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Intracellular detection of virus infections is a critical component of
innate immunity carried out by molecules known as pathogen
recognition receptors (PRRs). Activation of PRRs by their respective
pathogen-associated molecular patterns (PAMPs) leads to produc-
tion of proinflamatory cytokines, including type I IFN, and the
establishment of an antiviral state in the host. Out of all PRRs found
to date, retinoic acid inducible gene I (RIG-I) has been shown to play
a key role in recognition of RNA viruses. On the basis of in vitro and
transfection studies, 5′ppp RNA produced during virus replication is
thought to bind and activate this important sensor. However, the
nature of RNA molecules that interact with endogenous RIG-I dur-
ing the course of viral infection has not been determined. In this
work we use next-generation RNA sequencing to show that RIG-I
preferentially associates with shorter, 5′ppp containing viral RNA
molecules in infected cells. We found that during Sendai infection
RIG-I specifically bound the genome of the defective interfering
(DI) particle and did not bind the full-length virus genome or any
other viral RNAs. In influenza-infected cells RIG-I preferentially as-
sociated with shorter genomic segments as well as subgenomic DI
particles. Our analysis for thefirst time identifies RIG-I PAMPs under
natural infection conditions and implies that full-length genomes
of single segmented RNA virus families are not bound by RIG-I
during infection.
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The retinoic acid inducible gene I (RIG-I)–like receptor (RLR)
family of viral sensors contains threemembers that include the

retinoic acid inducible gene (RIG-I), melanoma differentiation
factor 5 (MDA5), and Laboratory of Genetics and Physiology
gene 2 (LGP2) (1–4). Both RIG-I andMDA5 have been shown to
play an important role in recognition of RNA viruses. For most
RNA viruses both receptors contribute to IFN induction, al-
though the relative contribution may be cell type specific (5–7).
Some viruses, such as picornaviruses and influenza virus, appear
to be recognized by only one of the sensors, with picornaviruses
being sensed by MDA5 and influenza viruses by RIG-I (1, 8, 9).
The substrate specificities of RIG-I and MDA5 have not been
clearly established, although from RNA transfection experiments
in knockout cells it appears that RIG-I recognizes RNA of various
lengths with 5′-triphosphates and some partial double-stranded
characteristics, whereas MDA5 senses only very long dsRNA
molecules (>2,000 nt) in a phosphate-independent manner (10–
14). All RLRs are members of the DExD/H family of RNA hel-
icases and contain an ATP-dependent helicase domain and a
C-terminal regulatory domain (RD). The N termini of RIG-I and
MDA5 contain two tandem CARD domains required for down-
stream signaling through their adaptor, MAVS (15–18). The RD
domain of RIG-I is responsible for recognition and binding to its
RNA substrates in a 5′-phosphate–dependent manner, whereas
the helicase domain has affinity for dsRNA (19–21). In uninfected
cells RIG-I is thought to exist in an inactive state; the C-terminal
RD domain is proposed to interact with the N-terminal CARD
domain and block it from association with MAVS. RNA binding
to the RD of RIG-I likely induces a conformational change in

the protein, resulting in CARD exposure and association with
the CARD domain of MAVS.
Because both RIG-I and MDA5 are localized in the cytoplasm,

it is imperative for these receptors to be able to distinguish self
RNA from viral RNA to prevent IFN production in the absence of
infection. The characteristics of RNA molecules capable of acti-
vating RIG-I have been well established through numerous bio-
chemical and knockout studies. The signature features of RIG-I
agonists are a 5′-triphosphate group at the end of an RNA mole-
cule longer than at least 19 nt and some dsRNA regions (10, 11).
Additionally, 5′ppp containing RNAs rich in U residues have been
found to act as more potent inducers of RIG-I, indicating that
sequence composition might play a role in activation (22). It is yet
unclear whether ssRNA, even in the presence of a 5′-triphosphate
group, is capable of inducingRIG-I activity, and at least in the case
of shorter RNA molecules it appears that some double-stranded
characteristics are required for its activation (12, 13).
AlthoughRNAmolecules capable of inducing RIG-I have been

well characterized, it remains to be seen which if any of these
RNAs are actually interacting with RIG-I in virus-infected cells.
A recent study using overexpressed RIG-I has shown that this
protein associates with negative stranded viral RNA in Sendai
virus-infected (SeV) cells and concluded that genomic RNA
serves as a inducer of RIG-I signaling (3). In our study we examine
SeV-infected cells and analyze RNA molecules that interact with
endogenous RIG-I protein both early and late in viral infection.
By applying deep sequencing analysis to examine the isolated
RNA species we were able to identify the exact nature of RIG-
I–associated viral RNA in an unbiased manner. Through this
approach we determined that in SeV-infected cells, RIG-I spe-
cifically associates with the defective interfering RNA genomes
and not with the full-length genomes, mRNA, and leader or trailer
RNAs. The immunostimulatory effects of RIG-I–associated
RNA in SeV-infected cells were abolished upon removal of all
three or two 5′-terminal phosphates. In influenza PR8 ΔNS1
virus-infected cells we observed that RIG-I associates with all
genomic segments, but preferentially associates with shorter RNA
molecules, such as the NS and M segments, and the internal de-
letion defective interfering (DI) particles generated by PB1 and
PA segments. On the basis of our work we conclude that under
natural infection conditions RIG-I preferentially associates with
shorter viral RNAs that contain 5′ triphosphates and some
dsRNA regions. This study represents a unique analysis of en-
dogenous RIG-I/pathogen-associated molecular pattern (PAMP)
complexes present during viral infections.
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Results
Isolation of RIG-I/RNA Complexes from Virus-Infected Cells. To ana-
lyze endogenous RNA substrates of RIG-I, A549 human lung
carcinoma cells were infected with Sendai virus Cantel (Sev-C) at
a high multiplicity of infection (MOI) and infection was allowed
to proceed for 24 h. At this time the cells were lysed and RIG-I/
RNA complexes were immunoprecipitated with a monoclonal
antibody against RIG-I. Fig. 1A outlines the overall schematic for
the experimental procedure. To make sure that we could distin-
guish between RIG-I–associated RNA and RNA precipitated in
a nonspecific way, an anti-GFP antibody was used in parallel. As
can be seen from Fig. 1B, precipitation of endogenous RIG-I was
very efficient and the vast majority of RIG-I protein was isolated
from cell lysates. Following immunoprecipitation (IP), coimmu-
noprecipitated RNA was isolated by phenol/chlorophorm ex-
traction and transfected into a 293T ISRE-FF (containing a firefly
luciferase gene under the control of an IFN-stimulated promoter)
reporter cell line to analyze the immunostimulatory activity of the
isolated RNA species. Transfection of RIG-I–associated RNA
into the reporter cells resulted in a 90-fold increase in reporter
activity compared with the GFP control, indicating that the
immunostimulatory RNA was specifically pulled down in associ-
ation with RIG-I (Fig. 1C). Comparison of ISRE-FF activity be-
tween RIG-I–associated RNA and decreasing amounts of total
RNA from SeV-C–infected A549 cells revealed that RIG-I im-
munoprecipitation greatly concentrates the immunostimulatory
activity of the RNA generated in virus-infected cells, demon-
strating that RIG-I pulldown is specifically enriching for immu-
nogenic RNA (Fig. 1D).

Biochemical Analysis of RIG-I–Associated RNA from SeV-C–Infected
Cells. Previous studies have shown that multiple types of RNA
molecules are capable of activating RIG-I. These RNAs have
been described to contain 5′-triphosphates, diphosphates and
monophosphates, and 3′-monophosphates; to be either single- or
double-stranded; and to span the length from 19 to thousands of
nucleotides long (3, 10–14, 20, 21, 23–25). Enzymatic analysis of
immunoprecipitated RNA bound to RIG-I allowed us to charac-

terize the biochemical nature of endogenous RIG-I inducers in
SeV-infected cells. Treatment of isolated RNA with RNAseA led
to complete loss of immunostimulatory activity in both RIG-I–
associated RNA and control RNA, confirming that the PAMPs
associated with RIG-I in SeV-infected cells are indeed RNA
molecules (Fig. 2A). To address the phosphate composition of
RIG-I–associated RNA we treated the isolated RNA with calf
alkaline phosphatase (CIP), an enzyme that removes all 5′ and 3′
phosphates. Treatment of RIG-I IP RNA with CIP resulted in
complete loss of its immunostimulatory activity similarly to control
influenza virus genomic RNA, and in contrast to poly(I:C), a syn-
thetic dsRNA molecule with a 5′ monophosphate that does not
rely on phosphate composition for its immunostimulatory activity
(Fig. 2B). Treatment of RIG-I–associated RNA with tobacco acid
pyrophosphotase (TAP), which removes the first two terminal
phosphates and leaves on a monophosphate group, also led to
a complete loss of immunostimulatory activity, demonstrating that
RNA species associated with RIG-I during SeV infection require
an intact 5′ triphosphate for immogenicity (Fig. 2C).

Deep Sequencing of RIG-I–Associated RNA from SeV-C–Infected Cells.
To identify the exact nature of RIG-I–associated RNA in an
unbiased manner, deep sequencing analysis was performed on the
isolated RNA species. The RNA was prepared for sequencing
according to Illumina mRNA-seq protocol and sequenced on the
Illumina Genome Analyzer. The Illumina platform provides deep
coverage, on the order of 10–25 million reads per sequencing
sample with relatively short length reads of 29 nt. On the basis of
sample preparationmethodology both negative and positive sense
RNAs are amplified in an identical way and the two forms cannot
be distinguished when mapped to their genomic location. Se-
quences were mapped to the SeV genome and relative abun-
dances of these sequences between RIG-I pulldown and GFP
control pulldown, as well as total RNA from SeV-infected cells,
were compared. Fig. 3A shows the graphical representation of
sequences mapped to the SeV genome. Individual peaks on the
graph correspond to a sequencing read that starts at that partic-
ular position and extends in either direction. The x axis corre-
sponds to all possible 15,384 positions in the SeV genome, and the
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y axis shows the number of reads that begin at that position.
Analysis of obtained reads revealed significant variations in peak
intensities between close positions on the genome; this variation is
clearly observed in Fig. 3B. These peaks were similarly distributed
between the RIG-I IP sample and the GFP IP sample, indicating
to us that they were most likely due to sequencing biases and not
to real differences in RNA abundances that could be due to cel-
lular processing of viral RNA. To make sure that this is the case
we sequenced viral RNA isolated from purified Sendai virus.
Analysis of peak distributions across the same region of the ge-
nome (i.e., positions 14,900 and 15,384) revealed that the same
nucleotide positions were overrepresented in the purified virus
RNA as in our IP samples. On the basis of this evidence we
conclude that the variation in peak intensities observed between
adjacent genomic positions is due to sequencing biases introduced
by the Illumina platform. Examination of SeV sequences from
total cellular RNA clearly illustrated that the vast majority of viral
RNA mapped to the 5′ end of the SeV genome [Fig. 3A (teal
color) and Fig. S1]. Specifically, RNA mapping to a region of
the genome between positions 14,932 and 15,384 was much
more abundant in infected cells than RNAmapping to the rest of
the SeV genome. Because it is known from previous studies that
the SeV-C copy-back DI particle genome maps to precisely those
positions, we concluded that the majority (≈95%) of viral RNA
species present in infected cells at 24 h postinfection (hpi) are of
a copy-back DI nature (26). Comparison of RIG-I–associated
RNAwith that of the control IP revealed that the RIG-I pulldown
was specifically enriched in DI RNA, with RIG-I samples con-
taining approximately seven times more DI RNA than control
samples (Fig. 3 A–C). None of the other SeV RNAs, including
genomic RNA, mRNAs, and leader or trailer were over-
represented in the RIG-I pulldown (Fig. 3ALower). SeVDI copy-
back genomes consist of the SeV trailer sequence at the 5′ end,
followed by the partial sequence of the L gene and a sequence that
is the exact complement to the trailer (antitrailer) at the 3′ end of
the molecule (Fig. 3B). This unique DI genome structure results

in a 546-nt RNA molecule with a relatively long perfect dsRNA
portion (92 nt) (very different from typical RNA virus genomes,
which contain only short regions of perfect dsRNA). Visualization
of a 550-nt band on the Agilent bioanalyzer RNA chip in the RIG-
I IP sample but not in the control IP supports the conclusion that
the DI genome is preferentially interacting with RIG-I (Fig. 2D).
Identification of copy-back DIs as a RIG-I PAMP agrees with
previous characterization of these molecules as exceptionally
good inducers of the IFN response (26).

Analysis of RIG-I–Associated RNA at Early Times of SeV Infection. We
next determined whether the same or different viral RNA species
are associated with RIG-I relatively early in infection. We fol-
lowed the same approach as described for the 24 h infection with
the exception of lysing cells 4 h postinfection. As can be seen from
Fig. S2A, we were able to isolate immunostimulatory RNA in
aRIG-I–specificmanner from these cells, and this RNAwas again
subjected to deep sequencing analysis. The relative amount of DI
genomes in these cells was lower than at the 24-h time point with
≈34% of SeV RNA molecules mapping to the DI genome. De-
spite DI’s lower abundance in these cells it was again found to be
the only Sendai RNA that was specifically associating with RIG-I
and we did not see any RIG-I–specific binding of the full-length
genome (Fig. S2 B and C). Therefore it appears that RIG-I
interacts with the same SeV-derived RNA molecule both early
and late in infection, namely DI RNA.

Confirmation of Deep Sequencing Data with Quantitative PCR. To
validate our deep sequencing analysis with an independent
method we chose to perform TaqMan Q-PCR RNA quantifica-
tion. On the basis of the unique structure of the SeV copy-back
DI, with the 3′ end of the molecule containing an antitrailer (Fig.
3B), it is possible to design PCR primers that will detect only the
DI RNA and not the full-length genome, L mRNA, or trailer
RNA. Comparison of relative abundances of DI RNA and
genome RNA/L mRNA between total RNA from infected cells,
RIG-I IP and GFP IP at 24 hpi confirmed that only DI-specific
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sequences were enriched in RIG-I IPs (Fig. S3A), validating
conclusions from our deep sequencing data. To obtain sense-
specific information about ratios of DI genome to full-length
genome (excluding L mRNA sequences) we performed the same
Q-PCR analysis except with sense-specific RT amplification.
Again we saw that only DI genomic RNA and not the full-length
genome was preferentially interacting with RIG-I (Fig. S3C). We
also attempted to analyze RIG-I–associated RNA very early on in
SeV-infected cells by allowing the infection to progress for only 30
min or 1 h. Immunoprecipitation of RIG-I at these early time
points did not produce any immunostimulatory RNA (Fig. S3B)
nor could we detect any significant differences in either full-length
genome or DI genome abundance in RIG-I–associated RNA
(Fig. S3C). This failure to detect immunostimulatory RNA very
early in infection could possibly be due to limited sensitivity of our
methodology or requirement for higher levels of virus replication
to induce the antiviral response.

Isolation and Deep Sequencing of RIG-I–Associated RNA from
Influenza PR8ΔNS1 Virus Infections. We next attempted to charac-
terize RNA molecules associated with RIG-I during influenza
virus infection, as it possesses a very different genome organiza-
tion and replication cycle compared with Sendai virus. Because
wild-type influenza virus is very efficient at blocking IFN induction
through the action of its well-characterized IFN antagonist NS1
(27), we decided to infect A549 cells with PR8ΔNS1 virus. This
mutant virus is lacking the RNA sequence that codes for the NS1
protein and therefore it is unable to block IFN production and
RIG-I up-regulation in infected cells. Isolation of RIG-I/RNA
complexes fromA549 cells infected with a highMOI of PR8ΔNS1
virus produced RNA that was specifically immunostimulatory
upon transfection into the 293T ISRE-FF reporter cell line
compared with the RNA isolated from the control anti-GFP
pulldown (Fig. 4B). Again to identify which viral RNA species
were specifically interacting with RIG-I in infected cells we per-
formed deep sequencing analysis of all isolated RNA. The
obtained sequences were mapped to the influenza virus PR8
genomes and analyzed for abundances between the RIG-I IP
sample and the control IP sample. Fig. 4A shows the obtained
sequencing reads mapped to each segment of the influenza virus

genome. For all genomic segments we saw a higher abundance of
RNA in RIG-I IP samples than in the control samples, with the
average ratio between RIG-I IP and control of 2.6. To establish
that this difference represents a significant change in abundance
between the two samples we compared the relative abundances of
eight randomly picked cellular mRNAs from the same sequencing
dataset. The average ratio between RIG-I IP and the control IP
for these eight mRNAs was 1.1 (Table S1). Therefore, we con-
clude that we have identified RNAs that specifically interact with
RIG-I in the course of influenza virus infection.
To see whether specific regions within the individual genome

segments were more enriched in the RIG-I pulldown we calcu-
lated the RIG-I IP/control IP ratio at each nucleotide position on
each segment. These ratios were then averaged over 100-nt
intervals and allowed us to visualize the relative enrichment ratios
over the length of each genomic segment (Fig. 5). This analysis
revealed that the 5′ and 3′ regions in the PB1 and PA segments
were more overrepresented in RIG-I pulldowns than the rest of
those segments. We hypothesized that these regions might rep-
resent internal deletion DI particles that have previously been
shown to be associated with influenza virus replication (28). RT-
PCR of the PA gene with primers corresponding to the ends of the
segment indeed produced a 650-nt product that was not observed
in the same RT-PCR performed with purified RNA from PR8
influenza virus virions; this RNA was sequenced and confirmed to
map to the ends of the PA segment. Comparison of RIG-I IP/
control IP RNA ratios between the segments identifies the two DI
RNAs from PA and PB1 segments as well as the NS and M seg-
ments as being the most enriched RNA molecules in the RIG-I
pulldown (Fig. 5). On the basis of these observations we propose
that RIG-I binds to all segments of the flu genome but prefer-
entially associates with shorter RNA molecules such as the
shorter influenza virus segments and short DI particles generated
from the larger segments.

Immunostimulatory Activity of Individual PR8 RNA Genomic Seg-
ments. To check that RIG-I–associated viral RNA molecules
identified in our pulldowns could act as PAMPs and induce
an antiviral response, we generated six of these RNAs by T7
promoter-driven in vitro transcription. The size and purity of
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produced RNAs were checked by denaturing agarose gel elec-
trophoresis (Fig. S4A). Transfection of equimolar ratios of these
RNAs into the ISRE-FF reporter cells resulted in induction of
the FF reporter, indicating that all of these RNAs were indeed
immunogenic (Fig. S4B). With the exception of NA RNA, which
gave the lowest amount of induction, we did not see any signif-
icant differences in reporter stimulation between the different flu

RNAs, and thus immunogenicity of these RNAs was not pro-
portional to RNA length. Currently we do not understand the
molecular basis or significance of the observed differences in
RIG-I association between various influenza RNAs. These dif-
ferences could potentially reflect variability in RNA segment
accessibility to RIG-I during the course of infection, either
structurally or spatially. Also, because T7 transcribed RNAs are
naked RNAs transfected into cells, their localization, stability,
and interactions with RIG-I might be fundamentally different
from those that take place during viral infection.

Discussion
By subjecting the RNA to both biochemical and deep sequencing
analysis we have been able to pinpoint the exact nature of RNA
molecules that interact with RIG-I during the course of SeV and
influenza virus infections and induce the antiviral response
through the RIG-I signaling pathway. The application of deep
sequencing techniques allowed us to examine the RNA mole-
cules without any a priori assumptions about their identity and
eliminated biases commonly introduced by more traditional
methods such as Northerns and quantitative PCR where the
selection of primers and probes can greatly influence the ob-
served result. We conclude that viral replicating RNA constitutes
the majority of the viral immunostimulatory RNA associated
with RIG-I. In infections with both viruses we observed that
shorter molecules preferentially associate with RIG-I over longer
ones even though all of these RNAs should contain identical
5′-triphosphorylated ends. The preference of RIG-I for shorter
substrates might explain why influenza virus has been shown to
be exclusively recognized by RIG-I unlike most other RNA
viruses that normally rely on both RIG-I and MDA5 recognition.
All of the molecules we have identified as specifically interacting
with RIG-I also contain some dsRNA regions directly adjacent
to the triphosphate, supporting conclusions from previous work
that this panhandle-type architecture of the RNA molecule may
be preferentially recognized by RIG-I (12, 13). The identification
of the influenza virus NS segment and SeV DI RNA as preferred
substrates of RIG-I also agrees with their predicted roles as
RIG-I PAMPs on the basis of the U-rich composition of this
RNA (22). It will be very interesting to see what types of RNAs
associate with RIG-I in infections with other viruses and whether
generation of DI particles by Mononegavirales members is a pre-
requisite for RIG-I activation. The extent of secondary structure
characteristics in viral RNA would be expected to vary highly
between various viruses and the exact role these differences
might play in RIG-I activation is an interesting and complex
question. The fact that CIP and TAP treatment led to complete
loss of DI’s ability to induce an immunostimulatory response is
interesting and illustrates that the 5′ triphosphate (although
a diphosphate has not been experimentally ruled out in this
study) is required even in the context of a relatively long dsRNA
region, such as SeV DI RNA. Our finding that DI subgenomic
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particles preferentially associate with RIG-I provides an expla-
nation for the historical observation that viruses containing these
particles act as superior IFN inducers (26, 29). The approach we
used in our work provides a powerful tool for analysis of RIG-I–
associated RNA from various viral infections in multiple cell
types as well as other protein/RNA complexes.

Materials and Methods
RIG-I/RNA Complex Immunoprecipitation. A549 human lung carcinoma cells
were infected with a high MOI of SeV-C or PR8ΔNS1 viruses. Infections were
allowed to proceed for 24 or 4 h and the cells werewashed five timeswith cold
PBS and lysed in a 0.5% Nonidet P-40 buffer. Lysates were frozen at −80 °C
before being subjected to immunoprecipitation with either an anti-RIG-I anti-
body or an anti-GFP antibody (Abcam ab1218). Fractions from IPs were
obtained during the process and frozen for future protein analysis. RNA was
isolated from agarose beads by proteinase K treatment in SDS buffer and
phenol/chlorophorm extraction followed by ethanol precipitation. Immunos-
timulatory activityof isolatedRNAwas analyzedby transfecting a small fraction
of RNA into a 293T ISRE-FF reporter cell line and measurement of FF activity.

Biochemical Analysis of RNA. Isolated RNA was subjected to treatment with
RNAseA (Qiagen), CIP (Promega), and TAP (Epicentre) and transfected into
the 293T ISRE-FF reporter cell line following each treatment to assay potential
loss of immunostimulatory activity. As controls, purified influenza PR8 virus
RNA, purified SeV-C RNA, total RNA from SeV-C–infected cells, and poly(I:C)
were used in various experiments. Viral RNA was isolated from sucrose
cushion purified virus with phenol/chlorophorm or TRIzol (Invitrogen) ex-
traction, and total cellular RNA was isolated with TRIzol extraction. Agilent
RNA chip analysis was performed at the microarray facility at Mount Sinai
School of Medicine using the mRNA chip.

Deep Sequencing Analysis of RNA. Total RNA isolated from immunoprecipi-
tations or from cell lysates was prepared for Illumina sequencing using the
mRNA-Seq (Illumina) sample preparation kit according to manufacturer’s in-
struction. To analyze all RNA species present, the initial poly(A) RNA isolation
stepwas omitted. Because ribosomal RNApresented anoverwhelming portion

of all RNA in either immunoprecipitations or total cellular RNA, a RiboMinus
Eukaryote Kit for RNA-Seq (Invitrogen) was used before deep sequencing to
remove a large portion of ribosomal species. The RNA was checked following
ribosomal RNA removal for its ability to induce the ISRE-FF reporter, thereby
excluding the removed ribosomal sequences as possible inducers of RIG-I. Se-
quencingwas performed on the Illumina GenomeAnalyzer in theMount Sinai
sequencing facility. Obtained sequences were mapped to human and viral
genomes and relative abundanceswere analyzed betweenRIG-I pulldownand
control samples. Average ratios for influenza virus genomic segments between
RIG-I pulldown and control pulldowns were calculated by determining the
relative sequence abundance at each position on the genomic segment and
calculating the average of those ratios over every 100 nt.

TaqMan Quantitative PCR Analysis. Q-PCR analysis was performed with utili-
zation of Roche LightCycler 480 technology. All Q-PCR reactions incorporated
multiplexed human actin β internal controls and relative abundance of each
RNA was calculated with reference to this control.

T7 RNA Transcription. Templates for T7 RNA transcription were synthesized
from PR8 pDZ plasmids coding for individual RNA segments of influenza PR8
virus (30). T7 SeV-C DI particle template was created by RT amplification of
SeV DI RNA from infected cells. A truncated T7 promoter was added to each
DNA segment by PCR. T7 transcription reactions were carried out with a T7
MEGAscript kit (Ambion). RNA was purified with RNAeasy columns (Qiagen)
and analyzed on denaturing agarose gels for correct size and purity.
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