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Abstract
A principal feature of the progression of Alzheimer’s disease (AD) is the appearance of aberrant
phosphorylation of the microtubule-associated protein tau in the brains of affected individuals.
Significant research efforts have been directed at identifying the kinases involved in this process, as
well as developing pharmacological agents to inhibit these molecules. This review focuses on recent
developments in both the physiological and pathological effects of tau phosphorylation, and the
contribution of phosphorylation to tau toxicity and pathological progression in AD. The evolving
concepts of the roles tau plays in cellular biology, and the mechanisms by which phosphorylation
regulates tau function, is reshaping the framework for the development of therapeutics targeting tau
to treat AD.
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Introduction
Tau is an alternatively spliced microtubule-binding protein that is predominantly expressed in
neurons [1–3]. The abnormal accumulation of tau and the formation of neurofibrillary tangles
(NFTs) composed primarily of this protein, as well as the formation of β-amyloid (Aβ) plaques,
have been implicated in the progression of Alzheimer’s disease (AD) [4–6]. The exact
pathways and precipitating events leading to the abnormal accumulation of tau remain unclear,
but phosphorylation has been postulated to be an important contributor [7].

In the human brain, tau exists primarily as six different isoforms, which vary in the presence
or absence of one or two N-terminal acidic repeats, and in the presence or absence of the second
of four microtubule-binding repeats [8], although other splice variants have been reported [9,
10]. The expression of tau is regulated developmentally, and the specific ratios of the tau
isoforms differ in fetal and adult animals [11]. In 1984, Lindwall and Cole demonstrated that
the dephosphorylation of tau isolated from bovine brains increases the ability of the protein to
bind microtubules and to promote microtubule assembly, clearly demonstrating a functional
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outcome of phosphorylation, although the kinases involved were unknown [12]. Since this
initial report, various studies have focused on delineating the kinases involved in tau
phosphorylation, as well as identifying the specific sites on tau that are phosphorylated and
their contribution to physiological, as well as pathological, processes.

Because aberrant phosphorylation and aggregation are a defining hallmark of tau in AD brains,
and because the prominent belief is that abnormal phosphorylation results in tau dysfunction
and pathological properties, significant research efforts have been focused on developing
effective kinase inhibitor therapies (for a comprehensive review, see reference [13]). These
potential therapeutics are directed at a wide variety of kinases, including glycogen synthase
kinase 3β (GSK3β), cyclin-dependent kinase 5 (Cdk5), JNK and microtubule-associated
regulatory kinase (MARK).

In this review, some of the processes that may contribute to alterations in tau phosphorylation
in the context of AD, the effect that these phosphorylation events may have on neuronal
physiology, and the possible contribution of different protein kinases, as well as protein
phosphatases, are discussed.

Tau kinases and disease processes
Activation of tau kinases by β-amyloid

The exposure of cells or neurons to Aβ in situ leads to increases in tau phosphorylation at
various sites as a result of the activation of different kinases. Early studies demonstrated that
the treatment of neurons with Aβ fibrils increased the immunoreactivity of phosphorylated tau
[14,15], and that this increase was lithium-sensitive, implicating GSK3β as the responsible
kinase [16]. Moreover, studies focusing on the immediate downstream effects of Aβ in vivo
demonstrated that the generation of Aβ leads to an increase in intraneuronal calcium levels
[17], which can result in calpain activation and increased Cdk5 activity because of the cleavage
of p35 to p25 [18,19]. This calcium increase is NMDA-dependent, and can be blocked by
NMDA antagonists, such as MK-801 or memantine [20,21]. Correspondingly, treatment with
memantine reduces the amount of phosphorylated tau in the CSF of humans with AD, as well
as in rats [22–24]. However, the contribution of Cdk5 to tau phosphorylation is unclear, as
p35-null mice exhibit a decrease in Cdk5 activity, but significant increases in tau
phosphorylation, as well as GSK3β activity [25]. A more recent study also demonstrated that
Cdk5 activity was not required for the pathological phosphorylation of tau in a mouse model
of Niemann-Pick Type C disease; in fact, genetic ablation of p35 resulted in an increase in tau
phosphorylation, as indicated by increases in AT8 (Ser199/Ser202/Thr205) and PHF1 (Ser396/
Ser404) immunoreactivity [26] (antibody epitopes are provided in Table 1). Therefore, the role
of Cdk5 in the direct modulation of tau phosphorylation remains to be clarified, and this enzyme
may have indirect effects.

In addition to its effects on calcium homeostasis, Aβ may modulate tau phosphorylation
through other mechanisms. Aβ treatment can increase reactive oxygen species generation,
leading to JNK activation and to an increase in tau phosphorylation [27,28]. Recent research
has demonstrated that the Aβ-induced increase in JNK activation and tau phosphorylation in
neurons can be blocked by treatment with the omega-3 fatty acid docosahexaenoic acid (DHA)
and, also, that JNK activation and tau phosphorylation in AD mouse models, as well as
correlated behavioral deficits, can be abrogated with a DHA/curcumin diet [29]. In addition,
Aβ-catalyzed disruptions in phosphocholine metabolism have been suggested to cause Cdk5
upregulation and AT8 phosphorylation [30].

Aβ also activates tyrosine kinases [31,32]. For example, recent evidence indicated that c-Abl
activity was increased in mutant amyloid-precursor protein (APP) mouse models [33]. In this
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particular study [33], elevated c-Abl activity correlated with downstream Cdk5 activation and
phosphorylation of tau at PHF1/AT8, although other studies have revealed that c-Abl, as well
as the Abl-related gene (Arg) tyrosine kinase, can phosphorylate tau directly at Tyr394 [34,
35]. Tau phosphorylated at Tyr394 has been detected in paired helical filaments isolated from
AD brains, suggesting a role in AD pathogenesis [35]. Tau is also phosphorylated at Tyr18 by
Fyn, and it has been postulated that tau and Fyn function together to regulate microtubule
structure [36].

A correlation between increased Aβ levels and the activation of tau kinases is also evident in
some AD mouse models. Several transgenic models expressing APP or APP and presenilin
with familial AD mutations displayed increases in tau phosphorylation [37,38] or the
mislocalization of phosphorylated tau species [39], although NFTs did not develop. However,
other mouse models expressing mutated APP/presenilin did not exhibit tau pathology, despite
aggressive amyloid pathology, Cdk5 activation and cell loss [40]. A transgenic mouse model
with five familial AD mutations has also provided an association between increased tau
phosphorylation and the expression of the C-terminus of APP [41]. In addition, in another
mouse model expressing an APP construct mutated to enhance Aβ oligomerization, an increase
in phosphorylated tau (ie, PHF1 immunoreactivity) without fibrillization was demonstrated
[42]. Combining a tau (P301L) transgene, a frontotemporal dementia and Parkinsonism linked
to chromosome 17 (FTDP-17) mutation in tau (FTDP-17 tau) and the APP (Swe)/PS1 (M146V)
transgenes resulted in a substantial increase in the extent of tau phosphorylation and pathology
[43,44]. However, overexpression of FTDP-17 tau alone resulted in increased phosphorylation
and neurofibrillary pathology [45,46]. Combined, these and other studies indicate that there
may not necessarily be direct associations between Aβ, kinase activation and tau
phosphorylation in AD, although Aβ likely plays an indirect or modulatory role.

Insights into tau phosphorylation from insulin-resistant models
The existence of a correlation between type 2 diabetes and an increased risk for AD is still
being debated [47]; however, this possible association has led to studies examining the
relationships between tau phosphorylation, kinase activation and insulin dysfunction. An early
hypothesis of the possible role of insulin resistance in aberrant tau phosphorylation stated that
downregulation of the insulin receptor/PI3K/Akt pathway led to reduced inhibition of
GSK3β and increased tau phosphorylation [48]. However, recent studies have provided data
that suggest this may not be the primary mechanism by which insulin dysfunction contributes
to increased tau phosphorylation, as described in the following paragraphs.

Systemic administration of streptozotocin (STZ), a compound that is selectively toxic toward
insulin-producing β-cells in the islets of Langerhans, is often used to induce diabetes in rodent
models of disease [49]. In wild-type mice, peripheral administration of STZ led to increased
tau phosphorylation at various sites, but did not lead to the formation of insoluble aggregates
[50]. In a mouse model expressing FTDP-17 tau, a similar treatment paradigm exacerbated tau
pathology, including increasing the levels of AT8 immunoreactivity, dystrophic neurites and
NFTs [51]. The mechanism responsible for the increase in tau phosphorylation in response to
insulin deficiency is unlikely to be elevated GSK3β activity (in fact, a decrease in the active
form of the kinase was observed); instead, the specific inactivation of protein phosphatase 2A
(PP2A) may be responsible [50]. One potential mechanism for STZ-induced reduction of PP2A
activity is through the induction of hypothermia [52]. Interestingly, anesthesia-induced
hypothermia also results in increases in tau phosphorylation through the inhibition of
phosphatase activity [53].

Central administration of STZ has been proposed to induce AD, as this agent induces behavioral
and neuropathological changes that recapitulate the disease phenotype [54]. Although the
mechanism of action of centrally administered STZ differs from that observed when the
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compound is administered systemically, central administration of STZ results in reduced levels
of both the insulin receptor and insulin in the brain [55]. In a recent study, STZ injected directly
into the cerebral ventricles resulted in acute increases in tau phosphorylation at AD-related
epitopes, as well as the expected increase in the levels of activated GSK3β [56]. Interestingly,
a decrease in the levels of GluT1 was also observed, as well as a decrease in the levels of O-
N-acetylglucosamine (O-GlcNAc) and O-GlcNAc transferase ([OGT], which catalyzes O-
GlcNAcylation). A reciprocal relationship between phosphorylation and O-GlcNAcylation has
been reported previously, and inhibition of phosphatase activity (resulting in increased tau
phosphorylation) leads to decreased levels of O-GlcNAcylation of tau [57]. Therefore, this
mechanistic link between impaired O-GlcNAcylation and impaired glucose metabolism
presents an interesting pathway, resulting in tau hyperphosphorylation that is independent of
increased tau kinase function. Indeed, compounds that inhibit O-GlcNAcase prevent tau
hyperphosphorylation by inhibiting the removal of O-GlcNAc modifications [58].

Tau phosphorylation and Alzheimer’s disease pathophysiology
Tau kinases and microtubule stability

Although increasing evidence suggests that tau has roles in the cell beyond its ability to regulate
microtubule dynamics, the phosphorylation-regulated function of tau remains of primary
interest in studies assessing the potential pathophysiological role of the protein in AD and other
tauopathies (for a review, see reference [8]). Studies have clearly demonstrated that tau
phosphorylation at various sites, by many different kinases, regulates the microtubule affinity
of the protein, as well as its ability to regulate microtubule dynamics ([59], and reviewed in
reference [60]). Phosphorylation of tau by GSK3β and Cdk5 [61] affects tau-microtubule
interactions by reducing the microtubule affinity of tau; phosphorylation of Ser214 by PKA has
also been demonstrated to have a similar effect [62]. Most notably, phosphorylation of the
serines within the Lys-Xaa-Gly-Ser (KXGS) motifs (and particularly at the 12E8 [Ser262/
Ser356] site) of the microtubule-binding domains (MTBDs) of tau consistently exerted a strong
negative effect on tau-microtubule interactions; a prominent kinase that phosphorylates the
KXGS motif is MARK [63]. A recent structural study of pseudo-phosphorylated tau indicated
that phosphorylation at the KXGS motif introduces a destabilizing rigid turn to three residues
adjacent to Ser262 that decouples tau from microtubules [64]. Given these and other findings,
it is reasonable to speculate that the hyperphosphorylation of tau may contribute to the reported
defects of microtubule integrity in AD brains [65].

The prevailing model of microtubule-related tau toxicity suggests that phosphorylation of tau
precedes the dissociation of the protein from microtubules, and this event is followed by the
aggregation of phosphorylated tau, leading to NFT formation in AD brains [66]. This model
is supported by a study in which 12E8 phosphorylation promoted further phosphorylation at
the possible GSK3β-phosphorylated epitopes AT8 and PHF1 [67]. This increased
phosphorylation could be the result of a structural change induced by Ser262 phosphorylation
that either renders tau more amenable to further phosphorylation or, potentially, less amenable
to dephosphorylation by phosphatases. Notably, the tau binding site for PP2A has been
localized to the MTBDs [68]. A crystallization study confirmed this localization, and also
determined that a negatively charged pocket of PP2A interacted with tau, allowing
dephosphorylation of Ser396 [69]. Therefore, the addition of an electronegative phosphate
group to the binding tract of tau may interfere with the binding of PP2A to tau, allowing aberrant
increases in tau phosphorylation because of decreased phosphatase activity.

However, separating the normal flux of tau phosphorylation and dephosphorylation, both of
which are required for microtubule stability and neuronal health, from aberrant
phosphorylation that leads to a pathogenic cascade is challenging. Complicating the
phosphorylation/dephosphorylation model, an early study determined that, in vitro, tau
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phosphorylated at Ser262, which decreases the affinity of tau for microtubules, also prevented
it from assembling into paired helical filaments (PHFs) [62]. More recently, in a Drosophila
tauopathy model, tau that could not be phosphorylated at either two of the KXGS motifs, or at
the 11 GSK3β-targeted sites, was expressed [70]. Unexpectedly, tau that could not be
phosphorylated at the GSK3β-targeted sites, but could be phosphorylated at the KXGS motifs,
was completely bound to the microtubules and, nevertheless, was the most toxic form of tau
studied. In contrast, tau that could not be phosphorylated at the KXGS motifs, but could be
phosphorylaed at all other sites, was present in the soluble fractions and was almost completely
non-toxic. This study indicates that the relationship between phosphorylation and tau-
microtubule interactions extends beyond the microtubule-binding regions, and that the
relationship between microtubule binding and toxicity is likely to be more subtly complex than
usually presumed.

Tau kinases and axonal transport
Defective axonal transport has long been considered to have a role in neurodegenerative
diseases [71], including AD [72,73]. Tau’s identity as a microtubule-associated protein has
made it an attractive candidate in AD-associated axonal transport defects. Different
mechanisms and protein complexes have been observed for the transport of various cargoes,
and tau itself can be described as a substrate for axonal transport [74]. The binding of tau to
the anterograde transport protein kinesin, as well as its rate of transport in the axons, is
dependent on the degree of phosphorylation; suppression of GSK3β activity by lithium results
in the suppression of kinesin-tau binding [75].

Similar to microtubule dynamics, phosphorylation of different tau sites can have opposing
effects on axonal transport. A recent study demonstrated that increased GSK3β (and Cdk5)
activity decreased the frequency of mitochondrial movement in neurons, and was accompanied
by increases in PHF1 and AT270 (Thr181) immunoreactivity [76]. A separate study
demonstrated that tau overexpression decreased the quantity of moving mitochondria in the
axons, and that this effect was reversed by the co-expression of MARK, implicating
microtubule affinity in the regulation of mitochondrial movement by tau [77]. The relative
expression of tau in these models should be considered carefully, as a study of fast axonal
transport in which various low monomeric tau:tubulin ratios were investigated in a squid
axoplasm model displayed no effect following the introduction of phosphorylated tau, although
transport impediment was achieved at high tau:tubulin ratios [78]. In a more recent study using
the same methodology, monomeric tau did not affect transport, but filamentous tau inhibited
anterograde transport – an effect that was relieved by inhibiting GSK3β [79]. However,
consideration of this latter finding needs to be tempered by results from an earlier study, which
also used the squid axoplasm as well as other models, indicating that addition of active
GSK3β (in the absence of tau) inhibited fast anterograde transport by phosphorylating kinesin
[80].

An attractive alternative role for tau phosphorylation in the regulation of axonal transport has
recently emerged. JNK-interacting protein 1 (JIP1) has been described as a regulator of axonal
development and transport [81]. A promoter variant of this protein has also been associated
with AD [82]. Tau phosphorylated at pathogenic residues (ie, AT8, AT180 [Thr231/Ser235] and
PHF1) has recently been demonstrated to compete with the kinesin-1 complex for binding to
JIP1, resulting in mislocalization of JIP1 from neurites to neuronal somata [83]. This interaction
of abnormally phosphorylated tau with JIP1 may impair the axonal transport of specific cargoes
in a tauopathy mouse model (in the absence of amyloid toxicity) [84], and could be a
contributing factor to the documented axonal transport deficits observed in AD [71,83].

Although tau has been implicated as a causative agent in axonal transport deficits, recent data
have alluded to a reverse sequence, whereby microtubular transport deficits cause tau
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pathology. Falzone and colleagues described a kinesin light chain 1 (KLC-1)-null mouse model
with predicted deficits in cargo transport [85]. The null mutation resulted in axonal structural
defects and significant accumulation of tau that was phosphorylated at AD-associated epitopes
(Ser202/Thr205) along the axonal tracts, and this accumulation correlated with aberrant
activation of JNK [85]. The potential dual role of JNK in both tau-JIP1-mediated regulation
of transport, as well as in the initiation of aberrant tau pathology by deficits in axonal transport,
is intriguing and warrants further study.

Tau kinases and protein aggregation
The correlation between insoluble NFT formation and memory impairment in AD originally
led to the hypothesis that insoluble tau is the pathogenic form of this protein [86]. Since the
discovery that the tau present in NFTs is hyperphosphorylated [6,7,87], the kinases responsible
for this hyperphosphorylation have been the focus of various studies. However, the results of
recent studies have led to an emerging conceptual framework in which pre-aggregate, soluble
tau species may be causative elements in tau pathology [88], and even that expression of
potentially abnormally processed soluble tau, independent of its fibrillar state, may drive tau
pathology. The key findings of several of the studies that have led to this developing hypothesis
are described in this section.

In 2005, a doxycycline-repressible mouse model of tauopathy was used to demonstrate that
suppressing the expression of tau, while leaving insoluble tau aggregates intact, led to improved
memory function [89]. This result was confirmed in a more recent study in which soluble
phosphorylated tau species were demonstrated to contribute to neurodegeneration in a
Drosophila model of human tauopathies [90]. Soluble, non-PHF tau was also responsible for
inhibiting microtubule dynamics [91]. Interestingly, studies on tau-tubulin kinase (TTBK), a
serine/threonine kinase belonging to the casein kinase 1 family [92], also support these
findings. For example, the TTBK2 isoform has been associated with spinocerebellar ataxia
[93]. In addition, TTBK1 has been linked to tau phosphorylation at multiple AD-relevant sites
[94], and, in a tauopathy mouse model, this phosphorylation occurred without the appearance
of phosphorylated sarkosyl-insoluble aggregates, but with the emergence of proto-fibrillar tau
oligomers [95]. The presence of activated GSK3β and Cdk5 was noted, highlighting the
possibility that TTBK1 does not phosphorylate tau directly, but may mediate tau
phosphorylation indirectly by the GSK3β and Cdk5 putative tau kinases.

These and other data are supportive of the hypothesis that insoluble tau may be protective by
acting as a ‘sink’ for soluble pathological species. The concept that aggregates of pathological
proteins may be protective has also been proposed for other neurodegenerative diseases. For
example, data suggest that soluble mutant huntingtin (mhtt) may be more toxic than aggregated
mhtt, as cells in which mhtt aggregates form survive significantly longer than cells in which
the mhtt does not aggregate [96]. Although the hypothesis that ‘pre-aggregated’ tau is the toxic
form is attractive, it still remains to be substantiated, as visualization methods for specifically
detecting oligomeric or pre-aggregates of tau have not been developed, and analysis presently
relies on time-consuming biochemical assays. The strongest evidence supporting the ‘soluble-
tau’ hypothesis remains the presence of toxicity and hyperphosphorylation in the absence of
microscopically visible aggregates.

Conclusion
There is still much to learn regarding the role of tau kinases in AD, and hypotheses and
perspectives continue to evolve as new data arise. As an understanding of the role of tau
phosphorylation in AD pathogenesis is gained, the field is becoming better equipped to develop
therapeutic strategies to treat the disease. Although it is important to consider tau kinases in
the AD pathological processes, identifying pathogenic events that occur prior to the onset of
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memory deficits is of crucial importance and will undoubtedly be an ever-increasing area of
investigation as effective therapeutic strategies are sought.

In addition, the possibility that inhibiting kinases in models of AD pathogenesis is having
beneficial effects that are not related directly to a reduction in tau phosphorylation should not
be discounted. For example, lithium inhibits GSK3β, reduces APP processing [97], acts as a
neurotrophin [98] and lowers inflammatory activity [99]; the Cdk5 inhibitor seliciclib
(Cyclacel Pharmaceuticals Inc) prevents Aβ-induced Golgi fragmentation [100]; and, in an
unrelated model, the JNK inhibitor SP-600125 (Celgene Corp) reduces proinflammatory
microglial activity [101]. The kinases targeted are all considered to be tau kinases, but the
beneficial effects of the kinase inhibitors in in vitro and in vivo models could be the result of
their effects on other pathways. Changes that occur in tau phosphorylation following treatment
with these inhibitors may only represent a marker of kinase activity, and may not be related
directly to the attenuation of pathogenic outcomes. An indicator of this possibility is the
observation that the expression of an extensively pseudophosphorylated tau construct in a
mouse model did not result in any obvious pathology, memory loss, changes in tau localization
or alterations in dendritic spine density [102].

In addition to the search for tau kinase modifiers, there is a focus on developing strategies to
reduce the levels of phosphorylated tau using immunotherapy. This approach has yielded
promising results in a tangle mouse model [103], resulting in a reduction in the amounts of
phosphorylated and total tau in neurons, as well as improvements in cognitive defects. A
promising therapeutic strategy may be immunotherapy combined with modifiers of tau kinases.

More recent studies have focused on post-translational modifications other than tau
phosphorylation that may be early facilitators of tau pathology. For example, a recent imaging
study conducted in the brains of mice in a tauopathy model indicated that non-terminal caspase
activation in neurons can result in tau cleavage at the C-terminus, and that this event may be
one of the primary drivers of pathogenicity that is independent of phosphorylation, although
the two events (phosphorylation and cleavage) may function together [104]. Overall, it is clear
that site-specific phosphorylation of tau plays a crucial role in regulating the physiological
functions of tau, and that dysregulation of tau phosphorylation, be it as a primary or a secondary
event, is a hallmark of AD pathology. Therefore, further studies that increase the knowledge
of kinases that phosphorylate tau are of crucial importance. The abundance of information
regarding the role of inappropriate kinase activation and tau phosphorylation (as well as other
important post-translational modifications of tau, such as cleavage and O-GlcNAcylation) in
neuronal dysfunction and death has certainly helped determine the pathogenic processes
involved in AD. It is also exciting to consider that as new data emerge, paradigm shifts
regarding the relative contribution of tau phosphorylation and aggregates to AD pathogenesis
are likely to occur.
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