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Abstract
Objective—Increases in accumulated energy on intracranial EEG are associated with oncoming
seizures in retrospective studies, supporting the idea that seizures are generated over time. Published
seizure prediction methods require comparison to ‘baseline’ data, sleep staging, and selecting
seizures that are not clustered closely in time. In this study, we attempt to remove these constraints
by using a continuously adapting energy threshold, and to identify stereotyped energy variations
through the seizure cycle (inter-, pre-, post- and ictal periods).

Methods—Accumulated energy was approximated by using moving averages of signal energy,
computed for window lengths of 1 and 20 min, and an adaptive decision threshold. Predictions
occurred when energy within the shorter running window exceeded the decision threshold.

Results—Predictions for time horizons of less than 3 h did not achieve statistical significance in
the data sets analyzed that had an average inter-seizure interval ranging from 2.9 to 8.6 h. 51.6% of
seizures across all patients exhibited stereotyped pre-ictal energy bursting and quiet periods.

Conclusions—Accumulating energy alone is not sufficient for predicting seizures using a 20 min
running baseline for comparison. Stereotyped energy patterns through the seizure cycle may provide
clues to mechanisms underlying seizure generation.

Significance—Energy-based seizure prediction will require fusion of multiple complimentary
features and perhaps longer running averages to compensate for post-ictal and sleep-induced energy
changes.
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1. Introduction
Computerized analysis of pre-ictal intracranial EEG (IEEG) demonstrates increasing energy
as seizures approach, compared to ‘baseline’ epochs randomly chosen from periods greater
than 4 h from seizures (Esteller et al., 1999; Esteller 2000; Litt et al., 2001). These findings are
based upon energy profiles computed from intracranial electrodes implanted near epileptic foci
in patients undergoing evaluation for epilepsy surgery. Because energy changes in the IEEG
are also affected by state of awareness, seizures and the post-ictal period, studies utilizing this
measure for seizure prediction have been applied only under constrained experimental design.
These studies require comparison to ‘baseline’ epochs of EEG more than 4 h removed from
the start or end of any seizure; a time period found to allow apparent resolution of post-ictal
energy elevations in study patients. They also require knowing the state of awareness of
patients, so that seizures and baselines from the same state (sleep vs. awake) are compared,
and that seizures are not clustered closely together in time. IEEG signal energy is useful for
tracking seizure generation because it is sensitive to waveforms such as subclinical seizure-
like bursts (‘chirps’), slowing, and bursts of complex interictal epileptiform activity. Changes
in these IEEG waveforms, which are commonly recognized by clinical epileptologists, have
been associated with oncoming seizures (Litt et al., 2001). In addition, energy-based measures
are computationally efficient, easy to relate to raw data, and are easily implemented in
implantable devices.

Important limitations of previously published energy-based methods for seizure prediction are
that they are dependent upon selection of randomly chosen baseline data segments, and that
they are by definition retrospective, and cannot be directly applied in a causal, real-time system.
This is because the times of seizure onset must be known in advance, in order to derive the
starting point of energy accumulation. Because data sets submitted for the First International
Seizure Prediction Workshop contained frequent seizure clusters, and no sleep staging data
were available for analysis, previously described prediction methods based upon signal energy
could not be employed. We used this collaborative meeting as an opportunity to address these
limitations and begin development of a causal energy-based method for seizure prediction.

We first focused on eliminating the need to know seizure onset times. Since the accumulated
energy in a sliding observation window is the sum of all previous energies calculated in that
window, the accumulated energy is proportional to the running average of the energy.
Therefore by tracking the moving average of IEEG signal energy it might be possible to predict
seizures in a causal, online fashion, without knowing seizure onset times in advance. For this
reason, the online prediction method presented below is based upon long and short-term
moving averages. A second challenge is to adjust the energy threshold used to detect seizures
‘locally’ in time, in order to adjust for the effect of energy changes due to changes in level of
consciousness (e.g. increased energy during sleep) and seizure clusters. One approach is to
compute a second feature that tracks sleep–wake cycles and post-ictal changes. Research in
this area is currently under way in our group, but methods for accomplishing this were not
available at the time of the Bonn workshop (Betterton et al., 2003). Potential features for
tracking sleep state on the IEEG include Teager’s energy, which preferentially weights high-
frequency activity greater than delta power (Zaveri et al., 2001), or to subtract log delta power
from the signal (Malow et al., 1998). Though Gotman et al. found accumulated energy to predict
seizures in approximately one third of cases, in the absence of sleep staging, this performance
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is inadequate for practical use (Gotman, 2001). In this study, we rely on a continuously adapting
energy threshold obtained from a 20 min running window in order to partially compensate for
confounding energy changes associated with state of awareness, and ictal and post-ictal energy
changes. Though flawed in its exact implementation, because changes in ‘baseline’ energy
may take place over periods that are longer or shorter than 20 min, this is a first approximation
to develop a causal method for seizure prediction based upon IEEG energy.

2. Methods
2.1. Data and pre-processing

The intracranial EEG data used in this study included a total of 60 seizures (42 clinical events
and 18 subclinical) corresponding to 4 patients (patients B, C, D, and E) from the University
of Bonn, the University of Florida, the University of Kansas, and the University of
Pennsylvania, respectively. Clinical details regarding each of these patients are available in
accompanying summary paper in this issue by Lehnertz and Litt (Lehnertz and Litt, 2005). For
this analysis the electrode contact in which seizure onset on IEEG was first visible, or maximal
if it occurred in more than one channel simultaneously, was used in a bipolar montage,
subtracting the signal from an adjacent electrode. IEEG data were converted to Matlab format
for processing.

2.2. Feature generation and data training
Signal energy was computed in two different sliding windows. The sliding windows were right
aligned in time, so that the 1 and 20 min observation windows ended at the same time point.
Since the displacement used for both windows was 30 s and both ended at the same time point,
then time alignment was preserved among energy feature values generated from each sliding
window. Evidently, the resulting feature resolution was Tsf = 30 s. The number of samples
within each window varied according to the data-sampling rate of each patient as specified in
the accompanying summary paper in this issue (Lehnertz and Litt, 2005). The running average
energy is determined as follows,

(1)

where N1 is the number of samples in the observation window (whose duration is either 1 or
20 min, depending upon which average is being calculated); D is the window shifting (30 s);
x is the EEG data; i is an integer indicating the data time index and n is the feature time index.
The energy obtained using the shorter window size is denoted as short-term energy (STE), and
the one determined with the longer window size is referred to as long-term energy (LTE). The
decision threshold used in this study is determined by adding an adaptive threshold component
and a fixed offset component (decision threshold=adaptive threshold+fixed offset). The LTE
is used as the adaptive threshold. A prediction was declared every time the STE exceeded the
decision threshold, that was defined by the inequality,

(2)

The offset term in the inequality is a fixed value, specific to each patient, determined
retrospectively by assessing prediction occurrences for coarse variations of the offset in a
training data set starting at the beginning of the test data through the second recorded seizure.
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The offset value was chosen after a coarse tuning to yield sensitivity greater than 50% and false
positive rate (FPR) lower or equal than 0.2 FP/h (false positives per hour) in the selected data
segments. This offset value varies from patient to patient and is meant to adjust for signal
differences due to recording from different brain regions (e.g. deep structures vs. neocortex),
variations in the recording system (e.g. electrode impedance), different epilepsy etiologies, and
other sources of inter-patient variation. Equally important, the offset value was chosen to tune
the decision threshold such that sensitivity and FPR were within acceptable performance ranges
for the training set, in order to demonstrate feasibility of a seizure prediction system for the
test data. The procedure described, where the offset is determined to fit this performance target
through a heuristic methodology, corresponds to a training stage, which precedes testing on
the rest of the experimental data set (testing stage). Table 1 indicates the data segments used
for training from each patient, their length in hours, and the sensitivity and FPR obtained for
each data set. Consecutive predictions separated by less than 3.5 min were considered to be a
single prediction.

In addition to developing a causal energy-based method for predicting seizures, a second goal
of this study was to investigate potentially repeatable energy changes over the seizure cycle.
Patients B, D, and E had the focus data stored on several CDs, while patient C had some of the
channels for the full hospitalization stored on a single CD. For this reason, the STE and LTE
were generated for each CD data segment on patients B, D, and E, and as a single data segment
for patient C.

2.3. Performance evaluation
Results are assessed for 12 different prediction horizons ranging from 5 to 600 min (Fig. 1)
(Echauz et al., 2000). A positive prediction indicates that the short-term energy crossed the
long-term energy-based decision threshold at least one time within the interval of a prediction
horizon. These suprathreshold outputs are then categorized as either true positives (TPs) or
false positives (FPs) based upon whether or not a seizure occurred within that prediction
horizon after the prediction was made [10]. The range of prediction horizons was chosen based
upon a review of the literature, ranging from 5 min to a maximum of 3 h (Iasemidis et al.,
2003;Litt and Echauz, 2002). Positive predictions that occurred during seizures were not
considered FPs, because the algorithm considers seizure detection to be a special case of seizure
prediction where the prediction horizon is zero, and in addition, ictal EEG corresponds to a
different brain situation from our target states that were interictal and pre-ictal EEG. Multiple
positive predictions within the prediction horizon window are considered to be a single
prediction, and the prediction time is taken to be the earliest of all positive predictions within
the sliding window. As noted above, two positive predictions separated by less than 3.5 min
are considered to be a single positive.

3. Results
Figs. 2–5 present the short-term energy (STE), the decision threshold (LTE+offset), and the
prediction output for patients B, C, D, and E. These figures are presented in accordance with
one goal of the workshop, to present raw algorithm outputs in addition to performance statistics,
when summarizing performance. These figures indicate that while energy increases are
common prior to seizure onset, the proposed energy-based ratio is not particularly useful for
seizure prediction because of increases in energy that occur apparently unrelated to seizure
onsets. In addition, a number of seizures were not clearly preceded by increases in relative
signal energy. Close analysis suggests that the method is more sensitive to large energy bursts
generated post-ictally during seizure clusters than to subtler rises in energy as seizures
approach. To quantify prediction performance for this method, we analyzed results for 12
prediction horizons, ranging from 5 min to 10 h. There was no statistically significant results
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for prediction horizons of under 3 h, a prediction horizon approaching the inter-seizure period
for several of the test patients. The statistically significant result for the 3 h prediction horizon,
detailed in Table 2, is likely no better than random, given the high frequency of seizures over
a relatively short time in the data shared for this workshop. Of interest, inspection of all false
negative predictions revealed that 53% of these events (9 out of 17 FNs for this time horizon),
clustered ≤2.6 h from the nearest seizure, implying that the long term moving average of energy
did not compensate well for increased energy post-ictally in clustered seizures. Also of interest,
review of raw algorithm output supports the necessity for showing these results in addition to
performance statistics, as visual review of these outputs makes the relatively poor performance
of the algorithm clearer.

Fig. 6 demonstrates a method for visualizing predictions related to seizures. A total of 13
seizures are indicated in this figure. Note that in this figure, 3 seizures were not predicted when
considering a 3 h prediction horizon. Two of these, are subclinical (S1 and S2) and only one
is clinical (C8). Interestingly, the non-predicted clinical seizure also happens to be a ‘follower,’
that is, it is clustered with another seizure event with less than 3 h between them. While 90%
of clinical seizures were anticipated for this patient using a 3 h prediction horizon, a quick
glance at the figure demonstrates that this performance is not likely clinically significant since
performance declines below statistical significance, when shorter prediction horizons are used.
Compilation of similar figures for the other study patients yielded analogous results.

Figs. 7–9 present the STE, the decision threshold based on the LTE, and prediction algorithm
output. It is important to note that stereotypical pre-ictal patterns of increasing energy were
found in 31 out of 60 seizures (51.6%) among study patients. Three main patterns were
observed: (1) one or more bursts of energy leading to a seizure (Fig. 6); (2) spikes in signal
energy before the seizure (Fig. 7); and (3) energy bursts followed by a quiet period before the
seizure. The first two types of energy build-up (Figs. 7 and 8) occurred before 22 seizures and
the pattern characterized by a quiet period before the ictal event precedes 9 seizures. An
example can be observed in Fig. 9.

4. Discussion
We present a method for prospective, energy-based seizure prediction that attempts to eliminate
confounding energy changes due to seizure clustering and fluctuations in state of consciousness
using two moving averages of energy and an adaptable decision threshold. While the method
produces some interesting results, suggesting reproducible patterns of energy change in the
IEEG surrounding seizures across patients, this method does not appear to be well suited for
practical implementation in its current form, particularly on data sets containing a large
concentration of seizures spaced ≤9 h apart. Problems seen in initial studies demonstrating pre-
ictal energy changes, such as the need to know the patient’s state of consciousness, and the
confounding nature of clustered seizures, were not eliminated by the current approach. This
does not invalidate energy derived from the IEEG as an important feature for tracking seizure
generation. Rather, it reinforces the need for multiple complementary features fused together
to track this complicated process until better, more mechanistically specific quantitative
measures can be found. Together with measures that follow state of consciousness and post-
ictal changes, this method may have considerable utility in tracking the development of
oncoming ictal events in the epileptic network. More important, energy-based methods may
provide important clues to mechanisms underlying seizure generation that are better followed
by more specific event detection, such as counting chirps, changes in the high-frequency firing
patterns of unit ensembles in specific cortical regions or subcortical structures, or perhaps in
protein synthesis or signaling within specific regions. The types of analysis and data sharing
presented in this first collaborative workshop are vital first steps in making these future, more
useful methods a reality.
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There are other interesting results in this study. Results in Table 2 indicate that there were no
differences in algorithm sensitivity with respect to whether or not seizures were clinical or
subclinical. This strengthens one conclusion from the Bonn workshop, that the EEG should be
used as the standard for determining what a seizure is, not as clinical symptoms (see summary
paper by Lehnertz and Litt). Another important finding, is the relationship between prediction
horizon and prediction algorithm performance. While it is obvious that as prediction horizon
increases and approaches the inter-seizure interval, performance will dramatically improve,
though not in a statistically valid way. As indicated previously during the workshop (Frei,
2002), 100% sensitivity and 100% specificity can always be accomplished when considering
seizure prediction by selecting a prediction horizon as long as needed. How to best select the
size of the prediction horizon window is a central challenge for seizure prediction analysis. A
key clinical boundary to guide the selection of the prediction horizon window length is the
reciprocal of the seizure frequency, or average time between seizures. Prediction horizons
comparable or longer than the average inter-seizure interval do not provide additional
information that can be used to warn the patient or trigger a therapy, and are not likely to be
practically useful. How much smaller than the average inter-seizure interval will depend on
the time required by any responsive therapy to exert its action, or the warning time required
for a patient to take action to prevent injury. Of course, clinical utility of these methods is a
central goal of this research, and this utility will likely depend upon what is done with predictive
information, and the nature of warning or intervention given to patients. While warnings alone
may be useful hours in advance, provided the false positive rate is low, more acute
interventions, such as focal brain stimulation, may be much more useful on scales of minutes.
Again, there are many factors that need to be considered when choosing a prediction horizon
for a particular application.

Inter-seizure intervals during pre-surgical evaluation are generally shorter than under normal
conditions, as tapering of antiepileptic drugs, sleep deprivation and other factors may contribute
to increase seizure frequency. Averaged inter-seizure intervals for patients B, C, D, and E were
8.58, 4.17, 2.94, and 4.65 h, respectively. As a consequence, a high incidence of clustered
seizures occurring no more than 2.6 h after the preceding seizure was observed, yielding 15.4,
53.3, 64.7, and 60% in patients B, C, D, and E, respectively. The 3 patients with smaller inter-
seizure intervals logically had the 3 highest rates of seizure clusters. Clustered seizures may
obscure the natural behavior of the energy tool used in this study, and may yield to misleading
FN rates, due to non-detected clustered ictal events. Patients D and E had the highest rate of
clustered seizures and coincidentally exhibited the higher number of subclinical seizures as
well (11 and 4, respectively). The fact that the prediction algorithm evaluated seems to have a
satisfactory performance (according to Table 2) is not considered statistically convincing
because the inter-seizure interval of the data sets analyzed is comparable. However, it would
be interesting to research with implantable neurostimulators algorithms like the one proposed
here without the restrictions imposed by a time-limited hospitalization evaluation, and in
epileptic patients subject to real-life situations with inter-seizure intervals greater or equal to
1 day.

The pre-ictal patterns of energy variation prior to seizure onset are interesting, but of unclear
significance. Bursting of energy leading up to seizures has been described previously, but its
underlying mechanism(s) is unknown. Both excitatory and inhibitory significance have been
attributed to these patterns, as well as analogies drawn to critical systems that dissipate energy
in events according to a power law distribution, in an attempt to maintain stability on the way
to catastrophic events such as avalanches, earthquakes or volcanic eruptions (Worrell et al.,
2002). Quiet periods leading up to seizures after impressive bursting are even more puzzling.
Recent work suggests that such periods close to neocortical onset seizures may actually
represent fast activity outside of the bandwidth of IEEG signals traditionally recorded in
clinical systems (Worrell et al., 2004). Whatever the cause, the number of seizures and patients
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in this very limited study who share these patterns suggest that there are likely mechanisms
common to seizure generation in all patients with partial epilepsy that might be explored with
quantitative measures and exploited for new therapeutic interventions. More in-depth
recordings of this type, perhaps with arrays of electrodes placed throughout the epileptic
network in animal models, may yield important clues as to how these changes are involved in
the generation of individual seizures.

The contribution of the present study to the Bonn workshop is not so much to document the
performance of a specific method, but rather to demonstrate some of the problems that are
encountered in attempting online seizure prediction, the need for a patient-specific, multi-
feature approach for tracking seizure generation, and some commonality in patterns of energy
evolution through the seizure cycle. Seizure prediction methods, even with their current
performance limitations, could play an important role in the future of brain stimulation. When
considering that the false positive predictions obtained with our method correspond to
abnormal epileptiform activity, electrical stimulation of these false positive predictions is not
unreasonable to consider. We are hopeful that when the next International Collaborative
Workshop on Seizure Prediction is held, that we will have learned a great deal more about
seizure generation through similar attempts at new methods, and that we will be able to,
incrementally if necessary, demonstrate more success and applications for these methods.
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Fig. 1.
Classification errors as a function of the prediction horizon window size.
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Fig. 2.
STE (red), decision threshold (blue), prediction output (green), and seizure onset (black vertical
line) for 5 records from patient B. Positive outputs (high level in green curve) are observed as
far as almost 2 h before all seizures. Note that the there is no positive output between the
clustered seizures on the third display.
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Fig. 3.
STE (red), decision threshold (blue), prediction output (green), and seizure onsets (black
vertical lines) for patient C. All these patient seizures are clinical and most of them have high-
energy activity prior to seizure onset.
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Fig. 4.
STE (red), decision threshold (blue), prediction output (green), and seizure onset (black vertical
line) for 5 records from patient D. Positive outputs (high level in green curve) are observed as
far as almost 3 h before all seizures, except for the last two seizures at the bottom display.

Esteller et al. Page 12

Clin Neurophysiol. Author manuscript; available in PMC 2010 September 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
STE (red), decision threshold (blue), prediction output (green), and seizure onset (black vertical
line) for 5 records from patient E. Positive outputs (high level in green curve) are observed as
far as almost 2 h before all seizures except for the one on the fourth display. This seizure
happens to be a follower seizure. Note that the seizure in the third display around 1.5 h into
the record is a follower seizure as well.
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Fig. 6.
Method for visualizing predictions related to seizures. In this case, preceding positive algorithm
outputs and the preceding seizure are indicated before each of the seizures from patient B. Red
vertical lines indicate seizures and blue vertical lines with a topped circle indicate positive
outputs. Each seizure is labeled with a letter and number where: ‘C’ represents a clinical seizure,
and ‘S’ a subclinical seizure and numbers indicate the chronological order of seizures. Positive
outputs are plotted for every seizure. Note that consecutive panels correspond to consecutive
seizures and the zero reference of the time axis is positioned at the seizure whose pre-ictal
positive predictions are being visualized on the panel plot. Seizure onsets are indicated by
time= zero. Positive outputs are indicated only up to a maximum of 11 h before the seizure
onset or until the preceding seizure is found, whichever comes first when going backwards in
time.
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Fig. 7.
Examples of pre-ictal energy bursts build-up patterns. Top panel is a clip from patient C and
bottom panel is a clip from patient E. Note how in the top panel the energy builds up and then
suddenly decreases 5 times before it finally evolves into a seizure. In the bottom display the
energy is initially high, reaching higher peaks over time and then suddenly decreasing around
1.6 h, and start to build up again with some drops before it evolves into a seizure around 3.6 h
from the beginning of this record.
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Fig. 8.
Example of energy spike build-up pattern from patient D. This is a clip which shows a clear
spike build up pattern before the actual seizure. Note that at time 0.7 h into the record the energy
drops (similarly to the drops observed around 1.6 h in the bottom display of Fig. 8 and around
5.5 h and other times in the top display of this figure.
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Fig. 9.
Example of energy build-up with quiet period before seizure. Clip from patient B. Note the
initial energy bursting with a sustained decrease before the seizure, reaching minimum energy
level around 20 min before the onset almost at the grid tick before the seizure.
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