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Abstract
Apoptosis is the best-characterized form of programmed cell death (PCD) and is of fundamental
importance in tissue homeostasis. In mammalian systems, there are two major pathways that are
involved in the initiation of apoptosis: the “extrinsic” death receptor pathway and the “intrinsic”
mitochondrial pathway. Although these pathways act independently to initiate the death machinery
in some cellular systems, in many cell types, including numerous tumor cells, there is delicate
coordination and cross talk between the extrinsic and intrinsic pathways, which leads to the activation
of the executioner caspase cascade. Additionally, there appears to be a fine balance between the
caspase-mediated arm of death receptor signaling that engages mitochondria and the caspase-
independent arm that promotes vacuole proliferation in many cells. Here, we review our current
knowledge about the layers of complexity that are posed by the interactions between death receptor-
induced pathways and how they influence mitochondria to regulate cellular life and death decisions.

Keywords
death receptors; mitochondria; Bid; membranes; phospholipases; cardiolipin

INTRODUCTION
Apoptosis, or programmed cell death, is an evolutionarily conserved mechanism for the
selective removal of aging, damaged or otherwise unwanted cells.1–7 It is an essential
component of many normal physiological processes such as embryogenesis, normal tissue
development and the immune response.8 Thus, regulation of apoptosis is critical for tissue
homeostasis and its deregulation can lead to a variety of pathological conditions. Inhibition of
apoptosis or resistance to apoptosis contributes to carcinogenesis and chemoresistance.2,9–14

On the other hand, enhanced apoptosis is involved in diverse diseases such as myocardial
ischemia, neurodegenerative diseases, stroke, septic shock and AIDS.11,12

Apoptosis is primarily mediated through the activation of specific proteases called caspases
(cysteinyl, aspastate-specific proteases).2,3,15–17 Caspases are effectors of cell suicide and
cleave multiple substrates leading to biochemical and morphological changes that are
characteristic to apoptotic cells.5,7 These alterations include cell membrane re-modeling and
blebbing, exposure of phosphatidylserine at the external surface of the cell (PS), cell shrinkage
with cytoskeletal rearrangements, nuclear condensation and DNA fragmentation.1,3,11,18–20

These morphological changes culminate in the formation of apoptotic bodies that are normally
eliminated by phagocytosis.21,22 In mammalian systems, the “extrinsic” death receptor
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pathway and the “intrinsic” mitochondrial pathway are the two major signaling systems that
result in the activation of the executioner caspases, and the consequent induction of cell death.
2,3,5,7,18 In the past few years, increasing evidence indicates that the death receptor and
mitochondrial pathways are not isolated systems. Instead significant cross-talk and
‘biofeedback’ regulates the apoptotic machinery.7,9,23,24 In this review, we discuss some
recent insights into the interconnections between these apoptotic pathways.

THE DEATH RECEPTOR PATHWAY OF APOPTOSIS
The extrinsic apoptotic pathway is activated upon the binding of cytokine ligands (i.e., FasL,
TNF and TRAIL) to members of the TNFα receptor super-family, which are usually called the
death receptors (i.e., Fas, also called CD95/Apo-1; TNF receptors; TRAIL receptors).2,3,7,
18–20 Death receptors contain an intracellular globular interaction domain known as a death
domain (DD). Death receptors aggregate at the cell surface following ligand binding to their
extracellular domains—possibly to form trimers. This results in the recruitment of adaptor
molecules to the aggregated intracellular domains of the receptors. One of the major adaptors
to be recruited is Fas Associated Death Domain, FADD, which possesses a DD that interacts
either directly with the DD of death receptors, or indirectly through another adaptor molecule,
TRADD (TNF Receptor Associated Death Domain). FADD also contains a second protein
interaction domain, known as the Death Effector Domain (DED). The DED domain of FADD
interacts with the DED of the weakly active zymogen, pro-caspase-8, to form an intracellular
multi-protein complex known as the Death Inducing Signaling Complex (DISC).26–30 Once
formed, the DISC promotes the proximity-induced activation of caspase-8, which then
proceeds to be further processed via an auto-proteolysis mechanism.31,32 Whether still bound
to the DISC or released in other intracellular compartments, active caspase-8 activates
executioner/effector caspases, such as caspase-3, leading to cell execution via degradation of
the nucleus and other intracellular structures.18,29,33,34 This direct activation of caspase-
dependent cell execution, which does not require mitochondria, is believed to occur in select
cell types, including thymoctyes, that are classified as Type I cells.27,33,35 These cells are able
to efficiently activate caspase-8, so that its major target is downstream cleavage and consequent
activation of executioner caspases such as caspase-3. This simplified pathway of Type I cells
plays an important role in the immune response that is involved in the deletion of transformed
cells9,36 and resembles the linear pathway of developmental cell death established in genetic
studies of C. elegans.37,38 Nonetheless, programmed cell death (PCD) in C. elegans is distinct
in that Bcl-2/Ced-9 is unable to block caspase activation following death receptor stimulation
in Type I cells.18,39 Consequently, the simplified extrinsic pathways of mammalian Type I
cells is likely to result from a reductionist pattern of evolution.

THE MITOCHONDRIAL PATHWAY OF APOPTOSIS
Mitochondria are now thought to be the central intracellular organelles involved in mediating
the majority of apoptotic pathways in mammalian cells.25,40–44 In general, mitochondria are
engaged via the intrinsic pathway of cell death, which can be initiated by a variety of stress
stimuli including UV radiation, γ-irradiation, heat, DNA damage, the actions of some
oncoproteins and tumor suppressor genes, viral virulence factors, and most chemotherapeutic
agents.40 These diverse forms of stress are sensed or decoded by multiple cytosolic or intra-
organellar molecules, which then transduce the signals to mitochondria, resulting in alterations
of the outer mitochondrial membrane (OM).25,42,43,45,46 This initial ‘scarring’ of the OM leads
to increased permeability to proteins that are normally trapped between the OM and the inner
mitochondrial membrane (IM), thus enabling these proteins to escape the mitochondria and
diffuse into the cytosol. The IM is a highly convoluted, protein-rich membrane with unusual
lipid composition.25,44–47 Oxidative phosphorylation (oxphos) takes place within the IM.25,
48,49 Because of the crucial importance of oxphos in producing cellular ATP, which is also
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essential for apoptosis signaling (apoptosome formation, see below), genuine apoptotic stimuli
normally do not affect the properties of the IM. However, a number of drugs and agents are
able to activate a multiprotein complex that promotes the formation of a large channel in the
IM, the so-called permeability transition pore (PTP).25,42,48–50 Changes in mitochondrial
membrane potential—ΔΨm—the energy source of oxphos—are often observed in apoptotic
cells and are interpreted to derive from the PTP opening. However, most frequently these
changes occur after the initial loss of OM permeability, thereby reflecting a mixture of caspase-
mediated and caspase-independent damages, including the opening of the PTP.43

The first, and likely the most important, event in the intrinsic pathway of apoptosis is the loss
of OM integrity and consequent release of mitochondrial proteins. Among the various proteins
that leak out of mitochondria,51,52 a few, such as cytochrome c, play a prominent role in
promoting the caspase cascade of cell execution, and are cumulatively called ‘apoptogenic
factors.’ There appears to be a hierarchical release of apoptogenic factors during cell death
signaling, with cytochrome c, Omi/Htr2A and Smac/Diablo being released first with seemingly
comparable kinetics.51 The subsequent release of AIF (apoptosis inducing factor) and
endoG53,54 is linked to more severe damage of mitochondrial membranes, including IM
alteration. It is important to note that a direct apoptogenic role has only been demonstrated for
cytochrome c. Specifically, cytochrome c is indispensable for the activation of Apoptosis
Protease Activating Factor-1 (Apaf-1) and subsequent formation of the apoptosome—the
ultimate cellular ‘death machine’.54

The apoptosome works like a large platform for recruiting and facilitating the self-activation
of pro-caspase-9, the apical caspase of the intrinsic pathway of apoptosis.55–61 There is a clear
similarity in the activation of caspase-8 by the DISC and the activation of caspase-9 by the
apoptosome, in that both systems rely on large multiprotein complexes to promote local
accumulation of zymogens that initiate an auto-catalytic process of caspase activation.55–61

The apoptosome, however, requires additional regulatory factors to fully activate the caspase
cascade. Included amongst these factors is Smac/Diablo, a protein that is able to interact with
several Inhibitor of Apoptosis Proteins (IAP’s) and dislodge them from their inhibitory
interaction with pro-caspase-9 and other caspases.58–61 As aforementioned, Smac/Diablo is
also present in mitochondria (directly attached to the OM) and is efficiently released as soon
as OM integrity is perturbed following intrinsic cell death stimuli.51,59 There is an important
evolutionary parallel between the action of Smac/Diablo and death genes in Drosophila.62 For
instance reaper acts by sequestering IAP’s from their constitutive inhibition of pro-caspases.
63–66 However, it is not understood why reaper and similarly acting genes are not located in
insect mitochondria, while Smac/Diablo is normally sequestered within these organelles in
mammalian (and presumably other vertebrate) cells. This separation might reflect the
recruitment of mitochondria in the fundamental system of cell suicide of vertebrate cells.

There is some debate regarding the apoptogenic role of some proteins that escape mitochondria
during cell death, in particular AIF and Omi. Genetic defects in these proteins induce a
phenotype comparable to that of mitochondrial diseases,65,67–69 rather than the reduction in
cell death that would be expected following ablation of a genuine pro-apoptotic action, cf.
Apaf-1 knockout.70 It is thus possible that both AIF and Omi are normally required for
mitochondrial homeostasis and that once OM permeability is increased, they ‘accidentally’
leave mitochondria and redistribute to other compartments. They may then contribute to some
fine-tuning aspects of downstream execution. Hence, the relevance of these and other (e.g.,
Endo G) mitochondrial proteins to death receptor-mediated apoptosis is likely to be minimal.

In the great majority of cells (Type II cells), extracellular death signals engage mitochondria
in a way that is fundamentally equivalent to the intrinsic pathway.4,7,16,35 In these cells, signals
emanating from the activated DISC bifurcate into two arms, one of which directly engages
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mitochondria via a sequence of events that are mediated by the apical caspases (8 and 10).
Whereas the major target of active caspase-8 in Type I cells is caspase-3 and other executioner
caspases, caspase-8 activation is slower or less efficient in type II cells and promotes the
cleavage of non-caspase substrates such as Bid, as discussed further below. While caspase-8
is being slowly activated and begins to cleave these intracellular ‘messengers’ of mitochondrial
engagement, a second signaling pathway is initiated by the DISC.7,71 This pathway involves
the action of RIP, a serine kinase, and perhaps other ill-defined factors that regulate a caspase-
independent sequence of events that lead to vacuole-mediated cell death.71–73 This is especially
true when caspase-8 activation is blocked.74–78 Caspase-independent death signaling is
particularly evident in the presence of peptide inhibitors of caspases, such as z-VAD, and
produces a cellular morphology that is comparable to autophagic cell death.74,75 A similar
morphology is often described as ‘necrotic’ in TNF or Fas-mediated death of certain cell types,
wherein caspase-8 is either inactivated or not engaged.77,79 This ‘necrotic’ cell death pathway
is becoming an increasingly hot topic in apoptosis research, and warrants additional discussion.

VACUOLE-MEDIATED CELL DEATH (NECROSIS): THE OLDEST WAY TO
CELL SUICIDE?

In many Type II cells, there appears to be a fine balance between the caspase-mediated arm of
death signaling that engages mitochondria and the caspase-independent arm that promotes
vacuole proliferation, with at least two points of mutual regulation. Specifically, cleavage of
RIP by caspase-8 results in the inactivation of the downstream cascade that promotes vacuole
proliferation, thereby shutting down the caspase-independent pathway.72 A second subtler
point is that the engagement of mitochondria appears to occur prior to overt activation of
caspase-8 and affects membrane lipids rather than specific protein targets.25,43–45,47 In
essence, caspase-independent reactions mediated by the DISC promote an alteration in the
homeostasis of phosphatidylcholine (PC), the major membrane lipid in cells. This leads to a
cascade of metabolic effects on other lipids, including the mitochondrial lipid cardiolipin (CL),
which is crucial for mediating the pro-apoptotic action of Bid and its cleaved form, tBid. Hence,
the caspase-independent arm meets the caspase-dependent arm of death receptor signaling at
the level of the mitochondrial membrane lipids (Fig. 1), and proceeds to converge into effective
permeabilization of the OM and perturbation of mitochondrial structure and function. In this
respect, death receptor-mediated apoptosis has a double-hit way of attacking mitochondria to
facilitate the release of their apoptogenic factors and thus amplify the cascade of cell execution.
Therefore, OM perturbation is effectively the central cross-road at which various pathways for
mammalian cell suicide intersect.

The fact that mitochondria appear to not be involved in the developmental cell death of
Drosophila and C. elegans cannot be used as an argument to disqualify the pivotal role of
mitochondrial membranes in vertebrate pathways of cell death.8 It may well be that the
simplified systems observed in invertebrates represent either deviations or over-simplifications
of older pathways that have evolved since the symbiotic events that led to the emergence of
eukaryotic cells.80,81 The ancestral method of programmed cell death that is observed in
unicellular organisms, such as the slime molds, involves vacuole proliferation and massive
autophagic degradation80,81 with morphological features that are similar to caspase-
independent, death-receptor induced cell death of mammalian cells.74,77,82–85 It appears the
main reason that this vacuole-mediated form of PCD has been generally qualified as ‘necrotic’
76,77,82,85 is that these cells become positive for propodium iodide staining, which is the
conventional assay of plasma-membrane integrity. Although the same staining is obtained from
injured cells that undergo uncontrolled ‘classical’ necrosis (characterized by a large swelling
of mitochondria and other organelles), cells that die by vacuole-mediated PCD mechanisms
do not succumb to the same necrotic morphology. In particular, their mitochondria are
progressively degraded by vacuoles or by autophagic organelles and they maintain oxphos
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function for prolonged times.76,77,82,85 Therefore, the uptake of membrane impermeable dyes
like propidium iodide by mammalian cells that are dying via caspase-independent mechanisms
reflects enhanced endocytosis and membrane traffic linked to vacuole proliferation.
Subsequent lysis of the internalized, dye-filled endocytotic vacuoles will produce intracellular
staining, even if the overall integrity of the cell membrane surface has not been compromised.
In other words, the dynamics of membrane traffic will be dramatically altered in autophagic
cells in comparison to cells dying from caspase-mediated mechanisms. In support of this
possibility, increasing evidence shows that death receptor signaling induces enhanced
endocytosis in a variety of cell types, and that caspase-8 is able to regulate some key steps in
membrane traffic and receptor internalization.86–89 Future studies will clarify the importance
and the relevance of endocytic membrane traffic in death receptor mediated apoptosis,
especially with respect to the engagement of mitochondria and their membranes.80

BID: A LINK BETWEEN THE INTRINSIC AND EXTRINSIC PATHWAYS
OM permeability and the mitochondrial pathway are crucially regulated by diverse pro- and
anti-apoptotic members of the Bcl-2 family.90 The anti-apoptotic members include Bcl-2, Bcl-
XL and Mcl-1, whereas the pro-apoptotic members encompass Bax and Bak, as well as the
BH3-only proteins, Bid and Bim.91 In particular, mitochondria are targeted by key pro-
apoptotic proteins such as Bax and Bid.25,92–95 Bid is a potent pro-apoptotic protein that is
normally located in the cytosol, but also shuttles through the surfaces of intra-cellular
membranes due to its intrinsic lipid-interacting capacity. Upon cleavage by caspase-8, cleaved
Bid (and in particular its C-terminal fragment, tBid) acquires a strong propensity to bind to
mitochondria, where it promotes effective OM permeabilization and the release of apoptogenic
factors.92,93,96 The mitochondrial ‘receptor’ for caspase-cleaved Bid is considered to be
cardiolipin (CL), a mitochondrial lipid, or metabolites of CL.25,44–46

Although it is now generally accepted that tBid constitutes the fundamental link between the
DISC and mitochondria,92 some observations suggest that parallel signals could be delivered
to mitochondria during death receptor-mediated apoptosis. Analysis of mitochondrial
membrane permeability after ex vivo activation of Fas in murine primary tissues has indicated
that OM damage leading to the initial release of cytochrome c occurs prior to overt activation
of caspase-8.97 In addition, it is now clear that induction of apoptosis by caspase-8 is amplified
through mitochondrial release of cytochrome c.98 In a recent paper,99 Bax was demonstrated
to be absolutely required for TRAIL-induced apoptosis, whereas a second report showed that
Fas-induced apoptosis is independent of Bax.100 Moreover, additional evidence indicates that
the DISC produces early responses that appear to be caspase-independent.101,102 Excluding
the mentioned insights regarding phospholipid metabolism, the mechanism by which
alternative pathways emanating from death receptors reach mitochondria remains essentially
unknown.

ADDITIONAL SUBSTRATES OF APICAL CASPASES THAT TRANSMIT
DEATH SIGNALS TO MITOCHONDRIA

Besides Bid and possibly other BH3-only members of the Bcl-2 family, a few other non-caspase
substrates of apical caspases have been reported to promote the engagement of mitochondria
in the process of death receptor-mediated apoptosis. One recent example is BAP31, a
membrane protein that is involved in the export of glycosylated proteins103 and is cleaved by
caspase-8.104 BAP31 is usually considered to be an ER resident protein, but is also clearly
present in the Golgi of primary tissues,105 presumably reflecting constitutive trafficking of ER-
Golgi Intermediate Compartment (ERGIC) vesicles.103 Although some Golgi proteins have
been recently found to be substrates of executioner caspases,106 only BAP31 appears to be a
specific target of apical caspases that are activated by death receptors.103 Cleavage of the
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cytosolic coiled-coil domain of BAP31 induces pro-apoptotic activity that is transmitted to
mitochondria and seems to involve increased membrane fission.107 This has generated the
‘two-hit model’ for caspase-8-dependent alteration of mitochondria, wherein one hit is
mediated by BAP31 and the other by Bid.107 The model implies that other ERGIC-associated
proteins could transmit damage to mitochondria. This is likely to be dependent on the cleaved
coiled-coil domain of BAP31 recruiting similar coiled-coil proteins with membrane-tethering
or fusion properties.80 Our unpublished results, however, do not sustain this possibility. These
studies indicate that cleavage of BAP31 may be a late event in Fas-mediated apoptosis. Future
studies will establish the precise role, if any, of BAP31 and other non-mitochondrial membrane
proteins in the modulation of death receptor-mediated apoptosis.108

LIPID DEGRADATION IN APOPTOSIS SIGNALING
As was summarized in a recent review by MacEwan,109 phospholipase activation has long
been considered to be involved in death receptor-mediated apoptosis. The protective effects of
PLA2 inhibitors in TNF-mediated cell death in vivo are similar to the initial findings regarding
Ca-dependent phospholipase A2 (cPLA2).110 Phosphorylation by stress kinases can activate
cPLA2, contributing to caspase-independent lipid degradation reactions. However, cPLA2 is
also known to be inactivated by caspase cleavage,109,111 thereby providing another example
of cross-talk between the caspase-driven and the caspase-independent bifurcation of death
receptor signaling. Several other lipid degrading enzymes have been reported to be engaged
in death receptor-mediated apoptosis, including Ca-independent PLA2 (iPLA2),111,112 PC-
specific PLC,113,114 phosholipase D115 and sphingomyelinases.116–119 To date, none of these
enzymes have been found to be indispensable for apoptosis induction, especially in vivo.
Moreover, mammalian PC-PLC has yet to be identified at the molecular level. However, it is
likely that multiple lipid-degrading reactions follow the initial alteration in lipid metabolism,
particularly of PC (Fig. 1).80 Furthermore, various lipid degradation reactions, including that
typical of sphingomyelinases, are facilitated by the enhanced traffic of endocytic vesicles and
lysosomal vacuoles that is promoted by death receptor activation.88 The most upstream
reactions emanating from death receptors, which then trigger the cascade of metabolic changes
in membrane lipids remains to be identified.

MITOCHONDRIA AND CANCER TREATMENT
Defective apoptosis is one of the hallmarks of tumorigenicity and is implicated in multiple
stages of cancer development and progression.2,14,120 Additionally, the ability of tumor cells
to evade apoptosis plays a significant role in promoting resistance to conventional
chemotherapy and radiation therapy.7,9,10,12,121,122 Many oncogenes that deregulate the cell
cycle also trigger apoptosis to eliminate cells that are proliferating inappropriately. As
mitochondria play important roles in cellular energy metabolism, free radical formation and
programmed cell death, defects in mitochondrial function are suspected to contribute to the
development and progression of cancer and to resistance to therapy.110,123–129

The role of mitochondria in cellular energy metabolism was reported by Warburg over half a
century ago and was termed the “Warburg effect.” The Warburg effect indicated that a key
event in carcinogenesis is the development of an “injury” to the respiratory machinery.130 This
results in compensatory increases in glycolytic ATP production to satisfy the energy needs of
malignant cells. Preferential reliance on glycolysis over the more energetically efficient process
of oxidative metabolism has been correlated with tumor progression in several cancer types.
131 Since the initial report of the Warburg effect, a number of cancer-related mitochondrial
defects have been identified.110,128,129,132 These defects include altered expression and
activity of respiratory chain subunits and glycolytic enzymes, changes in oxidation of NADH-
linked substrates and mutations in mitochondrial DNA. Thus, the differences in energy
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metabolism between normal cells and cancer cells constitute a biochemical basis for the
development of therapeutic strategies that might selectively kill cancer cells in their inherently
compromised respiratory state.

As mitochondria are potent integrators and coordinators of apoptotic signaling pathways,
induction of apoptosis in many cell types lead to the induction of mitochondrial membrane
permeabilization (MMP).40,128 MMP is the event that defines the point-of-no-return in most
programmed cell death models and is subject to complex regulation by pre-mitochondrial
signal transduction pathways. These pathways involve DISC-dependent and DISC-
independent mechanisms, members of the Bcl-2 family of proteins and changes in the
composition of mitochondrial membranes.4,25,40–44,50,98,125,127,128 In response to MMP, pro-
apoptotic factors are released into the cytosol to trigger the execution of cell death. Under
pathologic conditions, tumor cells escape from apoptosis and/or become resistant to treatment
by affecting various components of the apoptotic machinery and through the inhibition of
MMP.124,125,127,129 Therefore, targeting and overcoming abnormalities in tumor cells that
suppress MMP could generate a potent pro-apoptotic stimulus. Moreover, since MMP is a
relatively early event in the apoptotic program, methods to detect this process can be useful in
assessing the response to chemotherapy.

CONCLUSIONS AND FUTURE PROSPECTS
Death receptor signaling to mitochondria appears to be significantly more complex than was
originally suggested by simple cas-pase-8 activation. Death receptors activate multiple
caspase-8-dependent and caspase-8-independent pathways, some of which lead to alterations
in the mitochondria. For example, death receptor induced signals modulate the activities of
signal transduction molecules and regulators of mitochondria such as Bcl-2 family proteins,
lead to changes in mitochondrial membrane lipid metabolism, induce intracellular membrane
remodeling, and instigate MMP. Together, these events promote the release of apoptogenic
factors from mitochondria. The release of these factors can also lead to diverse morphological
end points. Overt activation of caspase-8, on the other hand, leads specifically to rapid changes
in mitochondria that promote morphological alterations that are characteristics of apoptosis.
Necrosis and autophagy can also be activated in response to death receptor signaling and
provide alternative mechanisms for achieving cell death. Indeed, it is suggested that various
forms of PCD are triggered in response to cellular transformation and this provides a challenge
for tumor cell progression and invasion. A current hurdle in the field is the identification of
death receptor signaling pathways that selectively induce the apoptosis of tumor cells. Perhaps,
death receptor signaling pathways that regulate changes in mitochondrial membrane lipids and
the release of apoptogenic factors can be targets for the development of therapeutic agents.
Additionally, the alternative programmed cell death pathway, i.e., death-receptor induced
autophagy, is not well characterized and can provide a basis for tumor-selective therapeutic
targets.
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Figure 1.
An overview of the extrinsic and intrinsic pathways leading to programmed cell death.
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