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Abstract

Ifosfamide (IF) and cyclophosphamide (CP) are common chemotherapeutic agents. Interestingly,
while the two drugs are isomers, only IF treatment is known to cause nephrotoxicity and
neurotoxicity. Therefore, it was anticipated that a comparison of IF and CP drug metabolites in the
mouse would reveal reasons for this selective toxicity. Drug metabolites were profiled by ultra-
performance liquid chromatography-linked electrospray ionization quadrupole time-of-flight mass
spectrometry (UPLC-ESI-QTOFMS), and the results analyzed by multivariate data analysis. Of the
total 23 drug metabolites identified by UPLC-ESI-QTOFMS for both IF and CP, five were found to
be novel. Ifosfamide preferentially underwent N-dechloroethylation, the pathway yielding 2-
chloroacetaldehyde, while cyclophosphamide preferentially underwent ring-opening, the pathway
yielding acrolein (AC). Additionally, S-carboxymethylcysteine and thiodiglycolic acid, two
downstream IF and CP metabolites, were produced similarly in both IF- and CP-treated mice. This
may suggest that other metabolites, perhaps precursors of thiodiglycolic acid, may be responsible
for IF encephalopathy and nephropathy.
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1. Introduction

Cyclophosphamide (CP) and ifosfamide (IF) are isomeric oxazaphosphorine cytostatic drugs
used widely in the chemotherapy of various cancers. CP was developed over 50 years ago as
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a innovative example of a pro-drug that might be transported to the tumor and then activated
by tumor-specific enzymes, a strategy that had proven valuable for the treatment of prostate
carcinoma with stilbestrol diphosphate [1]. High tumor expression and activity of
phosphoramidase was the rational design principle [2] that lead to the incorporation of the
highly cytotoxic nornitrogen mustard (NNM) into a stable and apparently inert
oxazaphosphorine ring (Fig. 1A). It soon transpired that NNM was generated only in trace
amounts but rather CP was converted in the liver into a transported metabolite that could be
readily taken up by tumors [3]. A somewhat complex hepatic metabolic scheme gradually
unfolded with CP converted to 4-hydroxycyclophosphamide (4OHCP) [4], which in turn
taumomerized to aldophosphamide (AP) [5] that p-eliminated AC [6-7] to yield
phosphoramide mustard (PM) [7-8]. This pathway can readily be reconciled with other
observed metabolites of CP, such as 4-oxocyclophosphamide (4-ketocyclophosphamide;
40CP) [9], iminocyclophosphamide (ICP) [10], and carboxyphosphamide (CXP) [11] (Fig.
1A). Both AP [7] and PM [11] were postulated as transport forms of CP. Ifosfamide (IF) was
developed a decade after CP [12] and its metabolic transformation was reported to bear
similarities to itsisomer CP (Fig. 1B). Specifically, phenobarbital-induced rat liver microsomes
converted IF to AC [7,13] after the prior formation of 4-hydroxyifosfamide (4OHIF) [7], which
was later reported to be in equilibrium with its tautomer aldoifosfamide (AIF) [14]. However,
a major metabolic pathway for IF was side-chain dealkylation to yield 2- and 3-
dechloroethylifosfamide (2-DCIF and 3-DCIF), both in vitro [7] and in vivo [15], together with
2-chloroacetaldehyde (CAL) [16] and 2-chloroethylamine (CEA) [17-18]. These two-carbon
metabolites had been reported at only low levels in CP-treated rodents [11,19-20]. Later reports
demonstrated side-chain dealkylation yielding 2-DCIF and 3-DCIF as a major pathway of IF
metabolism in both pediatric [21-23] and adult patients [24-26]. While the systemic toxicity
of the aldehyde product of CP and IF metabolism AC had been mitigated by the introduction
of mesna [27-28], the issue of host toxicity due to CAL was not immediately addressed [16].

The differential metabolism of CP and IF most likely plays a central role in the differing toxicity
profiles of these isomeric drugs. While the general pattern of intact oxazaphosphorine
metabolites is similar for CP and IF, a key difference is the number and abundance of two-
carbon metabolites that derive from side-chain dealkylation. It was proposed that CAL
underlies both the neurotoxicity [16,29-30] and nephrotoxicity [31] of IF. Additionally, CEA
was proposed as a toxic metabolite [29-30] and has been reported to derive directly from IF
by chemical hydrolysis and also reacting with bicarbonate to form 1,3-oxazolidin-2-one [17].
CAL has been reported to be converted to 2-chloroacetic acid (CAA) by human kidney [31]
and rabbit heart [32]. In turn, CAA may react with cellular thiols to yield S-
carboxymethylcysteine (SCMC) and its metabolite thiodiglycolic acid (TDGA) [15] (Fig. 1B).
Other cysteine derived metabolites have also been observed [32]. What role this panoply of
small IF metabolites plays in the selective toxicity and efficacy of IF is poorly understood.

What is clear is that CP and IF are two potent drugs which are inactive per se and whose effects
on both the tumor and the host are determined by metabolism. Despite the large number of
published studies on the metabolism of CP and IF both in vitro and in vivo and in a variety of
species including Man (Table 1), a comprehensive comparative analysis of their metabolism
is indicated. We have chosen to do this in the mouse for the sole reason that such a study lends
itself to further investigation in animals humanized for various metabolic enzymes and the
nuclear receptors that regulate their tissue expression [33]. We have also employed ultra-
performance chromatography-linked electrospray ionization quadrupole time-of-flight mass
spectrometry (UPLC-ESI-QTOFMS), which has proven successful in studies involving
metabolomic protocols to uncover unforeseen drug metabolites of PhIP [34], melatonin [35],
aminoflavone [36], acetaminophen [37], and the areca alkaloids [38-39].
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2. Materials and Methods

2.1. Materials

IF (ifosfamide), CP (cyclophosphamide), SCMC (S-carboxymethylcysteine), TDGA
(thiodiglycolic acid), and 4-nitrobenzoic acid were purchased from Sigma-Aldrich (St. Louis,
MO). Solvents and other chemicals were of the highest grade commercially available.

2.2. Animals and treatments

Male C57BL/6 mice were obtained from the NCI-Frederick Animal Production Program. Mice
were maintained under standard 12 h light/12 h dark cycle with water and chow provided ad
libitum. Handling and treatment was in accordance with an animal study protocol approved by
the National Cancer Institute Animal Care and Use Committee. IF (50 mg/kg) and CP (50 mg/
kg) were dissolved in saline solution and administered by intraperitoneal injection. Control
mice were treated with saline alone. Urine (24 h) samples were collected from mice housed
individually in glass metabolic chambers (Jencons, Leighton Buzzard, UK).

2.3. UPLC-ESI-QTOFMS profiling of urinary metabolites

Urine samples were prepared by mixing 10 pl of urine with 90 ul of 50% aqueous acetonitrile
and centrifuging at 18,000 x g for 10 min to remove protein and particulates. A 5 ul aliquot of
supernatant was injected into a Waters UPLC-ESI-QTOFMS system (Milford, MA). An
Acquity UPLC BEH C18 column (Waters) was used to separate chemical components,
including IF, CP and their metabolites. The mobile phase was comprised of 0.1% formic acid
(A) and acetonitrile containing 0.1% formic acid (B). A 0.5 ml/min flow rate was maintained
during a 10 min run. The QTOF Premier mass spectrometer was operated in electrospray
positive ionization mode (ESI+). Capillary voltage and cone voltage were maintained at 3 kV
and 20 V, respectively. Source temperature and desolvation temperature were set at 120 °C
and 350 °C, respectively. Nitrogen was used as both cone gas (50 I/h) and desolvation gas (600
I/h), and argon was used as collision gas. Sulfadimethoxine was used as the lock mass (m/z
311.0814%) for accurate mass calibration in real time. As for MS/MS fragmentation of target
ions, collision energy ranging from 10 to 40 eV was applied. Mass chromatograms and mass
spectral data were acquired using MassLynx software (Waters) in centroid format. IF, CP and
their urinary metabolites were identified through accurate mass measurement and the analysis
of the MS/MS fragmentation patterns. Since IF and CP each have two chlorines, IF and CP
metabolites could be identified and distinguished from endogenous metabolites based on the
chlorine isotope ratio. For example, metabolites containing a single chlorine would be expected
to exhibit a chlorine isotope ratio of 3:1. Metabolites containing two chlorines would be
expected to have a chlorine isotope ratio of 9:6:1.

2.4. Data processing and multivariate data analysis (MDA)

The mass chromatographic data were deconvoluted using MarkerLynx software (Waters), and
a data matrix was generated for MDA. The ion intensity was calculated as the percentage of
total ion counts (TIC) in the whole chromatogram. The data matrix was exported into SIMCA-
P software (Umetrics, Kinnelon, NJ) for MDA. In order to separate drug metabolites from
endogenous metabolites in urine, the integrated ions in vehicle group and treatment group were
analyzed using an orthogonal projection to latent structures (OPLS) model. OPLS analysis was
conducted to represent the major latent variables in the data matrix and was described in a
scores scatter plot after data were Pareto scaled. Identification of IF, CP and their metabolites
was performed by analyzing the loadings plot and contribution table, as previously described
[34-39]. The general protocol for the identification of xenobiotic metabolites using
metabolomics has recently been reviewed [40].
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2.5.Tandem LC-MS quantitation of SCMC and TDGA

Samples from IF- or CP-treated mice were prepared by mixing 20 pl of urine with 80 ul of
50% aqueous acetonitrile and centrifuging at 18,000 x g for 10 min. 10 pl was injected for LC-
MS/MS analysis. LC-MS/MS analysis was performed on an Applied Biosystems AP1 2000
ESI triple quadrupole mass spectrometer (Applied Biosystems, Foster City, CA). A Luna 3-
um C18 50 mm x 46 mm internal diameter column (Phenomenex, Torrance, CA) was used to
separate SCMC, TDGA, and 4-nitrobenzoic acid (internal standard). The flow rate was 0.2 ml/
min with 95% aqueous acetonitrile containing 0.1% formic acid. The mass spectrometer was
operated in negative ion (ESI—) mode. The turbo ion spray temperature was maintained at 350
°C, and a voltage of 5 kV was applied to the sprayer needle. Nitrogen was used as the turbo
ionspray and nebulizing gas. The detection and quantitation of SCMC, TDGA and 4-
nitrobenzoic acid (internal standard) were accomplished by multiple reaction monitoring with
the transitions m/z 178.0/77.9 (SCMC), 149.0/92.7 (TDGA) and 165.9/109.6 (4-nitrobenzoic
acid).

2.6. Relative quantitation of the metabolites of IF and CP

Although the authentic standards of metabolites were unavailable, it was possible to determine
their approximate abundance in the urine. Using several assumptions [38-39], including that
the metabolites were equivalently eluted and ionized (ESI+) over the entire chromatographic
range, with equivalent degrees of ion suppression, it was possible to approximate the relative
excretion of IF, CP, and their metabolites in the urine. These assumptions have been validated
in a metabolomics study of the metabolism of (+)-arecoline 1-oxide in the mouse [39].
However, it is accepted that such estimates of relative concentration may be error-prone.

2.7. Statistical analysis

3. Results

Experimental values are expressed as mean + standard deviation (S.D.). Statistical analysis
was performed using independent Student’s t tests or ANOVA. P-values less than 0.05 were
considered significant.

3.1. Metabolomic analysis of mouse urine after IF and CP administration

After urine samples from the treated and control groups were analyzed by UPLC-ESI-
QTOFMS, data were deconvoluted, and analyzed using OPLS. The advantage of OPLS is that
the model is rotated so that class (treated and control) separation is found in the first predictive
component, tp, also referred to as the correlated variation [41]. This multivariate model was
built to determine the relationship between the treated and control groups, and the contribution
of each detected urinary ion to the model. As shown in the scores scatter plot (Fig. 2A-B), urine
samples from IF and CP treatment were clearly separated from the control in the first
component (t[1]), driven predominantly by the presence of drug and drug-related metabolites
(Fig. 2C-D). The trend plots of ions from putative drug-related metabolites were used to display
graphically the absence of those ions in vehicle-treated animals (Fig. 3A-E). The increased
ions were further determined as drug-related or endogenous metabolites based on the mass
defect shifts [42]. In general, the mass defects of phase | and Il drug metabolites were over the
range of —50 mDa and +50 mDa compared with the parent drug. After drug metabolites were
determined, their chemical structures could be elucidated through MS/MS.

3.2. Identification and structural elucidation of the urinary metabolites of IF and CP

After the metabolites were screened using OPLS and accurate mass measurement, their
chemical structures were identified on the basis of the MS/MS fragmentation. Overall, IF (F1),
CP (P1) and their 23 metabolites were identified in the urine samples from mice (Tables 2 and
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3). Eighteen of them (F2, F3, F4, F6, F7, F8, F9, F10, F12, F13, P2, P3, P4, P5, P6, P7, P8 and
P10) are known metabolites, and five of them (F5, F11, P9, P11 and P12) were novel
metabolites. MS/MS spectra of the five novel metabolites (F5, F11, P9, P11 and P12) are
presented in Fig. 4.

The empirical formula of F5 (iminoifosfamide), a new metabolite of IF, was calculated as
C7H13CIoN,05P (0.4 ppm mass error) based on the accurate mass measurement, m/z
259.0171*. Compared with the chemical composition of IF (C7H;5CI,N»O,P), it was
concluded that F5 was a dehydrogenated form of IF. As seen from Fig. 4A, its molecular ion
peak showed three chlorine isotope peaks m/z 259.012*, 261.012* and 263.138* with the ratio
of ion intensity 9:6:1, showing that F5 contained two chlorines. Tandem mass spectrometry
(MS/MS) revealed four major fragment ions at m/z 230.986*, 182.013%, 153.982" (base peak),
118.042*. The fragment ion at m/z 182.013* was generated by the cleavage of the exo P-N
bond to eliminate one chloroethylamine. The ion at m/z 118.042* was formed by the elimination
of another chloroethyl group. It suggested that the double bond occurred in the
oxazaphosphorine ring. The parent ions produced the peak at m/z 230.986™ through the loss of
ethylene at the C5-C6 bond of the oxazaphosphorine ring. The base peak at m/z 153.982*
occurred from the ion at m/z 182.013* by the same cleavage pattern. It was more stable for the
double bond between the C4 and C5 than that between the C3 and C4, which was consistent
with the base peak. Therefore, F5 was identified as iminoifosfamide.

F11 (4-hydroxyifosfamide glucuronide), a new metabolite of IF, was calculated as
C13H23CIloN2OgP (2.6 ppm mass error) based on the accurate mass measurement, m/z
453.0584". As seen from Fig. 4B, its molecular ion peak showed three chlorine isotope peaks
m/z 453.056, 455.060" and 457.069* with the ratio of ion intensity 9:6:1, indicating that F11
contained two chlorines. It was clear that the base peak at m/z 277.028* was produced from its
[M+H]* ion (m/z 453.056%) by the loss of 176 Da. It was concluded that F11 was the
glucuronide conjugate of an hydroxylated metabolite of IF. MS/MS revealed major fragment
ionsatm/z 232.996%, 136.018%, and 92.023*. The fragment pattern was similar to the metabolite
4-hydroxyifosfamide (F10). Therefore, F11 was identified as 4-hydroxyifosfamide
glucuronide.

P9 (alcophosphamide glucuronide), a new metabolite of CP, was calculated as
C13H25CIoN20gP (2.6 ppm mass error) based on the accurate mass measurement, m/z
455.0765". As seen from Fig. 4E, its molecular ion showed three chlorine isotope peaks m/z
455.074%, 457.076" and 459.069" with the ratio of ion intensity 9:6:1, demonstrating that P9
contained two chlorines. In its MS/MS spectrum, the base peak at m/z 279.043" was generated
from its [M+H]* ion (m/z 455.074*) by the elimination of 176 Da. It was concluded that P9
was the glucuronide conjugate. MS/MS revealed its major fragments at m/z 262.017*,
221.000%, and 138.032*, which was similar to fragments of the metabolite alcophosphamide
(P5). Therefore, P9 was identified as alcophosphamide glucuronide.

P11 (dechloroethylketocyclophosphamide), a novel metabolite of CP, was calculated as
CsH19CIN,O3P (0.9 ppm mass error) based on the accurate mass measurement, m/z
213.0198*. Compared with the [M+H]" ion (m/z 275.010%) of 4-ketocyclophosphamide, P11
was lower by 62 Da than 4-ketocyclophosphamide. N-dechloroethylation was the common
pattern in the metabolism of CP through the loss of 62 Da. It was concluded, therefore, that
P11 was generated from alcophosphamide through the elimination of the chloroethyl group.
As seen from Fig. 4C, its molecular ion peak showed two chlorine isotope peaks m/z
213.019* and 215.025" with the ratio of ion intensity 3:1, showing that P11 contained one
chlorine. MS/MS revealed its major fragments at m/z 159.011*, 141.983* and 112.077*, which
was similar to the major fragments of 4-ketocyclophosphamide. Therefore, P11 was identified
as dechloroethylketocyclophosphamide.

Biochem Pharmacol. Author manuscript; available in PMC 2011 October 1.
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P12 (dechloroethylalcophosphamide), a novel metabolite of CP, was calculated as
CsH14CIN2O3P (0.9 ppm mass error) based on the accurate mass measurement, m/z
217.0511*. The [M+H]* ion of P12 was lower by 62 Da than that of alcophosphamide (m/z
279.0437%). Compared with the metabolite P11, P12 was supposed to be the N-
dechloroethylated product of alcophosphamide. As seen in Fig. 4D, its molecular ion showed
two chlorine isotope peaks, m/z 217.052* and 219.054* with the ratio of ion intensity 3:1,
demonstrating that P12 contained only one chlorine. MS/MS revealed its major fragments at
m/z 200.022*, 159.008*, and 138.031*. The base peaks at m/z 159.008" was produced by the
cleavage of the -CH,CH,OH group at the C-O bond. The fragment at m/z 200.022* was
generated from the loss of the hydroxyl group. The fragment at m/z 138.031" was produced
from the hydroxylation and chloroethylation of P12. The cleavage pattern was similar to the
alcophosphamide. Therefore, P12 was identified as dechloroethylalcophosphamide.

3.3. Estimation of relative concentrations of IF and CP metabolites by chromatographic

analysis

Based on their exact masses, peaks were extracted from the UPLC chromatograms, and areas
integrated (Tables 2 and 3). The metabolites of IF and CP were grouped by metabolic
transformation, as follows: dechloroethylation, hydroxylation, ketonization, dehydroxylation,
alkylation, ring-opening, and conjugation reactions (Table 4). As shown in Fig. 5, the excretion
of the unchanged IF in mouse urine was similar to the excretion of CP. The dechloroethylated
metabolites of IF were present in higher concentrations than CP (2-fold). The ring-opened and
ketonization metabolites of CP were present at higher concentrations than IF (5-fold and 3-
fold, respectively). In addition, although the hydroxylated, dehydroxylated, alkylated, and
conjugated metabolites were different between IF and CP, their relative abundance in the urine
was very low following treatment with either IF or CP.

3.4. Urinary excretion of SCMC and TDGA

After the treatment of mice with either IF or CP, SCMC (F12) and TDGA (F13) excretion was
increased above endogenous levels. Because of their low molecular weight and weak acidity,
SCMC and TDGA could be detected in negative ion mode of using UPLC-ESI-QTOF-MS.
However, their concentration was determined by triple quadrupole mass spectrometry. From
Fig. 6A, it can be seen that SCMC excretion was increased 32-fold and 44-fold in urine above
endogenous levels, respectively, after treatment with IF and CP. TDGA excretion was also
increased in urine by 14-fold and 17-fold following IF and CP treatment, respectively.
Therefore, both isomeric drugs show surprisingly similar profiles with respect to these
metabolites.

4. Discussion

Metabolomics is an invaluable tool for profiling biological fluids for small molecules, and with
respect to pharmacology, metabolomics has provided substantial insight into drug metabolism
pathways. For example, the metabolic map of acetaminophen (which had been studied for over
40 years) was recently expanded by three metabolites [37]. Similarly, the metabolic maps of
IF and CP were expanded (two IF and three CP new metabolites) and 18 known metabolites
that otherwise had taken over 40 years to identify (Table 1) are also reported here. This
demonstrates the power of UPLC-ESI-QTOFMS-based metabolomics applied to the study of
drug metabolism.

IF and CP are prodrugs that are converted to their active forms during metabolic
biotransformation [43]. Their biological activity is mediated through their active metabolites,
including 4-hydroxyifosfamide and 4-hydroxycyclophosphamide, both of which were detected
in this study. Because of their respective equilibrium with aldoifosfamide and
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aldophosphamide, a minor amount of 4-hydroxyifosfamide and 4-hydroxyclophosphamide
were excreted in the urine. Aldoifosfamide was both reduced and oxidized to alcoifosfamide
and carboxyifosfamide, respectively, presumably by the action of alcohol dehydrogenase and
aldehyde dehydrogenase [26]. In a similar manner, aldophosphamide was both reduced and
oxidized to alcophosphamide and carboxyphosphamide, respectively [44]. It can be seen from
Fig. 5 that ring-opened metabolites were produced to a greater extent from CP than from IF,
and this was the major difference between the two drugs. However, in compensation, the
dechloroethylated metabolites of IF were excreted to a greater extent than from CP. SCMC
and TDGA, both normal products of endogenous metabolism, were found at low concentrations
in control urine. Following treatment with IF and CP, SCMC and TDGA were significantly
elevated in vivo (Fig. 6). It is known that CAA can lead to the formation of SCMC through
conjugation with cysteine or glutathione, and SCMC is further transformed to TDGA [45].
SCMC has been reported to activate the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA)/kainite receptor and induce cellular acidification which may be responsible for
the reported encephalopathy [46-47]. In addition, TDGA can cause mitochondrial dysfunction
which may also contribute to the side-effects associated with IF treatment [48]. However, there
have been no reports that SCMC and TDGA resulting from the treatment by CP lead to toxicity.
Here, SCMC and TDGA were detected in urine from the CP-treated mice. The generation of
CAA from IF was greater than from CP, according to the significantly higher rate of N-
dechloroethylation of IF (Fig. 5) Surprisingly therefore, there were no significant differences
in SCMC and TDGA production in IF- and CP-treated mice (Fig. 6B and D). However, it was
previously reported that TDGA is the major urinary metabolite in cancer patients treated with
IF and this was suggested as the causative IF metabolite of encephalopathy [48]. Apparently,
TDGA is an inconsequential urinary metabolite of CP (A. Kipfer, unpublished observation).
However, TDGA was determined in these human studies by lyophilization and derivatization
of urines with BFz/methanol at 60°C, in contrast to the studies described here where diluted
urines were injected directly into the tandem mass spectrometer. It is therefore possible that
TDGA is formed during the heating process, either by spontaneous decarboxylation of the a-
keto acid of SCMC (S-carboxymethyl-3-thiopyruvic acid; SCMTPA) [46-47] or from an acid-
or heat-labile ester, such as the carnitine ester of TDGA.

Previous studies suggested that IF treatment resulted in changes in the excretion patterns of
low molecular weight endogenous metabolites (hippuric acid, trimethylamine N-oxide,
glycine, lactate, histidine and glucose), which were regarded as biomarkers of IF nephrotoxicity
and encephalopathy [49]. The current findings suggest that IF-induced side-effects may result
directly from CAA rather than from SCMC and TDGA. Studies have reported that CAA can
result in neurotoxicity and nephrotoxicity [50-51]. This observation may offer one potential
mechanism to explain IF-related neurotoxicity and nephrotoxicity.

Despite the large number of published in vitro and in vivo CP and IFO metabolism studies,
five novel metabolites (F5, F11, P9, P11 and P12) were found by metabolomic analysis in this
study. Iminoifosfamide from IF corresponded to iminocyclophosphamide (F6) from CP.
Previous studies reported some conjugated metabolites with GSH from IF and CP, such as
ifosforamide mustard and cyclophosphamide [14,52]. However, there was no GSH conjugation
detected in either urine and serum. Here, two minor glucuronide conjugate metabolites (F11
and P9) were found from IF- and CP-treated mice. Furthermore, two new N-dechloroethylated
(P11 and P12) metabolites from CP were found in the urine (Fig. 8). Inspection of the loadings
S-plotin Fig. 2D suggests that P11 has a similar abundance to the principal N-dechloroethylated
metabolite P3, while P12 is a much more minor metabolite.

The metabolomic studies described here were carried out in the mouse. As shown in Table 1,
rat and human have been the principal species studied historically for CP and IF metabolism.
There are relatively few data in the mouse. Nevertheless, the value of the mouse is that future
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studies may be conducted in genetically modified mice, that permit direct questions to be asked
about the role of discrete enzymes and the nuclear receptors that control their expression in the
liver and other tissues [33]. It may be envisaged that data from mice humanized for CP and IF
metabolizing enzyme genes could be compared with actual clinical data for these drugs, thus
refining and improving animal modeling of cancer chemotherapy.

In conclusion, the present study investigated IF and CP in mice using a metabolomic approach,
which gave a comprehensive understanding of their metabolism in vivo. Twenty three urinary
metabolites, including five novel drug metabolites, were identified and structurally elucidated
by mass fragmentography. Their metabolic pathways in vivo were presented. Although they
went through similar metabolic processes, the amount of metabolites in urine was significantly
different between IF and CP, in particular, the N-dechloroethylated and ring-opened
metabolites. SCMC and TDGA, that have been regarded as the toxic metabolites, specifically
of IF [46-48], were also found in similar amounts in the urine of IF- and CP-treated mice.
Future studies are needed to examine the potential of CAA, SCMTPA or TDGA carnitine ester
to be the causative factors in IF-associated neuro- and nephrotoxicity.
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Metabolic activation and transport of IF and CP in vivo. (A) Rational design of CP based upon
its supposed metabolism in tumor tissue versus a contemporary view of CP metabolism. (B)
A contemporary view of IF metabolism, including the N-dechloroethylation reactions that lead
to two-carbon metabolites and ultimately SCMS and TDGA.
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Identification of urinary IF and CP metabolites through LC-MS-based metabolomics. (A)
Scores plot of an OPLS model from control and IF-treated mice. Each point represents an
individual mouse urine (B) Scores plot of a OPLS model from control and CP-treated mice.
Each point represents an individual mouse urine (C) OPLS loadings S-plot of urinary ions from
control and IF-treated mice. Each point represents a urinary ion (D) OPLS loadings S-plot of

chemical ions from control and CP-treated mice. Each point represents a urinary ion.
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Fig. 4.

Tandem MS and chemical structures of novel CP and IF metabolites. (A) Iminoifosfamide
(F5). (B) 4-Hydroxyifosfamide glucuronide (F11). (C) Dechloroethylketocyclophosphamide
(P11). (D) Dechloroethylalcophosphamide (P12). (E) Alcophosphamide glucuronide (P9).
Note the chlorine isotope ratios depending on the presence of a one (3:1 ratio) or two (9:6:1)
chlorine atoms.
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ion of urinary metabolites from different groups of metabolic pathways in

mouse urine following the treatment of IF and CP. Except for unchanged IF and CP, there were
significant differences in these metabolites with similar chemical structures from IF and CP.
NS, not significant. Note that the B-elimination of acrolein (IF>CP; P<0.05) and
glucuronidation (CP>IF; P<0.01) pathways were very minor compared to other pathways, but
nevertheless showed statistically significant differences.

Biochem Pharmaco

1. Author manuscript; available in PMC 2011 October 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lietal.

Page 17

A) scMmc B) ScMmC
g 003 P<0.01 0.6 N-S.
£ e °
5
5 P<0.01 2
< 0.02 504
3 g ]
o~ )
& 0.01 ’J“ ¢ 02
° °
E =

ol ol

Control IF cp IE cp

(©) TDGA (D) TDGA
v 03 P<0.01 8 N.S.
[ T
= — Q
3 o 6
£ 02 5 ]
3 34
: :
g 0 pa-— ° 0

Control IF CP IF CP

Fig. 6.

The amount (umol/24h) and % dose excreted for SCMC and TDGA in 0-24 h mouse urines
following treatment with IF and CP. (A) The umol/24h of SCMC from IF- and CP-treated
mice. (B) Percent dose excretion of SCMC from IF- and CP-treated mice. (C) The umol/24h
of TDGA from IF- and CP-treated mice. (D) Percent dose excretion of TDGA from IF- and
CP-treated mice. N.S. means not significant. Note the small amounts of SCMC and TDGA
excreted in blank (control) 0-24 h mouse urines.
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Major in vivo IF metabolic pathways showing the enzyme systems that are believed to produce
each metabolite. Boxed structures represent novel metabolites.
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Major in vivo CP metabolic pathways showing the enzyme systems that are believed to produce
each metabolite. Boxed structures represent novel metabolites.
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Table 1

Reported metabolites of IF and CP in vivo and in vitro

Year Drug Metabolite Species Reference
1967 CP Nornitrogen mustard Rat (iv) [3]
2-Chloroethylaziridine
(decomposition products of unknown
primary metabolite)
1967 cp Hydracrylic acid PB-induced rats (ip) [53]
1971 CP Carboxycyclophosphamide Dog (iv), Human (iv) [9]
4-Oxocyclophosphamide
1971 CP Acrolein Liver microsomes [9]
1972 IF Acrolein PB-induced rat liver [13]
microsomes
1972 cP Aldophosphamide Uninduced mouse liver [5]
microsomes
1973 CcP 4-Hydroxycyclophosphamide PB-induced rat liver [4]
[tautomer of aldophosphamide] microsomes
1973 CP Phosphoramide mustard PB-induced mouse liver [8]
microsomes
1974 IF 2-Dechloroethylifosfamide PB-induced rat liver [7]
3-Dechloroethylifosfamide microsomes
4-Hydroxyifosfamide
1975 IF 2-Chloroethylamine Rat (iv), Human (iv) [54]
1975 CcP 3-(2-Chloroethyl)oxazolidone Human (iv) [55]
(from nornitrogen mustard + CO,)
1,4-Di(2-chloroethyl)piperazine
1975 CP 4-Oxocyclophosphamide Mice (ip) [11]
Alcophosphamide
2-Dechloroethylcyclophosphamide
Carboxyphosphamide
Phosphoramide mustard
Nornitrogen mustard
1976 CP 3-Hydroxypropylmercapturic acid Rat [56]
IF [metabolite of acrolein]
1976 IF Carboxyifosfamide (1.4%) Human (iv) [15]
2-Dechloroethylifosfamide (6.2%)
3-Dechloroethylifosfamide (12.5%)
S-Carboxymethylcysteine (10.4%)
Thiodiglycolic acid (4.7%)
1976 cP 4-Hydroxycyclophosphamide Rat (ip), Mouse (ip) [57]
Aldophosphamide
Phosphoramide mustard
4-Oxocyclophosphamide
1978 CcP Phosphoramide mustard Human (iv) [58]
Nornitrogen mustard (?artifact)
1982 CP Iminocyclophosphamide Immobilized rabbit liver P450 [10]
1983 CcpP 2-Chloroacetaldehyde Rat (iv) [20]
1986 CP 3-(2-chloroethyl)-1,3-oxazolidin-2-one Rat (iv) [59]
3-(2-chloroethyl)-4-hydroxy-1,3-
oxazolidin-2-one
3-(2-hydroxyethyl)-I,3-oxazolidin-2-one
1986 IF 2-Chloroacetaldehyde Human (iv) [16]
1988 CcP 4-Oxocyclophosphamide Human (iv) [60-61]

Carboxyphosphamide
Phosphoramide mustard
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Year Drug Metabolite Species Reference
1992 CP Dechloroethylcyclophosphamide Human (iv) [62]
4-Oxocyclophosphamide
Carboxyphosphamide
Phosphoramide mustard
1992 CcP Acrolein ICR mouse (ip) [63]
[dose- and strain-dependency] C57BL/6N mouse (ip)
1992 IF Isophosphoramide mustard Human (iv) [26]
Carboxyifosfamide
2-Dechloroethylifosfamide
3-Dechloroethylifosfamide
4-Oxoifosfamide
1993 IF Isophosphoramide mustard Human [children] (iv) [21,23]
Carboxyifosfamide
2-Dechloroethylifosfamide
3-Dechloroethylifosfamide
4-Oxoifosfamide
1994 CcP 4-Glutathionylcyclophosphamide Incubation of 4-hydroxy- [52]
cyclophosphamide with
GSTs and GSH
Monochloromonoglutathionyl Incubation of phosphoramide
phosphoramide mustard mustard with GST Al-1 and
GSH
1995 IF 2-Chloroethylamine Human (iv) [17]
1,3-Oxazolidin-2-one
1995 IF Isophosphoramide mustard Human [adults] (iv) [25]
Carboxyifosfamide
2-Dechloroethylifosfamide
3-Dechloroethylifosfamide
4-Oxoifosfamide
1995 IF Isophosphoramide mustard Incubation of 4- [14]
Aldoifosfamide hydroxyifosfamide with GSH
[NO 4-glutathiony! ifosfamide]
Monoglutathionyl isophosphoramide Incubation of
mustard isophosphoramide mustard
with GST P1-1 and GSH
Diglutathiony! isophosphoramide
mustard
1995 IF Isophosphoramide mustard Rat (iv) [64]
2-Dechloroethylifosfamide
3-Dechloroethylifosfamide Alcoifosfamide
4-Hydroxy-2-dechloroethyl-ifosfamide
4-Hydroxy-3-dechloroethyl-ifosfamide
N-Dechloroethylisophosphoramide
mustard
2,3-Didechloroethylifosfamide
1995 CcP Carboxyphosphamide Human [children] (iv) [65]
Dechloroethylcyclophosphamide
4-Oxocyclophosphamide
1996  acrolein  3-Hydroxypropylmercaprturic acid Rat (inhalation) [66]
2-Carboxyethylmercapturic acid Rat (ip)
1998 IF 2-Chloroethylamine Human (po and iv) [67]

2-Dechloroethylifosfamide
3-Dechloroethylifosfamide
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Major metabolic reactions and corresponding metabolites in mouse urine following treatment with IF and CP

Metabolic reaction IF cP
Unchanged drug F1 P1
Dechloroethylation F2, F3 P2, P11, P12
Hydroxylation F11 P8
Ketonization F7 P10
Desaturation F5 P6
B-Elimination of acrolein F9 P7
Ring-opening F4,F6,F8 P2, P4, P5
Glucuronic acid conjugation  F11 P9
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