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Abstract
Many model regulatory networks are approaching the depth of characterisation of bacteriophage λ,
wherein the vast majority of individual components and interactions are identified, and research can
focus on understanding whole network function and the role of interactions within that broader
context. In recent years, the study of the system-wide behaviour of phage λ’s genetic regulatory
network has been greatly assisted by the combination of quantitative measurements with theoretical
and computational analyses. Such research has demonstrated the value of a number of general
principles and guidelines for making use of the interplay between experiments and modelling. In this
chapter we discuss these guidelines and provide illustration through reference to case studies from
phage λ biology.

In our experience, computational modelling is best facilitated with a large and diverse set of
quantitative, in vivo data, preferably obtained from standardised measurements and expressed as
absolute units rather than relative units. Isolation of subsets of regulatory networks may render a
system amenable to ‘bottom-up’ modelling, providing a valuable tool to the experimental molecular
biologist. Decoupling key components and rendering their concentration or activity an independent
experimental variable provide excellent information for model building, though conclusions drawn
from isolated and/or decoupled systems should be checked against studies in the full physiological
context; discrepancies are informative. The construction of a model makes possible in silico
experiments, which are valuable tools for both the data analysis and the design of wet experiments.
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1. Introduction
In our studies of small gene regulatory networks, our model organisms are two temperate
bacteriophages, lambda (λ) and the unrelated P2-like phage 186. Both phage make a decision
between lysis and lysogeny upon infection of their host Escherichia coli, and contain within
their genetic circuitry a module that operates as a bistable genetic switch when isolated and
inserted into E. coli. Phage λ’s bistable switch is a paradigm for the molecular basis of
epigenetics, and the lysis-lysogeny decision is the most thoroughly characterised model system
of developmental decision-making. Both phage λ and 186 are sufficiently well characterised
that most key components of the lysis-lysogeny decisions have been identified, allowing
research to extend to both the smaller and larger scales, respectively, to detailed
characterisation of the molecular mechanisms and to the role of an interaction within the context
of a larger network.

Phage allows us to study the organism on all scales, from atomic resolution of proteins to
behaviour of the whole organism. We observe the basis of information processing and decision-
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making at the level of protein–protein and protein–nucleic acid interactions, which often
converge at transcription regulation. However, the behaviour of a subset of a genetic regulatory
network, even as small as two promoters and two regulatory genes, can display the complexity
of behaviour beyond the ability of intuition or qualitative description to fully appreciate.
Therefore, our studies of phage frequently require us to apply quantitative experimental
methods and mathematical and/or computational modelling in the interpretation of data.

A minority of biochemical and genetic experiments provide data with the qualities necessary
for mathematical modelling; a change in the character of experimental data is being advocated
by those who see molecular biology progressing to a stage where quantitative and systems-
level understanding will be a central component of future progress (1,2). This lab’s 35 years
of experience in phage λ and 186 can testify that as the identification of key components in a
system draws to completion, quantitative studies and theoretical analyses are necessary to
assemble the data provided by reductionist experiments into a coherent picture of the whole
network and to guide future experiments into network function.

2. Data Collection for Modelling
Production of experimental data suitable for mathematical modelling is challenging; for a
majority of applications, a large set of highly quantitative data is a must. Furthermore, although
data are usually obtained as relative units, expression in absolute units is often valuable,
potentially requiring an entirely different experiment for calibration, which again requires
quantitative techniques.

We find the following guidelines useful in the production of experimental data suitable for
computational modelling.

2.1. Use Quantitative Techniques
Models based upon purely qualitative descriptions of interacting systems will possibly have
different solutions capable of describing the same data, and are likely to suffer from a lack of
detail and accordingly a lack of predictive power. With quantitative data, the process of fitting
a model to the data provides estimates of relevant parameters, sometimes providing information
that may not be at all accessible to direct experimental measurement. Production of reliably
quantitative data requires replicate experiments, especially when working in vivo.

2.2. Acquire a Large and Diverse Data Set
For a mathematical model to be held in confidence, it must have fewer parameters than the
number of independent data points; a large and diverse data set has the greatest chance of
delivering an accurate model. Data particularly amenable to modelling include measurements
of concentrations or reaction rates, as a function of either time or concentration of a regulatory
molecule. Such concentration or time series appear frequently in biological literature, but
usually with sparse data, adequate to prove a qualitative point. The inclusion of more frequent
or more densely spaced measurements in these studies can easily make data more amenable to
computational modelling, from which much more may potentially be learnt about the system.

The ‘diversity’ of a data set is a trait distinct from size, and is also valuable. While it is useful
to measure, for example, a time series with many data points, there is a different advantage in
measuring that time series under different circumstances, such as with certain components of
the system altered or removed. Such changes, particularly mutations, are routine in most
biochemical experiments, and they are no less useful when acquiring data for the purposes of
computational modelling, as the acquisition of a new data set with one or two parameters altered
can be extremely useful for fitting a model to the data.
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2.3. Keep Conditions as Close to Physiological as Possible
In attempting to model a process inside a cell, it is of course important that any quantitative
measurements needed for the model be performed under conditions as close to physiological
as possible. In vivo experiments are ideal, but for many measurements only in vitro techniques
are available; in these cases, in vitro experiments performed under conditions most similar to
in vivo are most useful. This can be accomplished by the use of physiologically realistic salt
concentrations and pH, with the inclusion of macro-molecular crowding agents, and by
working at the same temperature as any in vivo experiments.

2.4. Measure Absolute Units or Use Standardised Measurements
Even using quantitative techniques, measurements often only provide relative units, e.g. a
fold change is provided in protein concentration or promoter activity. Quantitative techniques
may provide only enough data to draw qualitative conclusions. For the construction of a
computational model, it is much more desirable to obtain absolute units, e.g. number of proteins
per cell, or promoter initiations per minute. Calibration against a known standard will provide
this information, which can be immensely valuable in modelling. Beyond assisting your model,
providing absolute units provides a reliable way to make quantitative comparisons of data
obtained from different laboratories. Such calibrations themselves require quantitative
techniques and may require substantial effort; if calibrations are not possible or simply low
priority, the use of standardised measurements may at least assist the comparison of data from
different laboratories, the difficulty of which has been lamented by the researchers interested
in modelling (1).

3. Case Study: Measurement of Prokaryotic Promoters
Current techniques for the measurement of prokaryotic promoters provide a good example of
the efforts that can be taken to acquire the highest quality of data for computational modelling.
Promoter regulation is amenable to quantitative measurement by the placement of a ‘reporter’
gene downstream of a promoter, whose product is easily measurable, and demonstrates
minimal interference with cellular behaviour. In E. coli the leading example is the lacZ gene,
whose product β-galactosidase is measured in the Miller LacZ assay by the rate of enzymatic
cleavage of a chromogenic substrate (3). This assay has been refined to automated kinetic
lacZ assays, which provide a highly quantitative technique for the measurement of promoter
activity, with sensitivity spanning 4 orders of magnitude (4). Chromosomal single-copy
reporters are used to avoid noise due to plasmid copy number variability, by the use of reporters
integrated into the E. coli chromosome at a specific phage attachment site, using either phage
themselves or a system of plasmids that exploits the integration machinery of temperate phage
(5,6). Transcriptional terminators isolate the region of interest from read-through effects from
the surrounding E. coli chromosome (Fig. 15.1). When combining a LacZ reporter with a
lactose / IPTG-inducible expression system, lacY (permease) should be deleted to avoid
feedback from transcription (output) to transport of the inducer (input) (7). It is worth noting
that chromosomal single-copy reporters, long used in E. coli, have recently been implemented
in mammalian cell lines (8).

Transcriptional fusions to lacZ are used to enable the placement of an RNAseIII site preceding
the lacZ gene, such that all lacZ transcripts are cleaved between their start sites and the LacZ
coding sequence (Fig. 15.1). This yields a standardised measurement, as lacZ transcripts of
identical length and sequence are produced from any promoter, providing mRNA translation
efficiencies and half-lives, which are promoter and context independent(9). By using a
standardised assay, promoter activities measured by this assay are directly comparable to any
prokaryotic promoter assayed, provided the host strain and its growth conditions are kept
constant. Translation regulation can be studied by LacZ assays through the use of translational
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fusions to lacZ (5). Translational fusions to lacZ also can provide information on the efficiency
of translation from a given message and ribosome-binding site, subject to the limitation that
fusion of a protein to LacZ may alter its activity and fusion of a transcript to the lacZ coding
sequence may alter mRNA stability.

For the purposes of computational modelling, LacZ units can be converted into the absolute
units of RNA polymerase initiations / minute, by the work of (10), whose exhaustive study of
constitutive promoters in E. coli characterised the RNA polymerase initiation rate from a range
of promoters, as a function of growth rate. Any given quantitative assay of promoter activity
can be calibrated with the measurement of one or more of the promoters studied by (10).

In cases where an inducible promoter provides a variable supply of protein, quantitative western
blotting allows for the conversion of inducer concentration to protein concentration (an
absolute unit), given knowledge of the cells’ internal volume and a protein standard of known
concentration. A protein standard can be obtained from purified protein or from some fixed
internal supply of protein, such as is common in measurements of the λ lysogenic repressor
CI, where the steady concentration present in a lysogen (Wild-type Lysogenic Unit = W.L.U.)
is taken as a point of reference.

4. Experiment Design for ‘Bottom-Up’ Modelling
Molecular biology has made enormous strides with the reductionist approach: ‘The idea is that
you could understand the world, all of nature, by examining smaller and smaller pieces of it.
When assembled, the small pieces would explain the whole’ (11). ‘Bottom-Up’ modelling is
the technique of assembling these small pieces of information into the whole, and accordingly
for the typical molecular biology laboratory, this is the most useful way to incorporate
theoretical methods into an experimental program. In contrast, ‘top-down’ modelling involves
models based on global data sets such as whole genome or proteome expression profiles, for
which theoretical analyses are an absolute necessity. A general investigative procedure that
may be of assistance to experimentalists considering the incorporation of bottom-up modelling
follows (Fig. 15.2).

4.1. Isolate Subsets of a Network
While not always possible, if a small subset of a network can be identified and studied in
isolation from its full natural context, detailed characterisation of components and their
interactions is greatly assisted. Though this does not provide all physiologically relevant
information about the isolated components, such as their responses to now absent inputs, the
more thorough characterisation that can be achieved with a smaller and less complex system
provides an excellent foundation for subsequent expansion to a larger system. A subset of a
network need not necessarily be a ‘module’ in the sense of an independently functioning unit:
there may be value even in dissecting the system beyond the point of functionality.

Studies of temperate bacteriophage have the rare privilege of being able to isolate components,
e.g. the bistable switch, and express them within their usual cytoplasmic environment, e.g., E.
coli, in the absence of any other transcribed phage genes. For many areas of research, the
techniques for isolation of a system while remaining in vivo do not yet exist, making in vitro
reconstitution the best procedure available. It is reasonable to expect though that in time the
technologies will be developed which will allow for subsets of biochemical networks to be
isolated and studied under in vivo conditions; the history of phage λ research demonstrates the
value of these technologies.
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4.2. Decouple Key Components
Where a complex system is able to settle into one or more stable states, probing the conditions
of these states provides much less information than can be obtained with a method of probing
the full continuum of states, which exist when the system displays dynamic behaviour or
switches between stable points. An experimental approach to achieve this is to decouple key
regulatory components, i.e., remove them from the context of their usual control mechanisms,
and make their concentration or activity an independent experimental variable.

With regulatory proteins or stimuli controlled experimentally, they can be varied independently
over the physiologically relevant scope, potentially spanning the entire range from ‘knock-out’
to overexpression. Detailed measurements over this range will be much more informative than
the measurement of stable states or extremes only. In particular, this approach is an ideal way
to succeed in the advice mentioned in Section 2.2.

Finally, feedback is a common theme in dynamical systems of sufficient complexity to justify
a modelling approach; gene regulatory networks and signal transduction pathways have shown
themselves to be prime examples. Even small systems may exhibit complex behaviour
specifically due to feedback, which can complicate the interpretation of experimental results.
Removal of feedback mechanisms by decoupling of a feedback-regulated component may both
simplify data analysis and expose the purpose of feedback when compared to the non-
decoupled behaviour.

4.3. Check Behaviour in the Full Context
It is in vivo behaviour that we ultimately aim to understand, and all interactions observed in a
smaller subsystem exist to serve a greater purpose within an entire cell or organism. Therefore,
it is of critical importance that any conclusions drawn from studies of isolated and/or decoupled
systems be checked against the behaviour observed in the full physiological context. The return
to wild-type can be taken in steps, beginning with the restoration of regulatory links that may
have been removed in the process of decoupling (as described above in investigating feedback),
prior to returning to the study of the subsystem within its full physiological context.

We find it highly productive to characterise the effects of mutations upon both the isolated
subset and the whole organism. If the effect of a mutation on the isolated subset does not explain
the mutation’s phenotype in the physiological context, a clue is provided to the discovery of
new components or interactions that were excluded from the previously chosen subset. The
physiological role of long-range DNA looping in phage λ was found by just such an
observation; this example is detailed in Section 5.1.

A noteworthy alternative is the ‘module-replacement’ approach developed by Little and
Atsumi, wherein a regulatory factor and the cis-acting sites to which it binds (collectively a
module) are replaced by an equivalent exogenous factor and its cognate binding sites (12,13).
The module-replaced system can in principle be characterised both as an isolated subset and
in the whole organism. Firstly, this technique will check assumptions about the properties and
functions of the regulatory module, by assessing whether the replacement module indeed
provides functionality; failure may indicate that more has been removed than is appreciated.
Secondly, the inserted module can be engineered to exclude one or more features, such as a
specific binding site, much more easily than its wild-type counterpart; all that is necessary is
to not add a feature, rather than removing a pre-existing feature.

4.4. Model Building
When a molecular system is characterised to the extent that most components have been
identified and hypotheses have been developed about interactions between components,
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bottom-up models can be built by assembling the known or suspected interactions into a
deterministic or stochastic model. Competing models can be built containing different sets of
interactions or molecular mechanisms, and their ability to explain the quantitative experimental
data will assist in the discrimination between models.

4.4.1. Modelling Techniques—The choice of modelling technique is of significance to
both the accuracy and the educational value of the model. For relatively simple systems, an
analytic model can be constructed, that is, a simple set of descriptive equations, while
increasingly complex systems will require such approaches as the use of the partition function
from statistical thermodynamics, or modelling with ordinary differential equations (ODEs). In
our experience, time-series data is best described by ODEs, and the partition function is most
useful for explaining data expressed as a function of the concentration of some component. All
these techniques are deterministic: they do not account for statistical fluctuations in
concentrations and rates, or ‘molecular noise’, which is increasingly appreciated as an
important factor in the behaviour of biochemical systems (14). Therefore, even where
modellers provided with perfect and complete information about a system, a stochastic
simulation would be the only way to produce accurate data. However, deterministic methods
remain very worthwhile due to their greater educational value: inspection of analytic equations
can make immediately clear the relevance of parameters and can highlight important
relationships between components, and deterministic models can easily produce graphical
comparisons of parameters, e.g. oscillation frequency versus half-life of an mRNA, through
the use of mathematical computing packages. Stochastic simulations are in general
computationally demanding, and parametric plots will require a simulation at every desired
point on the graph, which may be simply too time-consuming. We find a combination of
deterministic and stochastic modelling to be most useful, initially modelling with deterministic
techniques to gain insight into the system’s behaviour and the underlying principles of the
model, and finally turning to stochastic simulation for accuracy in the final stages of parameter
and data fitting. To give a specific example, our laboratory and colleagues developed a
mathematical model of transcriptional interference in E. coli, which contains three
implementations: analytic, ‘mean-field’ (probabilistic), and stochastic, the three techniques
producing similar but not identical output (15). The development of this model benefited
greatly from the combination of approaches, each providing unique contributions to our
understanding of the system.

4.4.2. Level of Detail—The level of detail included heavily influences the educational value
of a model. A model with an excessive number of parameters might be able to be made to fit
any data set, destroying the ability to discriminate between alternative hypotheses. Conversely,
it is important for all biologically relevant behaviour to be included; the dismissal of one
seemingly unimportant feature may render a model irredeemably inaccurate. In an
interdisciplinary team, proficient communication between modellers and experimental
biologists is necessary for the important decisions of which features are of relevance to the
model, and which can be discarded. The choice of detail is especially significant to modellers
of biology, as here we face a problem: biochemical systems feature an extraordinarily large
number of parameters relative to most physical or chemical systems, thus the inclusion of
exhaustive detail in a model may require impossibly extensive experimental investigation to
provide the necessary parameters. Much may be omitted without a loss of validity, e.g. a
promoter could be characterised in terms of protein production rate, without including mRNA
production, translation, and degradation; but if mRNA regulation is a significant feature of the
system, this detail may be vital.

4.4.3. Parameter Fitting—Given the number of parameters that are likely to exist in any
biological model, it is unlikely that each one has been experimentally measured, requiring
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parameters to be selected on the basis of those values that allow the model to reproduce
experimental data: the process of parameter fitting. This is a procedure performed more easily
with deterministic than stochastic models, though it may be found that parameters selected to
fit a deterministic model may require adjustment when shifting to stochastic simulation (16).
If data have been obtained from replicate experiments, the knowledge of confidence limits at
each point is of assistance to the fitting process, as individual data points can be weighted
according to the precision of their measurement, by minimising

A model may be held in greater confidence when only a small number of parameters need be
fitted to the data. Indeed, with many fewer parameters than data points and a conceptually
sound model, the process of fitting the model to the data can itself constitute an accurate method
of measuring those parameters. The process of parameter fitting can be assisted by the
examination of literature for other measurements or estimates of your parameters, and by
checking that fitted parameters produce biologically reasonable values. The process of
parameter fitting can itself be an investigative tool: fits that produce unreasonable values may
need adjustment, or may in fact be highlighting failures in the model or mistaken assumptions.
Biological systems have demonstrated clever techniques to circumvent physical laws, such as
the use of dual operators in the lac operon, providing the Lac repressor with an effective
association rate to a single operon that is apparently faster than diffusion (17); a fit that provides
a physically or biologically unreasonable value just might be a clue to an exciting discovery.

4.4.4. Discrimination Between Alternative Hypotheses—After the construction of a
basic framework for a model, a large number of alternative hypotheses can be incorporated
into the model and assessed by their ability to fit experimental data while selecting realistic
parameters. This may highlight some hypotheses as worthy of direct experimental
investigation, while hypotheses incapable of satisfactory fits can be ostensibly discarded, until
such time as new data are acquired or the model is revised.

4.4.5. Long-Term Development of a Model—Over the course of a prolonged
investigation into a system, the data available for modelling gradually builds, which places an
increasing demand on the accuracy of the model: it should be fully consistent with all relevant
data. Successfully obtaining a precise match between theory and experiment will become
increasingly challenging, but correspondingly the confidence that a successful fit reflects on
an accurate model will also increase. With more data to place constraints on a model and fewer
parameters in need of fitting, the ability to discriminate between alternative hypotheses
improves, increasing the educational value of the model.

4.5. Make Predictions with In Silico Experiments
Theorists may be content to have produced a model that adequately explains all data available
for a given system, but for the experimentalist the principal value of a model lies in the ability
to guide the choice and design of future experiments. A model can be altered to include
whatever changes to the system may be planned for future experiments, such as the introduction
of mutations or additional components, or if appropriate a model may be applied to a new
system. The predictions of the model constitute an in silico experiment; and if the investigators
have adequate confidence in the accuracy of the model, based on fits to past data, then the most
interesting of these predictions can make excellent targets for wet experimental investigation.
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Provided a respectable model is available, in silico experiments are well worth the effort,
especially given how little effort they take: typically orders of magnitude less time and money
than the identical wet experiment. In silico experiments can suggest which future experiments
are likely to reveal the most useful information; when working quantitatively, in silico
experiments may demonstrate that a particular perturbation to the system is unlikely to produce
a sufficiently large change in the measured variable(s) to answer a question. This may guide
the experimentalists to an improved choice of perturbation, potentially saving much time and
effort. When a model contains ambiguity, i.e., two or more theories of significant difference
that equally explain previous data, it may be valuable to design experiments that distinguish
between these alternatives: here in silico experiments, performed with competing models, are
invaluable. Finally, certain changes to the system under study may produce emergent behaviour
that would elude the intuition: in silico experiments can reveal such features and direct the
investigator to experiments that may otherwise have been discarded as uninteresting.

A large pool of possible wet experiments can therefore be assessed by in silico experiments to
select the most promising and make predictions about results. These results are then almost
certain to be very interesting: should the model’s prediction be correct, there is value in both
the result itself and in the predictive power of the model. Should a model fail to anticipate the
experimental findings, the previous theoretical understanding of the system has been
challenged, and new hypotheses need be incorporated into models in the effort to explain these
results. In silico experimentation is a good way to identify the wet experiments most likely to
refute an accepted hypothesis and ‘prove yourself wrong’, to drive the development of new
theories.

4.6. Introduce New Components
A reasonable benchmark for understanding of the chosen subsystem is the ability of a model
to quantitatively explain all available data, preferably including ‘diverse’ data such as the
behaviour of mutants in addition to the wild-type system. Having elucidated the roles of
components and their interactions in a chosen subsystem, the system of study can be enlarged
to include more components or more inputs / outputs. A quantitatively characterised and
understood subsystem provides a theoretical framework of great value to subsequent expansion
of the system under study, which is likely to make the identification of new components and
new interactions easier than was the initial characterisation of a subsystem.

5. Case Study: Promoter Regulation in Phage λ
In this section we use phage λ research to illustrate the principles of experimental design that
facilitate the incorporation of ‘bottom-up’ modelling into an investigative program, and to
provide examples where modelling has provided information inaccessible by other means. In
particular, we focus on research into promoter regulation, which we find to be a nexus of
decision-making, the product of numerous inputs, and thus a valuable position to probe the
behaviour of a system.

5.1. Design of Experiments
In our studies of transcription regulation in temperate bacterioph-age, thorough quantitative
characterisation of interactions is instrumental in understanding network function. Therefore,
we typically aim to measure the response of each promoter to the full physiological range of
all components relevant to its regulation. However, there are too many interacting components
to deconstruct behaviour within the whole organism into knowledge of individual interactions,
and it is therefore necessary to isolate subsystems of interest.
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An example of such a subsystem that has been studied by many labs including our own is the
autoregulation of the PRM promoter by its own product CI. PRM is part of the Right Operator
(OR) of phage λ, which contains three adjacent CI dimer-binding sites, OR1, OR2, and OR3,
with decreasing affinity for CI dimers. At the strongest binding site OR1, CI represses PR; at
OR2 CI also represses PR, and activates PRM by cooperative binding to RNA polymerase; at
the weakest binding site OR3, CI represses PRM. Within the whole phage, the positive and
negative feedback of this small system is complicated by the many other features, such as
transcription of cI from PRE, and Cro, which also binds to OR1, 2, and 3. Therefore, to
quantitatively investigate this autoregulation, the cI gene and OR with its promoters PR and
PRM need to be examined in isolation. This can be accomplished by placing the relevant region
of phage λ into the E. coli chromosome as a single-copy reporter (isolation of a subsystem;
Fig. 15.2, Step 1). Furthermore, to study the response of PR and PRM to a range of CI
concentrations, cI is not placed downstream of PRM, subject to autoregulatory control, but
placed on a plasmid under the control of an inducible promoter (decoupling key components;
Fig. 15.2, Step 2), with lacZ replacing cI downstream of PRM. By varying the concentration
of inducer, the response of PRM to a wide range of CI concentrations can be examined in detail.
To further understand the properties of CI autoregulation, measurements of PRM activity were
also performed in the presence of mutations to OR3, which strengthen (c12) or abolish (r1) CI
binding (acquiring a diverse data set). These experiments showed that PRM was not repressed
even at high CI concentrations, and that the r1 and c12 mutations had very little impact on
PRM activity (Fig. 15.3), indicating that CI association to OR3 and repression of PRM was not
influential to this system (4).

These findings in the isolated system were compared with results obtained in the whole phage,
by introducing the r1 and c12 mutations to λ phage (checking behaviour in the full context;
Fig. 2, Step 3). These mutations revealed phenotypic changes in the process of UV induction
of lysogens, wherein CI is degraded in response to UV-induced DNA damage resulting in lysis
of the host and release of phage. The r1 mutation, which makes little change to Cro association
to OR3 but substantially weakens CI binding, produced defective UV induction, while the
c12 mutation, which strengthens CI association and weakens Cro binding to OR3, induced
more readily. This suggested higher [CI] in the r1 lysogen and lower [CI] in the c12 lysogen,
subsequently confirmed by experiment, indicating that these mutations did indeed alter PRM
activity, despite the apparent lack of effect on isolated PRM (4).

Drawing on previous observations that CI can mediate DNA loops between OR and the Left
Operator (OL) (18), it was reasoned that the discrepancy between studies of whole phage (as
lysogens) and of isolated PRM was the presence of OL. The introduction of OL to the isolated
PRM lacZ reporters revealed substantial repression of PRM at physiological CI concentrations,
confirmed by enhancement of repression in a c12 mutant and lack of repression in an r1 mutant
(4) (Fig. 15.3). This experimental procedure was able to extract from a complex network that
OR to OL DNA looping plays a critical role in the regulation of PRM, and produced data of a
quality enabling a thorough statistical mechanical model of this process. Subsequent work not
detailed here confirmed a model in which CI bound to OR1 and OR2 forms an octamer with
CI at OL1 and OL2, forming a long-range DNA loop, allowing a CI tetramer to form from
dimers at OR3 and OL3, stabilising occupation of OR3 and PRM repression (19) (Fig. 15.4).

5.2. Computational Modelling of Data
The wealth of thermodynamic data on CI association to operators in OR and OL permitted the
description of the system by the partition function, which relates the probability of a system to
exist in state ‘i’, Pi, to the standard free energy of that state, ΔGi, through
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where R is the gas constant and T is the temperature in Kelvin. Degeneracy must be explicitly
accounted for, e.g. when modelling the binding of repressors to operators, a state containing
‘n’-bound repressors requires an additional factor of (number of repressors)n, as the same state
can be composed in this number of different ways, each known as a microstate. Hence

where Z is a normalisation factor known as the partition function:

Previous measurements of CI affinity for all six operators at OR and OL, as well as cooperative
CI interactions between adjacent dimers, permitted the creation of a partition function
describing all possible combinations of CI binding, as well as long-range DNA looping between
OR and OL. By detailing the prevalence of each species present at any [CI], it is possible to
fully describe PR and PRM activities as a function of [CI]. The experimental data to be fitted
by this model were measurements of PR and PRM activities as a function of [CI], with and
without OL, and also with r1 or c12 mutations at OR3. Out of 29 parameters in this model (free
energies of CI association / cooperativity, and basal / activated / repressed promoter activities),
26 had been explicitly measured, leaving only 3 degrees of freedom with which to fit the model
to data. These three parameters were the strength of non-specific DNA binding by CI, the free
energy of formation of a long-range DNA loop maintained by a CI octamer bound to OR1,
OR2, OL1, and OL2 (ΔGoct), and the free energy of formation of a CI tetramer across OR3 and
OL3 (ΔGtet), which is reasoned to only form once the DNA loop has been stabilised by octamer
formation. This model was able to accurately reproduce all data, but for an overestimate of
PR repression at low [CI], lending strong support to the model of OR-OL DNA looping and its
role in pRM autoregulation (19).

The full implications of this research are discussed in more detail elsewhere (4, 19–21); here
is described two key conclusions that were provided solely by the thermodynamic model.
Describing the prevalence of each species as a function of [CI] demonstrated that the lysogenic
CI concentration lies precisely at the point of the sharpest transition between states of active
PRM and of repressed PRM; therefore, the lysogenic state appears poised to produce the most
sensitive response in PRM activity to dampen fluctuations in [CI], providing optimum stability
and resistance to molecular noise. Computational modelling thus provided the means to make
this striking observation of network architecture, which could not have been directly acquired
from the experimental methods of this study: it was necessary though to acquire data of a quality
enabling modelling. By fitting ΔGoct and ΔGtet to PRM activities (Fig. 15.3), it was possible
to estimate the in vivo free energy of DNA looping between operators 3.8 kb apart. This
combination of quantitative experimental data and a partition function to produce a
thermodynamic model is the only technique that has yet produced in vivo measurements of the
energetics of DNA looping. This technique has been used to probe the in vivo mechanical
properties of DNA in work, which challenges prevailing models of DNA (22).
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The same approaches to experimental design and data collection described in this case study
do not necessarily require a system as extensively characterised as λ in order to facilitate
computational modelling. Similar approaches were applied to the study of transcriptional
interference between two promoters in phage 186, for the purpose of characterising the
molecular mechanisms of interference (23,24). On the basis of the diverse set of standardised,
quantitative, in vivo data collected, a general mathematical model of transcriptional
interference by RNA polymerase traffic in E. coli was developed (15). This model was able to
accurately explain all data in the studies of (23), and further enhanced our understanding of
the mechanisms of interference observed in this and other studies. Our laboratory is currently
using a combination of in vivo and in silico experiments to discriminate between different
hypotheses for the transcriptional interference observed in other systems, where the model is
demonstrating significant predictive power. As demonstrated, a variety of experimental
programs in our laboratory have benefited from bottom-up computational modelling, whose
application has been facilitated by the approach to experimental design and data collection
described here. We therefore expect that these principles can find widespread utility in the
study of regulatory networks, in enabling the construction of bottom-up computational models
and their use as experimental tools.
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Fig. 15.1.
Schematic diagram of chromosomal single-copy lacZ reporter. Double slashes indicate
junctions between DNA of different origin.

Palmer and Shearwin Page 13

Methods Mol Biol. Author manuscript; available in PMC 2010 September 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 15.2.
Generalised experimental procedure facilitating bottom-up modelling. Illustrations are derived
from the case study of 5.1.
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Fig. 15.3.
(A) Activity of wild-type and mutant PRM promoters in the absence of OL. Reproduced from
(4). (B) As (A) but in the presence of OL. Points with error bars show 95% confidence limits
of experimental measurements. Solid lines represent the result of physicochemical modelling
of CI regulation, incorporating OR–OL long-range interactions. Reproduced from (19).
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Fig. 15.4.
Model of CI regulation with long-range DNA looping. Cartoon depicting the major predicted
CI: DNA complexes at OR and OL on the λ chromosome and their effects on transcription as
CI concentration increases. Reproduced from (19).
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