5198024 −0.0044384

Numerical −1.3664758 4.5198024 −0.0044383

a
Atomic forces on an oxygen atom in a water – water dimer calculated by geometry-dependent HF/6-31G* Gaussian hexadecapoles.
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Table III

Comparison of Multipole Electrostatic Forcesa (kcal/mol/Å) with Ab initio

Fx Fy Fz rmsdd

Gauss. Oct. (Static)b −1.390 0.247 −0.004 1.567

Gauss. Oct. (Geom. Depend.) −1.351 4.504 −0.004 0.147

Ab initio −1.543 4.972 −0.004

Point Oct. (Static)c −1.358 2.614 0.000 0.620

Point Oct. (Geom. Depend.) −0.485 1.438 0.000 0.019

Ab initio −0.498 1.452 0.000

a
Atomic forces evaluated on an oxygen atom in the water – water dimer.

b
Gaussian octapole atomic forces are evaluated at the equilibrium dimer distance with an H..O distance of 2.02 Å.

c
Point octapole atomic forces are evaluated at the water-water dimer geometry with an H..O distance of 3.0 Å.

d
The rmsd is the average error in electrostatic atomic forces over all atoms.
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Table V

Total Molecular Force on Methanol in a Methanol-Water Dimera (kcal/mol/Å)

Fx Fy Fz

Gauss. Quad. −12.897 −3.580 0.866

Ab initio −12.569 −3.518 0.880

a
Calculated by HF/6-31G* Gaussian quadrupoles. The rmsd error in total molecular force is 0.193 kcal/mol/Å
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Table VI

Total Molecular Torque on Methanol in a Methanol-Water Dimera (kcal/mol)

Fx Fy Fz

Gauss. Quad. 0.243 1.223 9.082

Ab initio 0.244 1.258 8.904

a
Torque is calculated with respect to the COM by HF/6-31G* Gaussian quadrupoles. The rmsd error in total molecular torque is 0.081 kcal/mol.

J Comput Chem. Author manuscript; available in PMC 2011 November 30.


