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Abstract
Reproductive aging and ovarian senescence have considerable public health relevance because they
are associated with increased risk for coronary heart disease (CHD), osteoporosis and other
degenerative conditions including cognitive decline and potentially the metabolic syndrome. It has
been suggested that the hormonal dysregulation that occurs during the perimenopausal transition
may play a role in the initiation of pathobiological changes (e.g., adverse lipid profiles, atherosclerotic
plaques) that will increase risk for chronic disease (e.g., CHD) during the postmenopausal years.
Moreover, these early changes are suspected to establish a trajectory of disease progression that may
be difficult to alter if interventions are not begun until after menopause. Even a slight increase in the
rate of disease progression during the pre- or perimenopausal years could have substantial
consequences for health and quality of life over the postmenopausal lifespan. Thus, the years leading
up to menopause may offer a “critical window” for interventions aimed at reducing the
postmenopausal disease burden. The relationship between perimenopausal hormonal dysregulation
and the risk for chronic disease is poorly understood due, in large part, to the lack of available
nonhuman primates (NHP) undergoing the perimenopausal transition and natural menopause. In this
review we assesses studies of NHPs evaluated in various reproductive stages (naturally pre-, peri-
and postmenopausal, surgically menopausal) and their contribution to our understanding about risk
factors for chronic disease. Finally, because large numbers of naturally perimenopausal and
menopausal NHPs are not available for research at present, experimental approaches that have the
potential to hasten the onset of the perimenopausal transition will be described.
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Introduction
Nearly 175 million women worldwide are postmenopausal [1] and many of these women are
expected to live well beyond (~30 years) menopause [2]. Consequently, the postmenopausal
years are of considerable public health relevance because reproductive aging and ovarian
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senescence are associated with increased risk for coronary heart disease (CHD), osteoporosis
and other degenerative conditions including cognitive decline and potentially the metabolic
syndrome.

It has been hypothesized that the hormonal dysregulation that occurs during the perimenopausal
transition may play a role in the initiation of pathobiological changes (e.g., adverse lipid
profiles, atherosclerotic plaques) that will increase risk for chronic disease (e.g., CHD) during
the postmenopausal years. Moreover, these early changes are suspected to establish a trajectory
of disease progression that may be difficult to alter if interventions are not begun until after
menopause [3,4]. Even a slight increase in the rate of disease progression during the pre- or
perimenopausal years could have substantial consequences for health and quality of life over
the postmenopausal lifespan. Thus, the years leading up to menopause may offer a “critical
window” for interventions aimed at reducing the postmenopausal disease burden.

The relationship among perimenopausal hormonal dysregulation, ovarian senescence and the
development of chronic disease is understood poorly, due in large part to the lack of animal
models of the perimenopausal transition and natural menopause. The development of an
experimentally induced perimenopausal mouse model [5] represents a significant research
advance; however, this model has characteristics that limit its applicability for research on
some issues in women’s health. For example, the mouse estrus cycle occurs every 4–5 days
and sloughing of uterine epithelial cells does not occur. In contrast, Old World anthropoid
primates have a menstrual cycle of approximately 28 days, cyclic sloughing of endometrial
cells and nearly identical reproductive hormonal patterns to women. Therefore, nonhuman
primates (NHP) are the most suitable model to help clarify the impact of the perimenopausal
transition on the trajectory of risk for chronic disease.

In this review we discuss the peri- and postmenopausal NHP model and its contribution to our
understanding of risk factors for chronic disease. In addition, in situations where there were
limited data available from natural models the contributions from the ovariectomized model
are discussed. Finally, because large numbers of naturally perimenopausal and menopausal
NHPs are not available for research currently, experimental approaches that have the potential
to hasten the onset of the perimenopausal transition will be described.

Reproductive Senescence in Nonhuman Primates
Reproductive senescence (menopause) has been reported to occur in numerous old world
monkeys and great apes. The majority of these studies have been of rhesus monkeys (Macaca
mulatta) [6–17]; however, numerous other species also experience menopause including
cynomolgus macaques (M. fascicularis) [18,19], Japanese macaques (M. fuscata) [20], langur
monkeys (Presbytis entellus) [21], baboons (Papio spp.) [22], chimpanzees (Pan
troglodytes) [23–27] and gorillas (Gorilla gorilla) [28]. The hormonal profiles of
perimenopausal and postmenopausal macaques, baboons, chimpanzees and gorillas have many
similarities to those of women including elevated FSH and LH, decreased estradiol, decreased
inhibin B and low antimüllerian hormone (AMH) [6,26,29,30]. Furthermore, compared to
premenopausal macaques, perimenopausal monkeys have increased variability in menstrual
cycle length, decreased estradiol and significant elevations in peak FSH concentrations [7,
31]. Finally, the age-related decline in primordial follicle number in macaques [13] and
chimpanzees [24] occurs in a similar pattern to that of aging women [32].

It is noteworthy that there is some controversy about the existence of a postmenopausal phase
in NHPs. The majority of studies examining captive populations indicate that menopausal and
postmenopausal phases do exist in NHPs, although the postmenopausal phase may be shorter
(only a few years) than that of women [29]. In contrast, data from some wild populations
(mainly chimpanzees) indicate that the post-reproductive lifespan is nearly non-existent [33].
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The potential evolutionary reasons for the relative difference in post-reproductive life span
between NHPs (0–25% of lifespan) and women (>30% of lifespan) [2] is the subject of much
debate [29,33–36] and is beyond the scope of this review. Relevant to this discussion, however,
is a recent review on menopause in NHPs by Walker and Herndon [29] in which the authors
point out that, irrespective of age at onset of menopause, there are numerous physiologic
similarities between NHPs and women with respect to the gradual decline and eventual
cessation of reproductive capacity. Taken together, the hormonal and menstrual cycle changes
observed in nonhuman primates as they approach menopause and become postmenopausal,
indicates that they are the most appropriate animal model available for investigating the effect
of reproductive aging and ovarian senescence on risk for chronic disease.

Macaques (rhesus and cynomolgus) and baboons offer the greatest potential for study with
respect to availability and regulatory requirements for interventional studies. However,
experiments designed to extend our understanding of the relationship between ovarian
senescence and chronic disease risk depends, in part, on the availability of reasonably large
numbers of naturally peri- and postmenopausal subjects. These animals are generally not
available for several reasons. First, the majority of known-aged female NHPs exist in managed
breeding colonies and are culled as soon as declining fecundity is detected (~14 years in
baboons [22] and ~10 years in rhesus [8]). Second, culled females are used for various discrete,
often terminal, studies because financial mechanisms to support the sequestration and
maintenance of these animals in large numbers do not exist currently. Third, as mentioned
previously, menopausal females (as defined by cessation of menstrual cycles) are generally at
an advanced age (25 years for macaques) relative to their maximal life expectancy, resulting
in a short postmenopausal period [29]. The opportunity exists, however, to improve the
availability of aging female monkeys for women’s health research and this is discussed further
in this review in the section on model development.

Insights from Nonhuman Primates
Atherosclerosis

Atherosclerosis and its sequelae are the major causes of morbidity and mortality among
postmenopausal women in Western societies [37,38]. These demographics underscore the need
to improve our understanding of factors associated with the initiation and progression of
atherosclerosis in women.

Extensive research on atherosclerosis progression has been done using menopausal
(ovariectomized) cynomolgus macaques and several important concepts have emerged as a
result of these investigations (for a complete review see [39,40]). First, studies of cynomolgus
monkeys provided some of the early evidence implicating estrogen depletion in the
pathogenesis of coronary artery disease. For example, ovariectomized monkeys fed a diet
containing saturated fats and cholesterol, in amounts similar to that which is consumed by
women in industrialized societies, develop significantly more coronary artery atherosclerosis
than their reproductively intact counterparts [41]. Estrogen treatment of monkeys immediately
following ovariectomy results in beneficial effects on cardiovascular risk factors including
decreased total plasma cholesterol (TPC), decreased LDL+VLDLC [40] and modest increases
in HDLC [42] compared to placebo. Of significant clinical relevance is the finding that if
estrogen treatment is initiated at the time of ovariectomy, atherosclerosis extent is inhibited by
nearly 70% [43]. A second major conceptual contribution relates to findings from studies of
premenopausal monkeys in which the extent of atherosclerosis present prior to ovariectomy
determined the extensiveness of the plaques during the postmenopausal years [44], suggesting
that a trajectory for atherosclerosis development may begin well before the onset of menopause.
In further support of this hypothesis is a study in which treatment of premenopausal monkeys
with estrogen containing oral contraceptives (estrogen + progestin) prior to ovariectomy
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reduced the progression of atherosclerosis postmenopausally [45,46]. Similarly, prior oral
contraceptive use in women is associated with reduced severity of angiographically determined
coronary artery disease and diminished coronary artery calcium, further supporting the
suggestion that intervention during pre- or perimenopausal years might be warranted [4].
Finally, when estrogen treatment is delayed in monkeys for the equivalent of 6 woman years
after ovariectomy, no beneficial effects on atherosclerosis extent is seen [47]. Taken together,
the observations from ovariectomized monkeys have contributed to the development of the
“timing hypothesis”, which suggests that exogenous estrogens will have beneficial effects if
administered when atherosclerosis is in its early stages of development (i.e., during the pre-,
peri- and early postmenopausal years) but will have no benefit or adverse effects if given to
women who have been estrogen-depleted for several years and have complicated plaques
[48–52].

To test the “timing hypothesis” further, perimenopausal monkeys are required. Unfortunately,
for the reasons outlined previously, these monkeys are not available in large numbers. In
addition, the majority of those that do exist (mainly rhesus), are fed a commercial diet that is
low in cholesterol and high in soy isoflavones [53]. Induction of atherosclerosis in NHPs
requires a diet containing saturated fats and cholesterol in amounts similar to that consumed
by people in Western societies [54,55]. Furthermore, diets containing high concentrations of
soy isoflavones are known to decrease atherosclerosis development in macaques [56].
Consequently there are relatively few studies of cardiovascular risk factors in naturally
perimenopausal female monkeys and apes. In one such study, perimenopausal baboons
(defined by irregular menstrual cycles) fed a diet high in cholesterol and fat had a more adverse
lipid profile (greater VLDL+LDL and lower HDL cholesterol) than their premenopausal
counterparts [57]. The perimenopausal baboons also had lower activity levels of a liver enzyme
(27-hydroxylase) thought to be important in regulating plasma lipid concentrations in responses
to diet. This led the authors of that study to suggest that declining 27-hydroxylase activity may
be a result of the assumed decline in estrogen (E2) in perimenopausal baboons. In another study,
naturally postmenopausal rhesus monkeys (n=5, 25 years and older) treated with E2 for 4 weeks
experienced a 50% reduction in plasma LDL concentrations, an increase in LDL size and
enhanced resistance to LDL oxidation [58]. Finally, naturally postmenopausal cynomolgus
monkeys treated with E2 experience a normalization of FSH and E2 concentrations and
subsequent improvements in plasma lipids and lipoproteins (decreased LDL+VLDLC and
increased HDLC) and body weight [18]. These data suggest that NHPs are excellent models
for cardiovascular disease research and future studies of atherosclerosis progression during the
perimenopause will be instrumental in determining the mechanisms involved in the “timing
hypothesis”.

Bone loss
Osteoporosis is one of the leading public health problems in the United States, affecting nearly
20 million Americans [59]. Bone loss in aging women is a result of an imbalance between bone
formation and bone resorption, with a shift in the bone remodeling process towards increased
resorption as women approach menopause. As a result, approximately 50% of women will
experience fractures in their lifetime, making fracture a major cause of morbidity and reduced
quality of life in older women [59,60]. The bone remodeling processes of both cancellous and
cortical bone are very similar among macaques, baboons and women [61,62], making NHPs
suitable models in which to study the effects of reproductive aging on bone loss. As is the case
for cardiovascular studies, however, investigations of the relationship between reproductive
hormones and bone metabolism have mainly used the ovariectomized monkey model [63].
Ovariectomy, and the resultant estrogen depletion, leads to significant bone loss and increases
in markers of bone turnover in NHPs [61,64–70], an effect that is reversed with estrogen
treatment [71,72]. Consequently this model has been used extensively to test interventions
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designed to prevent and reverse bone loss in postmenopausal subjects, but it has not been useful
in understanding the effect of perimenopausal hormonal changes on bone loss, nor has it been
helpful in determining the contribution of androgen production by the postmenopausal ovary
to bone turnover.

There are several studies that have collected bone mineral density (BMD) and bone biomarker
data from aging female macaques [31,73–76] and at least one from baboons [77]. Three of the
macaque studies were cross-sectional in design and reported age-related declines in forearm
(radial) density [31,74,75]. In the first study [74], data were collected from 178 females (10 of
which were postmenopausal) ranging in age from ~3–34 years. In that study, a two-piece
segmented linear regression (“hockey stick”) model was used to examine the relationship
between bone loss and age. Interestingly, the slope of the line increased markedly after about
18 years of age, potentially reflecting the effect of changes in estrogen status on bone loss in
perimenopausal monkeys. However, hormones were not collected in this study so this is merely
speculative. In the second study [75], postmenopausal macaques (n=16) had lower total body,
distal radius and spinal bone mass, and increased osteocalcin (a bone formation marker) when
compared with premenopausal females (n=19). The most recent of the cross sectional studies
[31] found an independent effect of age (8–27 years, n=19) on total body and radial BMD. In
support of the cross-sectional data is a longitudinal study of data collected over 4 years from
premenopausal females (n=20, age 8–23 years). In that study, age-related bone losses in the
middle and distal radius were observed [73]. Conversely, losses in total and lumbar BMD were
not observed over 4 years, nor was there an effect of aging on osteolcalcin.

The lack of agreement among the aforementioned studies with respect to the effect of age on
total BMD and bone biomarkers may be due to the small numbers of monkeys that were either
known to be menopausal or that were old enough to be perimenopausal. In addition, there are
other potential confounders that may occur when attempting to determine the relationship
between age and bone loss in monkeys. First, the incidence of osteoarthritis (OA) increases
significantly in monkeys greater than 19 years of age [78] and as a result, falsely high BMD
measurements of the spine may be recorded. A similar problem is encountered in women with
lumbar OA [79]. To address this issue, Krueger et al. [78] devised a method of measuring bone
density in a central region of interest in the vertebral body, thus avoiding vertebral facets, end
plates and disc spaces. Using this analysis, an additional 25% of older animals with decreased
bone mass were detected that would otherwise have been classified as having normal bone
mass. A second potential problem with studies of bone loss in monkeys published thus far
relates to diet. The majority of studies have used monkeys that have been fed a commercial
diet (monkey chow) containing concentrations of soy phytoestrogens [53] that are as high as
or greater than that consumed by Asian women [80], potentially providing some estrogenic
effect on bone. Perhaps even more important, these diets are nutritionally complete with respect
to calcium, phosphorous and vitamin D and are fed consistently throughout the life of the
monkey. Consequently, the natural variations in nutrient intake that can occur in older women
do not occur in aging monkeys and therefore changes in bone metabolism may not be seen in
monkeys fed these diets. Notably, serum vitamin D concentrations have been reported to
decline with age in females monkeys [73] and variation in the amount of vitamin D added to
the diet does affect serum vitamin D levels [75]. Therefore, it is possible that monkeys fed a
diet which more closely resembles that of women would allow the detection of bone loss during
perimenopausal years.

Together these data suggest that aging female monkeys lose bone in a similar manner to women
and changes in hormone status may influence bone loss. However, future NHP studies that
include the collection of hormonal data to determine the reproductive status of older monkeys,
and use diets free of phytoestrogens and lower concentrations of vitamin D, calcium and
phosphorus, could be of great value in disentangling the effect of hormones and age on bone
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metabolism. Numerous studies of ovariectomized macaques indicate that the monkey is a
suitable model for evaluating the effects of various interventions (pharmacologic or dietary)
on fracture risk, as determined by ex-vivo measurements of vertebral, femoral and radial bone
strength as well as the microarchitecture of bone [64,81,82]. Given that these studies are not
possible in women, the perimenopausal monkey model could provide important data on the
association between ovarian senescence and bone quality in addition to the evaluation of novel
interventions.

Cognition
Many women complain of difficulties with concentration and memory during the menopausal
transition and early postmenopause [2]. However, there are considerable uncertainties about
the relationship between the perimenopausal transition and cognitive decline. These gaps in
knowledge are due to the challenges inherent in clinical studies of cognition in women (i.e.,
the requirement for large numbers of subjects and the need for repeated cognitive testing which
is carefully timed in relation to stage of the menopausal transition). Further, investigators are
challenged by the “practice effect” which is often associated with repeated testing. Even a large
prospective study of perimenopausal women such as the Study of Women Across the Nation
(SWAN), is limited in its ability to determine whether endogenous hormones are related to
cognition during the menopausal transition [83].

To our knowledge, nearly all NHP studies examining the relationship between reproductive
hormones and cognitive function have used the ovariectomized model. Data from these studies
are conflicting with respect to the effects of endogenous and exogenous estrogen on learning
and memory [84–86]. We could find only one study in which naturally menopausal rhesus
monkeys were used to investigate the relationship between endocrine decline and cognitive
aging [87]. In that study peri/postmenopausal status was assigned to monkeys that had irregular
or absent menstrual cycles over a 12-month period and urinary estrone concentrations that were
lower than their age-matched (20–27 years) premenopausal counterparts. A delayed response
(DR) task was used to test a monkey’s ability to remember the location of a food reward hidden
in one of two locations prior to a delay. Learning was significantly impaired in peri/
postmenopausal monkeys compared to age-matched premenopausal monkeys. Furthermore,
mean estrone concentrations were positively associated with average DR accuracy (r=0.59,
p<0.05). This study indicates that changes in cognitive function similar to that reported in aging
women [88] occur in macaques.

Additional studies of aged (23–29 years) rhesus monkeys, not characterized as pre- or
postmenopausal and often male, have contributed to our understanding of age-related gross
and histopathologic changes in the brain. Older females and males experience an increase in
cholinergic cell size [89,90] without a change in hippocampal volume [91]. In addition, a
significant decline of gray matter volume occurs with age in macaques [92,93], as it does in
humans [94]. Interestingly, aged rhesus monkeys (males and females) fed a calorie restricted
diet (CR, 30% restriction from baseline ad libitum intake) experience a preservation of gray
matter volume in key regions associated with motor and executive function [92]. Although the
CR study did not look at males and females separately, it is important to note that CR has not
been shown to affect menstrual cyclicity or reproductive hormone profiles in rhesus monkeys
[31]. Finally, both male and female vervet monkeys (Chlorocebus aethiops) have been reported
to have age-related deposition of amyloid β protein (Aβ) [95] and the presence of an
apolipoprotein allele (E4) [96] shown to be associated with Alzheimer’s Disease (AD). These
data, along with the observation that Aβ vaccination of vervets reduced cerebral amyloid β
protein [95] suggest that the vervet may provide a useful model to study AD.

Appt and Ethun Page 6

Maturitas. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Metabolic Syndrome/Type 2 Diabetes
The metabolic syndrome is a combination of risk factors for cardiovascular disease (CVD) and
type II diabetes mellitus (T2DM) that frequently co-occur and are evident in 20% to 30% of
middle aged women [97–99]. The risk factors include elevated blood pressure, dyslipidemia
(high triglycerides and lowered HDLC), elevated fasting glucose, and increased central
adiposity. The occurrence of three or more of these risk factors defines the presence of
metabolic syndrome [100]. Studies of women attempting to link menopausal status with
components of the metabolic syndrome have been inconsistent. Recently, Janssen and
colleagues [101] used data from the SWAN to determine whether the incidence of the metabolic
syndrome increases across the menopausal transition, independent of age and other standard
CVD risk factors. The authors reported that the odds of developing the metabolic syndrome
(after adjustment for ethnicity, site, baseline BMI, change in BMI, education, marital status,
smoking, age at final menstrual period and age) were greater during perimenopause (OR=1.45,
95% confidence interval, 1.35–1.56) than after menopause (OR=1.24, 95% confidence
interval, 1.18–1.30).

NHPs are similar to women with respect to the development of risk factors for metabolic
syndrome and T2DM and both of these conditions have been reported in cynomolgus, rhesus
and bonnet macaques [102–106], baboons [107,108] and vervets [109]. In addition, chronic
hyperglycemia has been reported to increase CVD risk in macaques [110,111] and insulin
resistance is associated with dyslipidemia, obesity and atherosclerosis in baboons [107].
Although we could find no studies directly investigating the effect of hormonal dysregulation
(characteristic of perimenopausal monkeys) on risk markers for the metabolic syndrome, there
is evidence from NHPs implicating a relationship between ovarian hormones and
glucoregulation. First, female macaques spanning a wide age range (4 to >30 years) have higher
glucose disappearance rates and better insulin responses to glucose challenge tests than age-
matched males [112,113]. Second, a decline in insulin sensitivity has been observed during the
luteal phase of the menstrual cycle in both macaques [114] and women [115]. Third, exogenous
treatment with a progestogen results in deleterious effects on glucoregulation in macaques
[116]. Finally, naturally menopausal rhesus monkeys (27–38 years) tended to have a decreased
insulin response compared to midlife females (13–17 years), even after adjustment for age
[113]. The similarities among NHPs and humans in the aforementioned risk factors for
metabolic syndrome and T2DM support using NHPs for research in this area. The availability
of perimenopausal monkeys would allow for further assessment of relationships between
reproductive hormones and risk and allow the testing of interventions prior to menopause.

Approaches to the development of a NHP model of reproductive aging and
ovarian senescence

The menopausal transition is difficult to model because of the complex physiological changes
that occur during the years leading up to the final menstrual period. These changes include
decreased numbers of primordial follicles resulting in decreased production of inhibin B and
AMH, a compensatory increase in production of FSH by the pituitary, and an inability to sustain
normal estradiol production. These changes all take place gradually over a period of 4–10 years.
The situation is further complicated by the fact that the stroma of the naturally menopausal,
follicle-depleted ovary continues to produce androgens [117], which directly affects target
tissues, and can be aromatized to estradiol. In the absence of monkeys that adequately model
the menopausal transition and postmenopausal characteristics of women, researchers have been
limited to using ovariectomized animals for interventional studies. Although the
ovariectomized model has been valuable in determining the effects of estrogen depletion on
health (e.g., pathobiology of atherosclerosis and osteoporosis), the surgical manipulation
induces an immediate decline in ovarian hormones to trace amounts, producing a hormonal
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condition that does not resemble the perimenopausal transition and does not allow the
biological role of the postmenopausal ovary to be determined. As a result, any effects associated
with the production of menopausal estrogens and androgens which are thought to influence
the pathogenesis of atherosclerosis, bone loss, and cognition are not modeled by studies
conducted on ovariectomized individuals.

Our research is focused on overcoming the difficulties of acquiring sufficient numbers of
perimenopausal monkeys for study. Recent advances in our laboratory underlie our belief that
the development of a monkey model of the perimenopausal transition and menopause is
possible. First, we found that AMH is a reliable predictor of primordial follicle numbers in
cynomolgus monkeys [118] and therefore it can be used to identify monkeys with reduced
ovarian reserve (ROR, low follicle numbers) that may be nearing the perimenopausal transition.
Second, significant numbers (~20/100) of midlife cynomolgus monkeys with naturally
occurring ROR (low follicle counts and low AMH) exist in a managed monkey colony in
Indonesia (Pusat Studi Satwa Primata, PSSP at the Institut Pertanian Bogor, Indonesia) and
midlife and aged rhesus monkeys (~10/156) with low ovarian reserve (low AMH) exist in
domestic colonies in the Unites States. Third, we found that after 3 years of consuming a diet
comprised of animal protein and fats, in ratios and content similar to that typically consumed
by many women in industrialized societies, female cynomolgus monkeys had significantly less
primordial follicles than those fed a soy-based diet [119]. Taken together, these findings
suggest that it should be possible to identify monkeys with naturally occurring low ovarian
reserve and feed them a diet that will hasten their transition into perimenopause; thus providing
a population of monkeys in which to study the effects of reproductive aging on risk for chronic
disease.

A second approach taken by our laboratory is the creation of an experimental monkey model
of ovarian senescence (beginning with reduced ovarian reserve and progressing to
perimenopause and finally postmenopause). To mimic the experience of women, the
experimental monkey model of reproductive aging should be characterized by ovaries that are
nearly depleted of primordial follicles but retain a pool of larger, developing follicles and an
intact, androgen-producing stroma. The use of the chemical, 4-vinylcyclohexene diepoxide
(VCD), has been shown to selectively destroy primordial and primary follicles in rodents while
leaving the stroma intact [5]. Consequently, our research has been focused on translating the
rodent model to NHPs (macaques) [120,121]. Preliminary data from our laboratory indicate
that treatment of monkey ovaries with VCD markedly reduces primordial follicles while
preserving larger estradiol- and testosterone-producing follicles and ovarian stroma, a
condition that mimics the early stages of reproductive aging in women (unpublished data –
submitted for publication February 2010). The advantage of the experimental perimenopausal
monkey model is that it can be applied to monkeys of all ages, removing age as a confounding
variable and allowing the disentanglement of hormonal and age related effects on risk for
chronic disease.

Conclusion
Postmenopausal women are at increased risk for chronic disease (e.g. coronary heart disease,
cognitive decline, bone loss and metabolic syndrome). It has been hypothesized that the
hormonal dysregulation that occurs in the years leading up to menopause (perimenopause) may
play a role in the initiation of risk factors for the aforementioned diseases and that interventions
(pharmacologic, lifestyle, etc.) initiated during the perimenopause could markedly decrease
postmenopausal disease burden. To further understand the relationships among reproductive
aging, ovarian senescence and chronic disease risk, an appropriate animal model is needed.
Studies of naturally peri- and postmenopausal NHPs indicate that they have a nearly identical
pattern of hormone dysregulation to women. Consequently, peri- and postmenopausal NHPs
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are the most suitable animal model to help clarify the impact of the perimenopausal transition
on the trajectory of risk for chronic disease. Although large numbers of naturally
perimenopausal and menopausal nonhuman primates are not available for research at present,
alternative experimental approaches that have the potential to hasten the onset of the
perimenopausal transition hold promise for the future availability of such models.
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