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THE NEUROPEPTIDES HYPOCRETIN-1 AND HYPO-
CRETIN-2 (OREXIN A AND OREXIN B) ARE SYNTHE-
SIZED EXCLUSIVELY BY NEURONS IN THE LATERAL 
hypothalamic area.1-3 Hypocretin deficiency in humans un-
derlies the pathophysiology of narcolepsy,4,5 and disruption of 
hypocretin signaling in mouse,6 rat,7,8 and dog9 leads to narco-
lepsy-cataplexy. Hypocretinergic neurons project to multiple 
areas of the brain, including those important for regulating 
sleep and wakefulness.1 One such area is the pontine reticular 
nucleus, oral part (PnO).1,10 The PnO is the rostral portion of the 
rodent pontine reticular formation11 and contributes to the gen-
eration of wakefulness and rapid eye movement (REM) sleep.12 
Microinjection of hypocretin-1 into rat PnO causes an increase 
in wakefulness,13 and microinjection of hypocretin-1 into cat 
pontine reticular formation increases the cortically activated 
states of REM sleep14 or wakefulness.15,16

Administering hypocretin-1 into the PnO may increase 
wakefulness by modulating the release of arousal-promoting 
neurotransmitters within the PnO. Direct administration of 
hypocretin-1 to the PnO of isoflurane-anesthetized rat causes a 
concentration-dependent increase in both acetylcholine (ACh) 

release17 and GABA levels13 within the PnO. Extracellular re-
cording studies of PnO neurons in urethane-anesthetized rat 
show that iontophoretic application of hypocretin-1 causes a 
hyperpolarization that is blocked by prior application of bicu-
culline.10 This finding indicates that the hypocretin-1–induced 
inhibition of PnO neurons is mediated by GABAA receptors. 
Identified GABAergic neurons in brainstem slices of mouse 
PnO have been shown to be excited by hypocretin-1,18 and in-
tracellular recording studies in halothane-anesthetized cat show 
that hypocretin-1 can also cause direct depolarization of PnO 
neurons and an increase in PnO neuronal firing rate.14 Numer-
ous studies have demonstrated that GABAergic transmission in 
the PnO increases wakefulness and inhibits REM sleep.13,19-25 
The present study provides the first test of the hypothesis that 
the wakefulness-promoting effects of delivering hypocretin-1 
into the PnO are mediated by GABAA receptors as well as by 
hypocretin receptors. This hypothesis was evaluated by deter-
mining whether (1) microinjection of hypocretin-1 into the PnO 
causes a concentration-dependent increase in wakefulness, (2) 
this increase in wakefulness is blocked by coadministration of 
the hypocretin receptor-1 (hcrt-r1) antagonist SB-334867, and 
(3) coadministration of the GABAA receptor antagonist bicu-
culline also blocks the wakefulness response to hypocretin-1. 
Portions of these data have been presented as abstracts.26,27

MATERIALS AND METHODS

Chemicals and Drug Solutions
Human hypocretin-1 was purchased from California Peptide 

Research, Inc. (Napa, CA). Bicuculline methiodide was pur-
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chased from Sigma Aldrich (St. Louis, MO) and N-(2-Methyl-
6-benzoxazolyl)-N²-1,5-naphthyridin-4-yl urea (SB-334867) 
was obtained from Tocris Bioscience (Ellisville, MO). Chemi-
cals for Ringer solution (147.0 mM NaCl, 2.4 mM CaCl2, 4.0 
mM KCl, 1.0 mM MgSO4, pH 6.0) were acquired from Fisher 
Scientific (Pittsburgh, PA). All drugs used for the antagonist-
blocking studies were dissolved in Ringer solution containing 
2% dimethyl sulfoxide, which was purchased from Sigma Al-
drich. Drug solutions used for intracranial microinjections were 
made immediately before use.

Animals, Surgery, and Conditioning of Behavior
Animal experiments were approved by the University of 

Michigan Committee on Use and Care of Animals and per-
formed in accordance with the US Public Health Service Policy 
on Humane Care and Use of Laboratory Animals (National 
Institutes of Health Publication 80-23). Adult (235- to 310-g) 
male Crl:CD*(SD) (Sprague Dawley) rats (n = 23; Charles Riv-
er Laboratories, Wilmington, MA) were housed with unlimited 
access to food and water and kept on a 12-hour light/dark cycle 
(lights on at 06:00).

Procedures for surgical implantation of recording electrodes 
and a microinjection guide tube have been described in de-
tail.13,28 Briefly, rats were anesthetized with isoflurane (Abbott 
Laboratories, North Chicago, IL) and implanted with 3 screw 
electrodes (8IE36320SPCE, Plastics One, Roanoke, VA) for re-
cording the cortical electroencephalogram (EEG). Three pair 
of EEG electrodes were placed using the following stereotaxic 
coordinates relative to bregma: 1.0 mm anterior and 1.5 mm lat-
eral, 2.0 mm posterior and 1.5 mm lateral, and 2.0 mm posterior 
and 1.27 mm lateral. Two electrodes for recording the electro-
myogram (EMG) were implanted bilaterally in the dorsal neck 
muscles. EMG electrodes were assembled from AS632 biomed 
wire (6 cm length; Cooner Wire Company, Chatsworth, CA) 
and electrical gold socket contacts (8IE3630XXXXE, Plastics 
One). A guide cannula (8IC315GSPCXC, Plastics One) con-
taining a stylet (8IC315DCXXXC, Plastics One) was aimed 3 
mm above the left PnO at 8.40 mm posterior to bregma, 1.0 
mm lateral to the midline, and 6.2 mm below the skull surface.11 
Electrode leads were routed into a 6-pin electrode pedestal 
(MS363, Plastics One). Dental acrylic (Lang Dental Manu-
facturing Company, Inc., Wheeling, IL) and 3 anchor screws 
(MPX-0080-02PC-C, Small Parts, Inc., Miami Lakes, FL) were 
used to adhere the guide cannula, electrodes, and pedestal to 
the skull.

Rats recovered from surgery for a minimum of 7 days, during 
which time they were conditioned to being handled for micro-
injections and to being tethered (363-441/6, Plastics One) in a 
recording chamber (Raturn; Bioanalytical Systems, West Lafay-
ette, IN). To determine whether rats were adequately conditioned, 
a mock microinjection was performed by inserting and removing 
a microinjector (8IC315IXXXXC, Plastics One). EEG and EMG 
signals then were recorded for 2 hours. Rats were considered 
ready to enter the microinjection protocol when the latency to 
non-REM (NREM) sleep was less than 30 minutes.

Microinjections and Quantification of Arousal States
The day before each microinjection, rats were placed in the 

recording chambers and tethered overnight. All microinjections 

were made between 09:30 and 10:30, and microinjections into 
the same rat were separated by a minimum of 7 days. Microin-
jection volume (100 nL) and duration (1 min) were held con-
stant for all drugs, and 2-hour electrophysiologic recordings 
were started immediately after injection. Two groups of rats 
were used for this study. The first group (n = 14) received 0, 
0.1, 1, 10, and 100 pmol hypocretin-1 (0, 0.36, 3.56, 35.6, and 
356 ng, respectively). The order in which the different concen-
trations of hypocretin-1 were administered was randomized, 
and not all animals received all concentrations. The second 
group of rats (n = 9) was microinjected with Ringer solution 
containing 2% dimethyl sulfoxide (vehicle control), hypocre-
tin-1 (10 pmol), bicuculline (0.2 pmol; 0.1 ng) in combination 
with hypocretin-1 (10 pmol), or SB-334867 (10 pmol; 3.4 ng) 
in combination with hypocretin-1 (10 pmol). All rats in the sec-
ond group received all 4 drug treatments.

EEG and EMG recordings were scored manually in 10-sec-sec-
ond bins as wakefulness, NREM sleep, or REM sleep using 
Icelus Acquisition software.29 Previously described methods 
were used for amplification, digitization, and fast Fourier trans-
form (FFT) analysis of signals.13,28 Briefly, FFT plots were con-
structed by analyzing EEG signals in 0.5-Hz increments every 
2 seconds for frequencies ranging from 0.5 to 25.0 Hz. Five 
consecutive 2-second bins were averaged to produce 1 FFT for 
each 10-second epoch. Sample bins of 10 seconds in duration 
were averaged over five 1-minute intervals in the fi rst hour fol-minute intervals in the fi rst hour fol- intervals in the first hour fol-
lowing microinjection of Ringer solution and hypocretin-1 (100 
pmol/100 nL). Sleep records were scored by 2 investigators, 
1 of which was blinded to the treatment condition. Agreement 
between the 2 scores of greater than 90% was achieved for all 
records. Dependent measures included the percentage of time 
spent in wakefulness, NREM sleep, and REM sleep; the av-
erage duration of the longest wakefulness episode from each 
recording; the average duration of NREM sleep and REM sleep 
episodes; the number of wakefulness, NREM sleep, and REM 
sleep episodes; the number of transitions; and the latency to 
onset of the first episode of NREM sleep and REM sleep.

Histologic Verification of Microinjection Sites
Rats were deeply anesthetized with isoflurane (5%) and de-

capitated. Brains were immediately removed, blocked, and fro-
zen. The brainstem block was sectioned coronally from caudal 
to rostral using a cryostat (Leica Microsystems, Nussloch, Ger-
many). Serial sections (40 microns thick) were slide mounted, 
dried, fixed in paraformaldehyde vapor (80°C), and stained 
with cresyl violet. Stained tissue sections and a 1-mm calibra-
tion bar were digitized using a Super Nikon Coolscan 4000 ED 
Film Scanner (Nikon Inc, Melville, NY). Microinjection sites 
were identified and assigned stereotaxic coordinates by com-
parison with a rat brain atlas.11 

Statistical Analyses
Data sets for all dependent measures were normally distrib-

uted. Therefore, data were evaluated by parametric tests and are 
reported as mean ± SEM. For the concentration-response study, 
the effects of hypocretin-1 on sleep and wakefulness were 
determined using a linear mixed model for a randomized in-
complete block design. Concentration response data were fit to 
the equation Y = B+(T-B)/(1+10^((LogEC50-X)*HillSlope)), 
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where B represents the lower limit for the dependent variable 
(e.g., percentage of wakefulness), T is the upper limit for the 
dependent variable, X is the logarithm of the hypocretin-1 con-
centration, and Y is the dependent variable. Regression analy-
ses were used to obtain the coefficient of determination (r2) and 
calculate the percentage of the response accounted for by the 
concentration of hypocretin-1 (r2). For the antagonist-blocking 
study, drug effects on sleep and wakefulness were determined 
by 1-way analysis of variance (ANOVA) for repeated measures 
and Dunnett posthoc multiple comparisons test. Because there 
were so few REM sleep episodes in the first hour after injec-
tion, a Poisson regression with a Generalized Estimating Equa-
tions model was used to test for drug effects on the number of 
REM episodes. This approach takes into account the correlation 
among repeated observations from the same rat. Z-tests were 
used to determine significant effects, and Bonferroni correction 
was used for multiple comparisons between drug treatments. 
Statistical programs used included SAS (release 9.1.3, SAS In-
stitute, Cary, NC) and GraphPad Prism v4.0c for Macintosh. 
Statistical significance required a P value ≤ 0.05. 

RESULTS

Microinjection of Hypocretin-1 into the PnO Caused a 
Concentration-Dependent Increase in Wakefulness and 
Decrease in Sleep 

To determine whether the hypocretin-1–induced increase in 
wakefulness was mediated by hypocretin receptors, increas-
ing concentrations of hypocretin-1 were microinjected into 
the PnO and the effects on sleep and wakefulness were quanti-
fied. Figure 1 shows that all microinjection sites used for the 
concentration-response study were localized to the PnO. The 
average stereotaxic coordinates11 for these injection sites were 
7.9 ± 0.1 mm posterior to bregma, 8.6 ± 0.1 mm ventral to the 

top of the skull, and 1.1 ± 0.1 mm from the midline. Figure 2 
illustrates the sequence of sleep and wakefulness from 2 repre-
sentative rats in the first hour after PnO microinjection of 2 con-
centrations of hypocretin-1 relative to control (microinjection 
of Ringer solution). Hypocretin-1 increased the amount of time 
spent in wakefulness, decreased NREM sleep, and abolished 
REM sleep.

Figure 3 summarizes the group data for the first hour after 
injection. ANOVA revealed a significant concentration main ef-
fect of hypocretin-1 on the percentage of time spent in wake-
fulness (Figure 3A; F4,32 = 6.51; P = 0.0006), NREM sleep 
(Figure 3B; F4,32 = 6.37; P = 0.0007), and REM sleep (Figure 
3C; F4,32 = 4.68; P = 0.004) and on the number of episodes of 
wakefulness (Figure 3D; F4,32 = 3.33; P = 0.02) and NREM 
sleep (Figure 3E; F4,32 = 3.38; P = 0.02). The effect of hypo-
cretin-1 on the number of REM sleep episodes approached 
significance (Figure 3F; z = 9.04, P = 0.06). There was a sig-
nificant concentration main effect on the duration of the lon-
gest wakefulness episode (Figure 3G; F4,32 = 6.85; P = 0.0004) 
and on the average duration of NREM sleep episodes (Figure 
3H; F4,30 = 2.75; P = 0.046). There was no significant change 
in the average duration of REM sleep episodes (Figure 3I). 
Microinjection of hypocretin-1 into the PnO caused a signifi-
cant concentration-dependent effect on the latency to onset of 
NREM sleep (Figure 3J; F4,32 = 29.81; P < 0.0001) and REM 
sleep (Figure 3K; F4,21 = 2.97; P = 0.043). Consistent with these 

Figure 1—All concentrations of hypocretin-1 were injected into the 
pontine reticular nucleus, oral part (PnO). Microinjection sites (n = 14) 
from the concentration-response experiments are represented as black 
dots on 5 coronal atlas plates (modified from11). Numbers on the right side 
of each plate indicate mm posterior to bregma. The sagittal drawing of the 
rat brain (upper right) contains vertical lines that designate the anterior to 
posterior range of the microinjection sites, which spanned from 7.6 to 8.3 
mm posterior to bregma. The digitized image of a cresyl violet stained 
section from 1 rat shows a typical microinjection site (arrow) in the PnO.

-8.16

-8.04

1 mm

-8.28

-7.80

-7.68

PnO

0

10

-10

0

Bregma (0)
-15-5

5

+5
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Figure 3—Significant concentration-dependent changes in sleep and wakefulness were caused by microinjection of hypocretin-1 into the pontine reticular 
nucleus, oral part (PnO). Data from 14 rats are plotted for the first hour after injection. Dunnett multiple comparisons tests indicated significant (* P ≤ 0.05) 
differences from control (0 pmol/100 nL). For all data sets except rapid eye movement sleep (REM) duration (I), coefficients of determination (r2) indicated the 
percentage of the variability accounted for by the concentration of hypocretin-1 was: (A) 98%; (B) 97%; (C) 93%; (D) 91%; (E) 90%; (F) 99%; (G) 95%; (H) 
94%; (J) 90%; (K) 93%; (L) 84%. NREM refers to non-rapid eye movement sleep.
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hypocretin-1–induced increase in wakefulness and decrease in 
NREM sleep (Figure 5B and 5F) were blocked by coadmin-
istration of SB-334867 (Figure 5C and 5G) and by coadmin-
istration of bicuculline (Figure 5D and 5H). SB-334867 also 
antagonized the decrease in REM sleep (Figure 5C and 5G), 
whereas bicuculline did not block the REM-sleep inhibition 
caused by hypocretin-1 (Figure 5D and 5H). 

The group data are summarized in Figure 6. ANOVA re-
vealed that, in the first hour after injection, the percentage of 
time spent in wakefulness (Figure 6A, F3,24 = 5.44; P = 0.005) 
and NREM sleep (Figure 6B, F3,24 = 4.44; P = 0.01) varied as a 
function of drug treatment. The hypocretin-1–induced increase 
in the percentage of time spent in wakefulness was blocked by 
coadministration of either SB-334867 or bicuculline (Figure 
6A). The decrease in NREM sleep time was reversed by SB-
334867 and by bicuculline (Figure 6B). A repeated-measures 
ANOVA adjusted for unequal variances revealed that the per-

effects, the number of state transitions varied significantly as a 
function of hypocretin-1 concentration (Figure 3L; F4,32 = 3.38; 
P = 0.02). All dependent measures except for the percentage of 
time spent in REM sleep returned to control levels in the sec-
ond hour after injection (data not plotted). REM sleep remained 
decreased (F4,32 = 2.75; P = 0.048) following microinjection of 
100 pmol of hypocretin (P < 0.01). FFT analysis of EEG signals 
recorded from 8 rats during the first hour after microinjection 
showed that, compared with an injection of Ringer solution, 
hypocretin-1 (100 pmol/100 nL) did not alter EEG power at 
any frequency.

Both the Hypocretin Receptor-1 Antagonist SB-334867 and 
the GABAA Receptor Antagonist Bicuculline Blocked the 
Hypocretin-1–Induced Increase in Wakefulness 

To further investigate whether the hypocretin-1–induced in-
crease in wakefulness was mediated by hypocretin receptors, 
sleep and wakefulness were quantified after coadministering 
SB-334867 and hypocretin-1. This study also coadministered 
bicuculline and hypocretin-1 to determine whether GABAer-
gic transmission in the PnO contributed to the hypocretin-1–
induced increase in wakefulness. Figure 4 documents that all 
microinjection sites used for the blocking studies were local-
ized to the PnO. The mean stereotaxic coordinates were 7.9 ± 
0.1 mm posterior to bregma, 8.9 ± 0.1 mm ventral to the top of 
the skull, and 1.0 ± 0.1 from the midline. There was no signifi-
cant difference between the stereotaxic coordinates of injection 
sites used for the concentration-response study (Figure 1) and 
the receptor-antagonist study (Figure 4). 

Figure 5 plots the time course of wakefulness and sleep 
recorded from 2 representative rats during the first hour after 
microinjection of Ringer solution (Figure 5A and 5E), hypo-
cretin-1 (10 pmol) (Figure 5B and 5F), SB-334867 (10 pmol) 
+ hypocretin-1 (10 pmol) (Figure 5C and 5G), and bicuculline 
(0.2 pmol) + hypocretin-1 (10 pmol) (Figure 5D and 5H). The 

Figure 4—SB-334867 and bicuculline were injected into the pontine 
reticular nucleus, oral part (PnO). Microinjection sites (n = 9) from the 
antagonist-blocking studies are represented as black dots on 5 coronal 
atlas plates (modified from11). Numbers on the right side of each plate 
specify mm posterior to bregma. The vertical lines in the sagittal drawing 
(upper right) indicate that the microinjection sites spanned from 7.5 to 8.6 
mm posterior to bregma. One representative microinjection site (arrow) in 
the PnO is shown in the tissue section at lower left. 
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in wakefulness was prevented by administering the GABAA 
receptor antagonist bicuculline into the PnO. Considered with 
data showing that delivering hypocretin-1 to the PnO increases 
GABA levels in the PnO13 and causes inhibition of some PnO 
neurons,10 and with evidence that GABAergic transmission in 
the PnO is wakefulness promoting,13,19-25 the present results sup-
port the interpretation that increasing GABAergic transmission 
in the PnO is one mechanism by which hypocretin-1 increases 
wakefulness. The results are discussed below relative to the 
functional roles of hypocretin-1 in rat PnO and the mechanisms 
by which hypocretin-1 administered to the PnO causes an in-
crease in wakefulness. Limitations of the present study are also 
considered.

What are the Functional Roles of Hypocretin-1 in the PnO?
The hypocretin peptides have multiple functional roles, one 

of which is to maintain wakefulness.30 PnO neurons participate 
in generating the cortical activation of wakefulness and REM 
sleep,31 and microinjection of hypocretin-1 into rat PnO was 
recently shown to increase the amount of wakefulness.13 Deter-
mining concentration dependence and antagonist blocking are 
established approaches for revealing whether or not responses 
are receptor mediated.32 The present study provides data ful-
filling the criteria of concentration dependence (Figure 3) and 
antagonist blocking (Figure 6), indicating that hypocretin-1 acts 
at its receptors in the PnO to increase wakefulness.

Efforts to elucidate functions of hypocretin-1 also have 
found that microinjecting hypocretin-1 into rat PnO causes an 
antinociceptive response that is blocked by coadministration of 
the hcrt-r1 antagonist SB-334867.33 This result demonstrates 
that the antinociceptive response is mediated by hypocretin 
receptors. Furthermore, blocking hypocretin receptors in the 
PnO with SB-334867 in the absence of exogenous hypocretin-1 
increases nociceptive responsiveness to a thermal stimulus.33 
This finding means that endogenous hypocretin-1 in rat PnO 
is antinociceptive. Microdialysis delivery of hypocretin-1 to 
rat PnO increases ACh release,17 and ACh in the PnO of cat34 
and mouse35 is antinociceptive. Future studies can determine 
whether the antinociceptive effects of hypocretin-1 in rat PnO 
depend on cholinergic transmission.

By what Mechanisms does Hypocretin in the PnO Increase 
Wakefulness? 

Hypocretins are excitatory,3 and one mechanism by which 
these peptides are thought to enhance arousal is to activate 
neurons that drive wakefulness,36 thus increasing the release of 
wakefulness-generating neurotransmitters. Hypocretin-1 deliv-
ered to the PnO increases local GABA levels, and GABA in the 
PnO increases wakefulness (reviewed in37). Pharmacologically 
increasing GABA levels in the PnO increases wakefulness,13 
and endogenous GABA levels in the PnO are significantly 
greater during wakefulness than during REM sleep.38 GABA 
levels in the PnO are also greater during wakefulness than dur-
ing the loss of consciousness produced by the general anesthetic 
isoflurane.24 Furthermore, loss of endogenous hypocretin in-
creases recovery time from isoflurane anesthesia.39 The present 
finding that the hypocretin-1–induced increase in wakefulness 
was blocked by coadministration of bicuculline (Figure 6) dem-
onstrates that the wakefulness response is mediated by GABAA 

centage of time spent in REM sleep varied significantly as a 
function of drug treatment (Figure 6C, F3,24 = 6.03; P = 0.003). 
The hypocretin-1–induced decrease in REM sleep was partially 
reversed by SB-334867 but was not blocked by bicuculline 
(Figure 6C). 

DISCUSSION
The present study reports, for the first time, that microinjec-

tion of hypocretin-1 into the PnO of awake rat caused a con-
centration-dependent increase in wakefulness that was blocked 
by coadministration of a hcrt-r1 antagonist. These findings 
demonstrate that the PnO is one brain region where activat-
ing hypocretin receptors can promote wakefulness. An addi-
tional novel finding is that the hypocretin-1–induced increase 

Figure 6—Coadministration of SB-334867 (SB) or bicuculline (Bic) 
blocked the increase in wakefulness and decrease in non-rapid eye 
movement (NREM) sleep caused by hypocretin-1 (Hcrt-1). Data represent 
measures from 9 rats during the first hour after injection. Dunnett multiple 
comparisons tests indicated significant (*P ≤ 0.05) differences from 
control (microinjection of Ringer solution).
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gion of cat pontine reticular formation (referred to as peri-locus 
coeruleus α) during wakefulness causes a concentration-depen-
dent increase in wakefulness and decrease in NREM sleep and 
REM sleep, whereas the same concentrations of hypocretin-1 
delivered to the ventral part of cat pontine reticular formation 
cause a selective inhibition of REM sleep and no change in the 
amount of wakefulness or NREM sleep.15 The dissimilar findings 
between these 2 studies in cat are reconciled by noting that dif-
ferent brain regions were microinjected with different amounts of 
hypocretin-1 in different microinjection volumes.15,50

Species-specific responses to PnO microinjection of hypo-
cretin-1 in rat and cat have been discussed in detail.13 For the 
present report and a previous study13 using rat, all microinjec-
tions were made during wakefulness, and hypocretin-1 caused 
an increase in wakefulness (Figure 3). Rat microinjection sites 
in the present study (Figures 1 & 4) are in homologous regions 
of cat pontine reticular formation that produced either increases 
in wakefulness when hypocretin-1 was injected during wake-
fulness16 or selective decreases in REM sleep.15 Hypocretin-1 
did significantly decrease REM sleep in the present study and 
also decreased NREM sleep (Figure 3). The reasons for these 
differences are not known but could include differences in mi-
croinjection sites, hypocretin receptors, and afferent hypocretin 
terminals, in addition to the use of different microinjection vol-
umes and amounts of hypocretin-1.

Limitations, Conclusions, and Potential Clinical Significance
One unexplained finding of the present study is that bicu-

culline did not block the hypocretin-1–induced decrease in the 
amount of REM sleep (Figure 6C). This finding was unexpect-
ed because bicuculline alone delivered to the PnO of rat,22,23 
cat,25,51 and mouse20 increases REM sleep. Pontine reticular 
formation administration of bicuculline increases local ACh re-
lease,51 and the increase in REM sleep that occurs by adminis-
tering GABAA receptor antagonists to the PnO is blocked by the 
muscarinic cholinergic antagonist atropine.22 Hypocretin-1 also 
increases ACh release in the PnO,17 and PnO administration of 
cholinomimetics significantly increases REM sleep (reviewed 
in52). These data support the interpretation that GABAergic 
transmission in the PnO inhibits REM sleep, in part, by in-
hibiting ACh release. A higher concentration of bicuculline or 
a GABAB receptor antagonist may be required to reverse the 
hypocretin-1–induced decrease in REM sleep.

The experiments reported here did not identify the hypocretin 
receptor subtype or subtypes in the PnO that mediate the wakeful-
ness response to PnO administration of hypocretin-1 (Figure 3). 
Hypocretins signal through two subtypes of G protein-coupled 
receptors, hcrt-r1 and hcrt-r2, also called OX1R and OX2R (re-
viewed in30). Hcrt-r1 is selective for hypocretin-1, whereas hcrt-
r2 does not distinguish between hypocretin-1 and hypocretin-2.2 
Rat PnO contains both hypocretin receptor subtypes,53 and hcrt-r1 
and hcrt-r2 in the PnO each contribute to the hypocretin-induced 
increase in ACh release within the PnO.17 Hcrt-r2 is present on 
GABAergic neurons in rat PnO,54 suggesting that hcrt-r2 medi-
ates the increase in PnO GABA levels caused by hypocretin-1,13 
as well as the hypocretin-1–induced hyperpolarization of PnO 
neurons.10 SB-334867 has a 50-fold higher affinity for hcrt-r1 
than for hcrt-r2,55 and the finding that the hypocretin-1–induced 
increase in wakefulness was blocked by SB-334867 (Figure 6A) 

receptors. This finding, therefore, supports the interpretation 
that the hypocretin-1–induced increase in wakefulness (Figure 
3) results from enhanced GABAergic transmission in the PnO. 

When given systemically to humans or animals, drugs that 
increase GABAergic transmission produce behavioral states 
such as sleep40 or general anesthesia.41 The mechanisms by 
which GABAergic drugs cause a loss of waking consciousness 
are not fully understood but are likely to include inhibition of 
wakefulness-promoting neurons. For example, the hypnotic 
eszopiclone may cause sleep by potentiating transmission at 
GABAA receptors on pedunculopontine tegmental neurons.42 
The mechanisms by which enhancing GABAergic transmission 
locally in the PnO causes an increase in wakefulness remain to 
be elucidated. Increased wakefulness is also caused by adminis-
tering GABAergic drugs directly into the preoptic area/anterior 
hypothalamus43 or the midbrain reticular formation.44 Increased 
sleep, however, is caused by delivering a GABAA receptor 
agonist directly into the posterior hypothalamus.43 Therefore, 
GABAmimetics have opposite effects on sleep and wakeful-
ness depending upon their site of action in the brain.13

Hypocretin-1 increases ACh release in the PnO,17 and in-
creasing cholinergic transmission in the PnO may contribute to 
the mechanism by which PnO administration of hypocretin-1 
increases wakefulness. Cholinergic transmission in the PnO 
promotes the EEG activation characteristic of both wakeful-
ness and REM sleep.12,31 Future studies are required to deter-
mine whether the increase in wakefulness caused by delivering 
hypocretin-1 into the PnO can be blocked by coadministering a 
cholinergic receptor antagonist.

The hypocretin-1–induced increase in wakefulness was 
comprised of an increase in the duration of the longest wake-
fulness episode and a decrease in the number of wakefulness 
episodes (Figure 3). The increase in wakefulness was accom-
panied by a decrease in NREM sleep and REM sleep. EEG 
power was not altered by hypocretin-1, demonstrating similar-
ity to spontaneously occurring wakefulness, NREM sleep, and 
REM sleep with respect to the trait of EEG activity. Hypocre-
tin-1 decreased the percentage of time spent in NREM sleep 
by decreasing both the number and duration of NREM sleep 
episodes. The hypocretin-1–induced consolidation of wakeful-
ness into longer episodes and the decrease in the number of 
state transitions is consistent with the finding that narcoleptic 
patients45,46 and mice lacking hypocretin47,48 show fragmenta-
tion of sleep and wakefulness. These results also support a re-
cent modeling study predicting that hypocretin-1 preferentially 
acts on long episodes of wakefulness.49

Effects of Hypocretin-1 on Wakefulness Vary with Behavioral 
State and Microinjection Site

The sleep-wake response to microinjecting hypocretin-1 into 
cat pontine reticular formation depends on the behavior state of 
the cat when the drug is administered, the site of injection within 
the pontine brainstem, and the amount of hypocretin-1 injected. 
Microinjecting hypocretin-1 (125 pmol/250 nL; 450 ng) into the 
oral part of cat pontine reticular formation during NREM sleep 
increases REM sleep,50 whereas administering hypocretin-1 (125 
pmol/250 nL; 450 ng) into the same region during wakefulness 
produces an increase in wakefulness.16 Microinjection of hypo-
cretin-1 (2 to 20 pmol/20 nL; 7 to 71 ng) into a more dorsal re-
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