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We examined neural spike recordings from prefrontal cortex (PFC) while monkeys performed a delayed somatosensory discrimination
task. In general, PFC neurons displayed great heterogeneity in response to the task. That is, although individual cells spiked reliably in
response to task variables from trial-to-trial, each cell had idiosyncratic combinations of response properties. Despite the great variety in
response types, some general patterns held. We used linear regression analysis on the spike data to both display the full heterogeneity of
the data and classify cells into categories. We compared different categories of cells and found little difference in their ability to carry
information about task variables or their correlation to behavior. This suggests a distributed neural code for the task rather than a highly
modularized one. Along this line, we compared the predictions of two theoretical models to the data. We found that cell types predicted
by both models were not represented significantly in the population. Our study points to a different class of models that should embrace
the inherent heterogeneity of the data, but should also account for the nonrandom features of the population.

Introduction

Neural circuits have the amazing capacity to assimilate informa-
tion on-the-fly and to perform computations on dynamically
stored information (Fuster, 1973; Miller et al., 1991; Kojima and
Goldman-Rakic, 1982; Shadlen and Newsome, 2001). The pre-
frontal cortex (PFC) is believed to be a key area in coordinating
cognitive demands involving dynamically stored information
(Fuster, 2001; Miller and Cohen, 2001). It is known to show
sustained activity in short-term memory tasks (Fuster and
Alexander, 1971; Funahashi et al., 1989; Miller et al., 1991), en-
code reward expectancy (Watanabe, 1996; Leon and Shadlen,
1999), and integrate stimulus identity and location (Fuster et al.,
1982; Rao et al., 1997). Given its myriad functions, it comes as no
surprise that PFC neurons should have complex response prop-
erties (Miller, 1999).

Delayed discrimination tasks require the rapid storage of
information in short-term memory followed by a computa-
tion in which this memory, in combination with a current
sensory stimulus, is used to inform decisions about action.
One set of experiments (Romo et al., 1999; Romo and Salinas,
2003) has previously looked at the neural signature of such a
memory-to-action transformation in macaque monkeys per-
forming a delayed somatosensory discrimination task. Neu-
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rons recorded from PFC (Romo et al., 1999), medial premotor
cortex (MPC) (Hernédndez et al., 2002) and ventral premotor
cortex (VPM; Romo et al., 2004) showed activity correlated to
stimulus values, memory, and decision outcome. In other
words, they showed activity related to the entire memory-to-
decision transformation.

Previous reports of these PFC data during the delayed vi-
brotactile discrimination task have described it during the first
stimulus (f1) and delay periods (Romo et al., 1999; Brody et
al., 2003). Here, we have two major goals. First, we report on
the neural spike data in PFC during the f2/decision period,
paying particular attention to the relationship between neuro-
nal response properties during f2 and response properties dur-
ing the delay period and fl. Across the population, PFC
displays a great heterogeneity in the response property rela-
tionships. We will, despite this, also emphasize the many reg-
ularities in the data.

Our second goal is to examine how well the specifics of re-
sponse property distributions match two previous, competing,
computational models of the memory-to-decision transforma-
tion in this task. These two models were devised by disjoint sub-
sets of the current authors, and make clearly distinct predictions
and assumptions about neural response properties. Using uni-
form criteria across the two models, we analyze the data from
PEC to examine how many recorded neurons satisfy the criteria
laid down by each of the models.

Finally, in the Discussion section, we consider possible mod-
ular architectures with which to model these data. None of the
modular architectures we consider seems to fit the data well. We
conclude that nonmodular circuits, in which information repre-
sentation is spread across neurons in a multiplexed manner, may
be the best direction to explore in future models.
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Materials and Methods

Behavioral task. The behavioral task has been reported previously (Romo
etal., 1999; Romo and Salinas, 2003). Briefly, the task requires comparing
two vibrotactile frequencies, separated by a fixed 3 s delay, and applied
sequentially to a fingertip (see Fig. 1 A). The subject must report a binary
decision about whether the f1 had a higher, or lower, vibration frequency
than the second stimulus (f1>f2? Y or N). That is, to perform the task,
the subject must a) perceive and represent the value of frequency f1; b)
store the value of f1 in short-term memory during the delay period; and
¢) compare the second stimulus value (f2) to the one stored in memory,
resulting in a binary decision.

Regression. Before 2 is presented, we model the spike rate of each
neuron as follows:

r(t) = ay(t) + ﬂl(t)fh (1)

where r(t) is the value of the PSTH at time ¢ and a, is the baseline
regressor and a, is the f1 regressor. We call (1) the reduced model. The
full model is described by the following:

r(t) = by(r) + bl(t)fl + bz(t)fb (2)

where b, is the baseline regressor, b, is the f1 regressor, and b, is the f2
regressor. The full model (2) applies after the onset of £2, from ST2 and
beyond. PSTHs were constructed in a way such that only spikes within an
epoch are included in its calculation, and PSTHs were calculated at 25 ms
intervals.

The firing rate of some neurons in this dataset is better fit with a linear
function followed by a sigmoidal nonlinearity (Brody et al., 2003), see
supplemental Methods, available at www.jneurosci.org as supplemental
material. However, our main focus in this paper is on the firing rate
dependence on fl and f2, namely, the b, and b, parameters, and in
particular, the direction of the vector formed by b, and b,.

As we show in the supplemental Methods (available at www.jneurosci.
org as supplemental material), the direction of this vector is very similar
for the purely linear (Eq. 2) and the sigmoidal fits (see supplemental Fig.
$3 and supplemental Eq. S1, available at www.jneurosci.org as supple-
mental material). None of the qualitative conclusions of the paper
change if we use sigmoidal as well as purely linear fits. For simplicity and
for consistency in fitting all neurons in the same way, we report here the
results using linear fits.

Significance of regression. For the reduced model, each value of the
time-dependent regression coefficient, a, (¢) was considered significant if
it passed a t test at p << 0.01. Significance for the full model is more
complicated because the location of the regression on the b,-b, plane
must be considered. More specifically, we must consider the uncertainty
in the regression point which will be an ellipsoid specified by the joint
confidence region (JCR) given as follows:

(B(1) = b())X'X(B®) — b(1) = psOF(p,v,1—a), (3)

(Draper and Smith, 1981) where F(:) is the 1-a (e.g., 0.95 or 0.99) per-
centile of the F-distribution with p = 3 parameters and v = N — p
degrees of freedom, where N-is the number of trials (data points) used in
the regression. The time-dependent value s(t) = (£7(£)&(t))/(Ny.p) is
an unbiased estimate of the variance, where £&(t) = Xb™(¢) — r(¢) is the
residuals from regression (assumed to be independently, identically, and
normally distributed). The column vector b(t) = [by(t) b,(t) b,(1)] Tis
the center of the ellipsoid in the coordinates described by B = [B, B,
B,]". X is the regression model given by the following:

1 flu)_il ﬂl)_ﬁ
% ffz)fﬁ fz(z)._fz

1 f](NT) _ ﬁ fZ(NT) _ E

where the matrix has a row for all N trials and where the bars over f1 and
{2 indicated the mean values across all trials for the given cell.

Since we are interested in finding the significance of the b, and b,
coefficients only, we set B,(t) = b,(t). In other words, the ellipsoid sur-

> (4)

J. Neurosci., January 20, 2010 - 30(3):916-929 + 917

face defined in (3) is projected as an ellipse in the 8,-B, plane. The
boundary can be reduced to the following quadratic equation:

AB\(1)2S1) + ABy(1)*S5, + 2AB(DAB,(1)S 1, = Koy (5)

where K, Epsz(t)F( pyvl—a), ABj =B, and

forj=1,2and

S = j(fl(i)i ]Tl)(f(zi)* )Tz) (7)

We want to test whether each regression point is significantly different
from the origin and significant to f1, f2, or f1 —f2. This is accomplished by
testing whether each regression point obeys or violates (4) under each
condition. For significance from the origin, we set 3, = 8, = 0 and tested
(4) at the 99% confidence level, i.e., @ = 0.99. For significance to {1, {2, or
f1—12, we must test (4) to the lines defined by B, = 0 (see Fig. 1C,
horizontal green line), B, = 0 (see Fig. 1C, vertical blue line), and 8, =
— B, (see Fig. 1C, diagonal red line) respectively. In order for a point to be
considered significant to a line, it must obey (4) at the 95% level for one
of the lines, and violate (4) at the 99% level for the other two lines. In
other words, a point must regress significantly close to one of the lines at
the 95% confidence level, but must regress far from the other lines at the
99% confidence level. We also tested significance to the line 8, = B,.
However, due to the shape of most JCRs—an ellipse with the major axis
perpendicular to this line—and due to the crowding of significance lines,
we did not require exclusivity to this line. Therefore, it is possible for a
point to be simultaneously significant to f1 or f2 and f1+12.

Categorization. Using the individual significances of each bin, we ap-
plied a uniform criteria for both models to determine the encoding type
of each cell. We used the regression analysis described above and applied
a set of thresholds on the number of bins where the f1 regressor and/or
the f2 regressor was significantly different from zero for each task epoch.
Significance of regression coefficients for each bin was determined using
the methods described above in Significance of Regression.

For the f1 period and the delay period, i.e., before 2 is presented, we
used the regression model defined in (1) and counted the number of bins
where the f1 regressor a, (t) was significantly different from zero. After f2
presentation, we applied the model defined in (2) and counted the num-
ber of bins where the f1 regressor b, (t) and the 2 regressor b,(t) (we will
henceforth drop the explicit reference to time dependence in the coeffi-
cients) significantly regressed to f1, 2, f1 — {2 (comparison), or f1+12; see
Significance of regression above for details.

PSTHs for categorizations were generated by convolving spike trains
with a Gaussian kernel with SD 50 ms during f1 and f2 periods and 150
ms during the delay period. PSTHs were sampled every 25 ms. Gaussian
kernels were truncated and normalized at task epoch boundaries; there-
fore, for example, spikes from the f1 presentation could not contribute to
f1 significance to a bin located in the delay period.

For the f1 period, a cell was considered f1-sensory encoding if a, was
significant ( p < 0.01) in more than half of the bins (>5/10) in the middle
250 ms of fl stimulus presentation (125-375 ms). The cell was called
positively (negatively) f1-sensory encoding ifa; > 0 (a; < 0) in all bins
where a, was significant. If any of the significant bins had opposite signs, we
labeled the cell as sign-switching. Using this criteria, we found that 361/912
(179 negative, 171 positive, 11 sign-switching) cells were categorized as f1-
sensory encoding during the f1 stimulus period. Shuffling f1 labels in the
regression produced 3/912 (2 negative, 1 positive, 0 sign-switching) cells
categorized as f1-sensory encoding during the f1 stimulus period.

The situation for the delay is more complicated because cells show
time-dependent activity related to f1 (Brody et al., 2003). Therefore, we
broke up the delay period into six sections of 500 ms each (20 bins per
section). To be called f1 memory encoding, a cell had to have a, be
significant in more than half of the bins (>10/20) in one or more of the six
sections. Positive (negative) f1 memory encoding cells were defined as
those where a, > 0 (a; < 0) in all bins where a, was significant. If any of
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the significant bins had opposite signs, we labeled the cell as sign-
switching. Using this criteria, we found that 455/912 (198 negative, 240
positive, 17 sign-switching) cells were categorized as f1 memory encod-
ing during the delay period. Shuffling f1 labels in the regression produced
28/912 (17 negative, 11 positive, 0 sign-switching) cells categorized as f1
memory encoding during the delay period.

In addition to defining cells as explicitly f1 memory encoding during
the delay, we are also interested in finding cells that are explicitly not f1
memory encoding during the delay. Therefore, we looked for cells whose
a, were not significantly different from zero ( p > 0.01) in >80% of bins
(>16/20) in all six segments of the delay period. We found 358/912 cells
categorized as explicitly not f1 memory encoding during the delay pe-
riod. Shuffling 1 labels in the regression produced 837 of 912 cells cate-
gorized as explicitly not f1 memory encoding during the delay period.

During the second stimulus, the monkey receives f2 so we must con-
sider that the activity of cells can encode some combination of f1 and f2.
Knowing whether the regression coefficients, b, and b, from the regres-
sion model (2), are significantly different from zero does not provide
enough information; a cell can regress to an ambiguous mixture of f1 and
f2 (see Significance of Regression above). We want to know specifically
whether each cell’s activity regresses significantly to f1, f2, or f1—f2. We
therefore tested the significance of regression coefficients using the joint
confidence regions of b, and b, as described in Significance of regression
above.

In general, it is more difficult to meet the significance criteria estab-
lished for the full (f1,f2) regression model (2). Therefore, we lowered the
threshold in the number of significant bins. For a cell to be f1 memory
encoding during the f2 stimulus period, a cell had to significantly regress
to f1 in >20% (>2/10) of bins during the middle 250 ms of the f2
stimulus period (125-375 ms of f2 presentation). Similarly, for a cell to be
f2-sensory encoding, a cell had to significantly regress to 2 in >20%
(>2/10) of bins during the middle 250 ms of the f2 stimulus period. For
a cell to be comparison encoding, a cell had to significantly regress to
f1—1f2 in >20% (>2/10) of bins during the middle 250 ms of the f2
stimulus period. And for a cell to be f1+2 encoding, a cell had to signif-
icantly regress to f1+f2 in >20% (>2/10) of bins during the middle 250
ms of the 2 stimulus period. Cells could be considered encoding more
than one of the above at different times. For example, a hypothetical cell
that had 3 bins significant to, say, f1 from 125 to 200 ms into {2 presen-
tation and later had 4 bins significant to, say, f1—{2 from 275 to 375 ms
would be considered both f1 memory encoding and comparison encod-
ing. Determining sign of the regression is similar as in earlier epochs. A
cell is called positive (negative) fl memory encoding during f2 presenta-
tion, if b; > 0 (b, < 0) in all f1-significant bins. If b, had opposite signs in
f1-significant bins, the cell was called sign-switching. A similar criteria
held for f2-sensory encoding cells, with positive (negative) sign for b, >
0 (b, < 0) in all f2-significant bins. For comparison encoding, sign was
positive (negative) for b, — b, > 0 (b, — b, < 0) in all comparison
significant bins. Note: positive comparison encoding cells prefer trials
where f1 — 2 > 0, i.e., “yes” trials; negative comparison encoding cells
prefer trials where f1 — 2 <0, i.e., “no” trials. And for f1 + {2 encoding
activity, sign was positive (negative) for b, + b, >0 (b, + b, < 0) in all
comparison significant bins. Using this criteria, we found: 79 of 912 (28
negative, 51 positive, 0 sign-switching) f1 memory-encoding cells during the
f2 stimulus period, 117/912 (48 negative, 69 positive, 0 sign-switching) f2-
sensory encoding cells, 398/912 (216 negative “no”, 178 positive “yes”, 4
sign-switching) comparison encoding cells, and 74 (10 negative, 15 positive,
49 sign-switching) f1 + 2 encoding cells. Shuffling (f1,f2) labels in the re-
gression produced: 1 0of912 (1 negative) f1 memory encoding cells during the
f2 stimulus period, 0 of /912 f2-sensory encoding cells, 0 of 912 comparison
encoding cells, and 1 of 912 (1 negative) f1 + f2 encoding cells.

For Figure 5, cells labeled “memory and decision” were the intersec-
tion of all cells that were f1 memory encoding during the delay and
comparison encoding during f2 presentation; cells labeled “decision
only” were all other comparison encoding cells.

For Figure 7, cells were counted into the different types by finding the
intersection of cells that fit the stimulus encoding predictions of each
model. For example, the Machens, Romo, Brody model predicts a cell
type that has positive f1-sensory encoding during f1 presentation, posi-
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tive f1 memory encoding during the delay, and “yes” (positive, i.e.,
+f1—12) comparison encoding during the f2 stimulus period (see Fig.
7A, left). To count the number of cells matching this model, we found
cells that met all three criteria.

Simplified categorization. The above set of strict criteria can separate
neurons into very specific categories at the expense of culling cells whose
encoding are more ambiguous. To generate a more inclusive set of crite-
ria, we placed one of three labels separately for each epoch for each cell.
During the f1 stimulus period and separately for the delay, we labeled
each cell as positive or negative f1 encoding or nonencoding. For the f2
stimulus period, we labeled each cell as “yes” or “no” decision encoding
or non-decision encoding. A single significant bin would place a cell as
encoding for that epoch whereas a nonencoding cell would need to have
zero significant bins in the entire epoch. To decide whether a cell was
positive or negative (“yes”-decision or “no”-decision) encoding, we used
a simple majority between the two encoding types; the majority of cells
encode variables with a uniform sign throughout each epoch) (see Fig. 3).
During the f2 period, we were only deciding whether cells encoded the
difference f1—f2 (f2—£1) or not. During this period, cells can encode f1,
f2, or some different combination of both; the simplified categorization
does not attempt to differentiate between these encoding types.

Population angle. To obtain the angle of the population of regression
points, we want to calculate the underlying (assumed normal) popula-
tion distribution. Each regression point itself, however, is drawn from a
probability distribution which depends on such factors as the stimulus
set used during the experiment and the amount of noise in the data.
Therefore, calculating the population distribution can be done by calcu-
lating the maximum likelihood estimate of the posterior distribution of
the population, assuming that the individual probability distributions
are priors. Specifically, we assume that each observed point is the result of
the sum of two probability distributions, one known from the regression,
the other unknown from the population:

1 !

P(b“, O'n‘B, F) = meiz(

by —B)I(I" + trn)"(er), (8)

where b, and o, refer to the mean and the covariance of the prior
probability distributions as obtained from regression and the subscript
indexes neuron 1, and B and I refer to the mean and covariance of the
unknown posterior distribution. To obtain the latter quantities, we max-
imize the following log-likelihood function:

N
L =log <H P(b,,c,|B, F)) = Nlog2m
n=1

1 T
=5 2(logll' + o/ +(b, = B)'(T + )" (b,~B)),  (9)

with respect to B and I'. There are a number of methods to accomplish
this, but we chose to directly maximize the log-likelihood using a simplex
algorithm as implemented in Matlab (MathWorks Inc.). We confirmed
that a gradient descent algorithm provides results consistent with the
simplex method. To ensure that the optimization would not produce
“unphysical” results, e.g., negative covariance or determinant, we artifi-
cially introduced a high value for the log-likelihood in those neighbor-
hoods with a gradient that pushed the algorithms toward physically
consistent values. To obtain confidence intervals for the angles, we per-
formed a bootstrap using 10,000 randomly resampled with replacement
configurations of the population.

Behavioral average choice probability. We want to compare neurons
that have both f1 memory during DEL and f1—f2 activity during ST2 to
those that have no memory during DEL and have f1 —f2 activity during
ST2, see Categorization above. More specifically, we want to know which
group of cells is better correlated with behavior. For this, we calculate the
average choice probability in spike rate between correct and error trials.
In other words, we ask what percentage of correct trials can we success-
fully classify by comparing spike rates in both conditions? For example,
for a neuron that spikes at high rates when f1>12, i.e., a “yes” neuron (see
Fig. 2), one expects it will spike at a lower rate on error trials where f1>2
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Figure 1.

The behavioral task and our standard neural data analysis method. A, Behavioral task. Monkeys are presented a brief vibrotactile stimulus (f1) (yellow background), followed by a 3 s

delay (DEL), and then another brief stimulus (f2) (light green background). After the end of the second stimulus, the subject chooses a pushbutton to report their answer to the question “f1>f2? Yes
or No.” B, Stimulus sets. Monkeys are trained using a variety of frequency pairs. The two most common frequency sets are shown; only one set is used in any given session. Within each panel, the
presence of a gray box indicates an (f1,f2) frequency pair used in the experiment. The background color indicates the appropriate response (Y or N) to that pair. Different pairs in a set are presented
in pseudorandom order during the session. €, Neural data analysis. Given that each trial type is defined by the (f1,f2) stimulus values, we analyze neural firing rates as a function of f1and f2. For each
time slicet, each neuron’s firing rate r(t) is expressed as a linear function of f1and f2, by regressing r(t) = b, (1) f, + b,() f, + b,(t). Each dot shows the values of b, (t) and b, (t) for one neuron; panels
show five selected time slices. A dot lying on the horizontal axis indicates a neuron whose firing rate depends only on f1; a dot on the vertical axis indicates a neuron whose firing rate depends only
on f2; and a dot lying on the b, = —b, diagonal indicates a neuron whose firing rate depends only on the value of f1—f2. Since the subject’s decision depends on the sign of f1—f2,
neurons whose firing rate depends on f1—f2 can be easily used to compute the appropriate decision. Dot color indicates whether the neuron can be interpreted as f1-dependent only (green), f2
dependentonly (blue), or (f1 —f2)-dependent (red; see Materials and Methods). Open black circles indicate neurons not significantly different from the origin, whereas open magenta circles indicate
significantly different from origin, but not falling into any of the green, blue, or red classes. Ellipses represent a Gaussian fit to the population data. The angle of the ellipse, measured as the clockwise

rotation of the major axis relative to the horizontal, is indicated in the upper right corer.

and spike at a higher rate on error trials where f1<<f2; one has the oppo-
site expectation for “no” neurons. Therefore, the first step in calculating
the average choice probability (ACP) is classifying each cell by its decision
preference. For the cells of interest here, this has already been done dur-
ing the categorization of cells. We then calculate the ACP of cell n and
stimulus pair k using the following:

Ne  Ne

1
BACP, (1) = 137 2 20((= D™ (r () =r,(1)),

ei=1j=1

(10)

where N_and N, are the number of correct trial and error trials respectively,
r.{t)andr,;(t) are the i th correct and j™ error trial spike rate as a function of
time respectively, and O(.) is the Heaviside-Theta function, defined as
follows:

ifx <0,

0

1.
O(x) = 5 ifx=0, (11)

1

if x> 0.

The exponent 8, ; controls the sign of the argument to the Heaviside-
Theta function and is determined by the decision encoding of the cell and
the trial type, i.e., whether f1>12 or f1<f2. It is defined as follows:

ifn € “yes’and k € f; > f,
ifn € “no”andk € f, <f,
ifn € “ves’and k € f, <f,
ifn € “no”and k € f, >f,

S = (12)

—_—0 O

>

which is to say, correct trials should have higher spike rates for “yes”
neurons when f1>f2 and for “no” neurons when f1<f2, and correct trials
should have lower spike rates for “yes” neurons when f1<f2 and “no”
neurons when f1>f2.

Monkeys can perform the task with an accuracy above 90%; therefore,
ACP is a very noisy quantity at the single neuron level. Indeed, some
neurons are recorded during sessions where the monkey does not make a

single error; the ACP is ill-defined for those cases. Therefore, ACP is
averaged over all stimulus pairs over all neurons in a given population.
Confidence intervals are obtained by bootstrapping the neural popula-
tion 10,000 times.

Spike rate discriminability. The behavioral average choice probability
attempts to correlate a neuron’s spike rate with behavior using correct
and error trials. We also want to compute how easily an ideal observer
could categorize spike rates in trials where f1>f2 (“yes”) versus trials
where f1<f2 (“no”); we do this for correct trials only. Ideally, one could
use a measure like D-prime to describe the “distance” between two dis-
tributions. However, b-prime applies to distributions that are completely
described by mean and variance. Therefore, we use the average choice
probability to calculate spike rate discriminability (SRD).

We segregated all firing rates from “yes” trials and “no” trials for each
neuron using only correct trials. To eliminate the effects of f1 memory
activity, we used trials from stimulus pairs where f1 was matched in the
“yes” and “no” trials, see middle six stimuli of Figure 1B (left). We then
calculated the SRD of neuron # using the following:

Ny Ny

1
SRD, (1) = 1 2 20((= D> (ry 6) = 1 (0),

(13)

where Ny and Ny are the number of “yes” and “no” trials respectively,
ry,;and ry ;are the i™ “yes” and j™ “no” trial spike rate respectively, and
O(') is again the Heaviside-Theta. The exponent , controls the sign of
the arguments to the Heaviside-Theta function, and is determined by the

decision encoding of neuron # using the following:

811 =

{O ifn € “yes” (14)

1 ifn € “no.”

We then bootstrap the “yes” and “no” trials 10,000 times and calculate
the SRD based on the resampled trials. The SRD for neuron # is the
median value from the bootstrap, and single neuron confidence intervals
are based on the single neuron bootstrap. When the SRD of a population
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is calculated, the median of the single neuron
bootstrap is used for each neuron. The popula-
tion itself is then resampled 10,000 times to
obtain a bootstrap of the medians of the
population.

shape/epoch key
o-pre o-del
v-f1

A-f2

Results

The transformation from sensory repre-
sentation to graded memory of the sen-
sory stimulus to decision can be seen at
the population level. It is apparent in the
orientation of the ellipse in Figure 1C,
which describes the f1 and {2 dependence
of the population for five different time
intervals as indicated above each panel.
During the first stimulus period (Fig. 1C,
left) neurons respond primarily to the
value of the incoming frequency as shown
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by the spread along the horizontal axis, N
demonstrating firing rate dependence on ©
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ory of fl in the population. During the
second stimulus period (fourth and fifth Figure 2.  Individual cells show diversity in response to stimuli. Trajectories of regression coefficients are shown in the top,

panels), neurons begin to show activity re-
lated to the comparison between f1 and f2;
the population rotates to the line 45° be-
low horizontal, indicating activity related
to the difference between f1 and f2.

The averaged population-level view
described above obscures the complex dy-
namics that individual neurons display.
The dynamics of each neuron can be very
reliable from trial to trial, even while there
is great heterogeneity across neurons.
Figure 2 illustrates the dynamics of 6
different representative neurons. Some
neurons show stimulus-dependent activ-
ity throughout all task periods. Other

PSTHs, averaged across correct trials for each (f1,f2)-stimulus pair, are shown in the bottom. For regression trajectories, each point
isatime bin (sampled every 200 ms), lines show the full smooth trajectory (sampled every 50 ms). The shape of each point encodes
the task epoch as indicated by the key in panel 4, Color encodes significance of regression to the associated dotted lines, e.g., dark
green indicates the cell’s activity regressed significantly to +f1; black indicates not significantly different from the origin; gray
indicates significantly different from origin but ambiguous compared with all lines (see Materials and Methods). For PSTHs
(bottom), light yellow background indicates f1 presentation whereas light-green background indicates f2 presentation. In all
panels, line color encodes 1 frequency for all times before f2 presentation; the color key is shown on the bottom right panel. After
f2 onset, in A, B, D, and E, colors smoothly transition into coding the correct answer for each trial type: gray-blue for f1>27 yes
trials, gold for f1>>f27 no trials. In €, line colors encode f1 throughout. In E, line colors transition into a code for f2 after f2 onset.
Below PSTHs, the colored bars indicate regression significance using the same color scheme as in the top. Points directly above the
barindicated the same points plotted in the top using the same color and shape scheme. 4, Cell showing persistent f1 activity in the
f1 period and delay, followed by comparison activity during the f2 period. B, Cell showing no significant stimulus activity until
thef2 period, where it shows comparison related activity. €, Cell showing only f1-related activity early and late in the task, eveninto
f2 presentation. D, Cell showing f1 activity during the f1 period, nothing during the delay, followed by comparison activity during
the f2 period. E, Cell similar to the one shown in A, however, its trajectory is different in that it prefers to spike higher for “no” trials
than in “yes” trials. F, Cell showing f1 activity during the f1 period and delay, followed by f2 activity during the f2 period.

neurons show stimulus-dependent activ-
ity only during a portion of each trial (cf. Fig. 2B with other
panels). Furthermore, the nature of the stimulus dependence can
vary greatly from neuron to neuron. For example, the neuron in
Figure 2C shows activity that depends only on the value of f1; the
fl-dependent activity starts during the f1 period, disappears
during the middle portion of the delay, reemerges at the end of
delay, and continues into the presentation of f2. In contrast, the
neuron of Figure 2B shows stimulus-dependent activity only
during the f2/decision period; this neuron’s response is bimodal,
and highly correlated with the animal’s choice at the end of the trial.

In terms of their stimulus encoding, neurons with linear co-
efficients indicating a +f1—f2 dependence (Figs. 2 and 3, dark
red) or —f1+f2 (Figs. 2 and 3, pink) are directly linked to the
animal’s decision in the sense that the task involves computing
the sign of (f1—f2). Neurons that encoded this difference, of
either sign, are then neurons with firing rates that are directly
correlated with the appropriate behavioral choice on each trial.
In contrast, neurons with a response during the f2/decision pe-
riod that encode f1 only, or f2 only, do not allow a direct choice
readout.

We attempt to portray the full heterogeneity of the neural data
by analyzing each neuron individually and presenting the results

for the entire population. As before, each neuron’s firing rate was
regressed to stimulus values. From the regression coefficients and
their associated confidence regions, we then classified each time
point into 8 possible categories, illustrated by the color code in
the upper inset of Figure 3B. For presentation clarity, we used two
different regression models for different parts of the task, as in-
dicated at the top Figure 3A. Briefly, before f2 presentation, we
used a reduced model where we only considered a regression to
the value of f1 (a,(t)) plus a constant term (a,(¢)). After {2 pre-
sentation, we use the full regression model as described earlier in
the text and in Materials and Methods. The result of the regres-
sion determines the color of each time interval for each cell. If the
regression at time interval ¢; was not significantly different from
the origin (a,(t;) = 0 for the reduced or b, (t;) = b,(t;) = 0 for the
full model), the time interval was colored black. If the regression
point was significantly different from the origin, than they were
labeled using the following scheme: positive f1 (dark green), neg-
ative f1 (light green), positive f2 (dark blue), negative f2 (light
blue), f1—12 (red), f2—f1 (pink), and if the point was different
from the origin but could not be unambiguously assigned to any
of the preceding lines (gray). The reduced regression model
eliminates ambiguous points—hence, no gray bins before f2
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occupied by each color during the f1 period (left) and delay (right) for each bracketed group.

onset; regression points and associated confidence intervals lie
along a line, and therefore they either overlap the origin or
they do not and instead are positive or negative.

Using this color scheme, we could illustrate the stimulus de-
pendence of each neuron as a function of time. Each cell is placed
on its own horizontal row of colored bins with time progressing
from left to right, and the color of each time interval representing
the cell’s encoding during that time point. The results of analyz-
ing every neuron in this manner are shown in Figure 3A. Neurons
were further sorted and sub-sorted by the timing of their encod-
ings. The first six sorting criteria was earliest time of f1—f2,
f2—11, +12, —f2, +f1, —f1 during the f2/decision period respec-
tively; the sorting criteria naturally produces six groups of neu-
rons—indicated by the colored brackets.

The largest two groups are composed of neurons that are
decision-correlated during the f2/decision period, encoding ei-
ther +f1—12 (“yes”) (dark red, n = 25%, 227/912) or —f1+1f2

“no”) (pink, n = 29%, 261/912). We examined the average en-
coding of each of these groups during the f1 period and during

r(t)=b,(t) + b, (1), + b,(1) 1,
1

Overview of task encoding in all 912 cells. A, Significance of regression as a function of time for all 912 PFC considered
in this study. Each row represents a cell. Color encodes significance to one of the lines as indicated in the key shown in B. Black
indicates not significantly different from the origin; gray indicates significantly different from the origin but ambiguous to any of
the lines; green (green-yellow), blue (sky blue), red (pink) indicate significant encoding of f1 (—f1), f2 (—f2), and f1—f2
(—f1+12), respectively. Neurons are sorted by the timing of different colors in different epochs, see main text. The sorting
generates natural groups which are indicated by the colored brackets to the right of the plot. Different regression models are used
before the onset of the f2 stimulus, indicated at the top of the plot. B, Color key used A. C, Pie charts show the fraction of total bins
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the delay period (Fig. 3Cv, vi). Most of
these decision-correlated neurons did not
encode fl during the fl period or delay
(black in main panel and in pie charts).
However, for those decision-correlated
neurons that do show f1 encoding during
the delay, a pattern in the encoding rela-
tionship between delay period and f2/
decision period emerges: +f1—f2 decision-
correlated neurons tend, by a factor of 2:1,
to spend their time encoding +f1 during the
delay (Fig. 3Cvi, right), whereas —f1+f2
decision-correlated neurons tend to encode
—f1 during the delay (Fig. 3Cv right). Given
that the transition from the f1 period to
the delay period shows a relatively low
number of encoding sign switches
(Romo et al., 1999), we might expect a
similar relationship to hold between the
first stimulus period and the second
stimulus/decision period. Nevertheless,
this is not the case: both groups of decision-
correlated neurons spend equal time encod-
ing +£1 as —f1 during the f1 stimulus period
(Figs. 3Cv left, vi).

Two groups of neurons respond to the
second stimulus, 2, in a manner predom-
inantly dependent on 2 only (Fig. 3A,
dark blue and light blue). Of these neu-
rons, those encoding +f2 predominantly
encode +f1 during the fl period (Fig.
3Civleft); conversely, those encoding —f2
predominantly encode —f1 during the f1
period (Fig. 3Ciii left). These neurons
might thus appear to be purely sensory
neurons, responding only to the current
stimulus in a manner consistent across the
two stimulus periods. However, to our
surprise, we found that a very high frac-
tion of these “quasisensory” neurons also
encode f1 during the delay period (Fig.
3Ciii, Civ right), thus showing a strong
short-term memory response in addition
to their sensory responses. Although rela-
tively small in number, of all the groups we studied, the quasisen-
sory group of neurons spent the highest fraction of time encoding
f1 during the delay period, suggesting that this category of cells
might be particularly important for maintenance of short-term
memory.

Two more groups of neurons were those formed by neurons
encoding fl1, the first stimulus, during f2, the second stimulus.
These neurons, like the sensory driven neurons described above,
maintain their sign of encoding throughout the task. For exam-
ple, the +f1 cells (dark green) have 51% +f1 encoding during f1
presentation and 33% +f1 encoding during the delay versus 1%
and 3% to —f1 respectively (Fig. 3Cii). The —f1 cells (light green)
maintain 38% and 21% —fl encoding versus 0% and 3% +f1
encoding during f1 presentation and delay respectively (Fig. 3Ci).

Finally, near the top of the Figure 3A, starting at neuron 651,
we sorted all other cells based on their first time of +f1 and —f1
significance during the f1 period and delay, followed by the first
time of ambiguous encoding in the f2/decision period. Quite a
few cells show significance to +f1 and —f1 (91 and 62 neurons

w
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f2 dependence
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Activity and average choice probability for all cells by group. A, Average PSTHs of all cells within a group broken up by frequency. The rainbow color code indicates the value of the f1

stimulus during the f1.and delay periods, and for panel Aii only, indicates the value of the f2 stimulus during the f2/decision period. B, Average choice probability of all cells within a group broken
down by cells with memory activity during the delay and those without. Shaded regions represent 95% confidence intervals based on bootstrapping. Black lines show median values of the entire
population regardless of category. Dotted brown lines show chance performance for visual reference.

respectively) during limited portions of the task; many other cells
show ambiguous significance during f2/decision but not during
any other time (67 neurons starting at 804).

While we have described some of the gross trends observable
in Figure 3A, we note here some of the finer details. These gener-
ally indicate the high level of heterogeneity in response properties
across neurons. We point out three such properties. (1) Within
each of the bracketed response groups during the f2/decision
period that we defined, we further sub-sorted the neurons verti-
cally according to the latency of the onset of their response cate-
gory. In supplemental Fig. 1 A-C, available at www.jneurosci.org
as supplemental material, we show the distribution of all decision
significant time intervals for all cells in the dark red and pink
groups (A), the median of the decision time for each cell (B), and
the first decision time ( C); the distributions are broad indicating
that cells become decision related throughout the f2/decision pe-
riod. Taking neurons that encode +f1-f2 (dark red) as an exam-
ple, some neurons acquire their +f1 —f{2 encoding almost as soon
as 2 is presented—although one should not, from this fact, con-
clude that cells are making the discrimination immediately since
spikes are convolved with Gaussian kernels—whereas other neu-
rons encode +f{1—f2 only toward the end of stimulus 2. A similar
wide spread in latencies can be observed for the other groups in
Figure 3A. (2) In addition to latencies being widely different
across neurons, so are the durations of the period of time over
which the neurons encode the decision, observable in Figure 3A
as the various horizontal extents of encoding in different cells. (3)
At different points in time, even looking only within the f2/deci-
sion period, different neurons encode different stimulus proper-
ties. For example, a few neurons encode —f1 during the delay and
start of the f2/decision period, but then encode —f2, and only
later encode +£{1—f2 (neuron numbers 145-150). Many different
such patterns are visible. Some of the most remarkable are neu-
rons that invert their encodings: as can be seen in Figure 3A, some

neurons encode +f1—1f2 (dark red), but later reverse themselves,
encoding —f1+1f2 (pink); the converse also occurs, with neurons
encoding f2—f1 (pink) and later +f1—f2 (dark red). We empha-
size that the patterns thus described are not simply noise: Figure
3A shows only the encodings that are highly significant (see Sig-
nificance of regression in Materials and Methods).

In Figure 4 A, we show the average PSTH of each group from
Figure 3A. The “decision”-related groups, Figure 4Ai, show
strong binary activity depending on whether the trial was f1>2
or f1<f2. In contrast, the +f2 and —f2 groups, Figure 4 Aii, show
graded activity during the f2/decision period. The +f1 and —f1
groups, Figure 4 Aiii, show graded activity related to f1 during the
beginning of the f2/decision period, but then segregate between
yes and no trials toward the end; however, rather than a purely
binary spike rate as in Figure 4 Ai, activity is graded based on the
(f1,f2) combination.

To quantify the correlation between spike rate and behavior
for each group, we computed the behavioral ACP for each neuron
and averaged the values in each group. Figure 4 B shows the re-
sults. Within each of the six groups, neurons were further subdi-
vided by whether they possessed f1 memory during the delay.
Across all six groups, neurons encoding f1 have a higher-than-
chance ACP at the end of the delay period (purple traces), con-
sistent with these neurons being part of the neural substrate used
to hold the short-term memory of f1. But after the f2 stimulus
begins, the different groups show very different properties. Neu-
rons encoding +f1—1f2 or —f1+£2, Figure 4 Bi, show very high
ACP, consistent with their being involved in computing the
choice that the subject will subsequently report with its behavior.
Furthermore, only the +f1—f2 memory cells, Figure 4 Bi left,
showed a significant difference in ACP from the non-memory
cells during f2 presentation (p < 0.01, random permutation
test). Neurons encoding +f2 or —f2, Figure 4 Bii, show ACP
indistinguishable from chance after f2 onset, even for those
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regression angle of both populations sepa-
rately using a weighted Gaussian fit, see Ma-
terials and Methods. Figure 5A shows
snapshots of the two population regressions
at four different time intervals. By the first
100 ms of the second stimulus turning on,
= neither population has moved toward the

45° decision line. Just 70 ms later, however,
both populations have begun to rotate,
reaching the 45° line somewhere between
27510 300 ms after f2 onset. Figure 5B shows
the population angle as a function of time.
Neither population reaches the decision line
clearly before the other. We also tested the
correlation of the activity with the behav-
ioral choices of the monkey for both popu-
lations (Fig. 5C). The memory and decision
population appears to be greater than the
decision only population. We found that the
difference between the means in the second
half of the f2 period was significant with p =
0.0176 using a random permutation test
with 10,000 shuffles of labels between mem-
ory and non-memory cells. The ACP mea-
sures spike activity relative to behavioral
performance. We also tested the theoretical
discriminability of spike rates between “yes”
trials and “no” trials using correct trials only
(Fig. 5D). Again, we found that memory
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Comparison between memory and decision cells (purple) and decision only cells (green). A, Snapshots of the regres-

cells elevated versus their non-memory
counterparts. The difference between
means in the second half of the stimulus pe-
riod was highly significant ( p < 0.001).

4.5

sion coefficients for 4 different time intervals. Each point is a cell. Ellipses are the 2-o fit of a weighted Gaussian. B, Angle as a

function of time for the entire task. The 45° line (upper dashed line) represents the decision line, where activity is related to the
difference between f1and f2. ¢, The behavioral ACP (ability to discriminate correct and error trials based on spike count) of the two
populations. D, Spike count discriminability (ability to discriminate between correct “yes” and “no” trials) of the two populations.
InA, C,and D, shaded regions represent 95% confidence intervals measured from bootstrapping.

memory-carrying neurons that had higher than chance ACP val-
ues before the onset of f2. Neurons in the +f1 and —f1 groups,
Figure 4 Biii, do show an increase in the ACP after f2 onset, how-
ever the increase is less pronounced than in the “yes” and “no”
groups, compare with Figure 4 Bi. The difference in the ACP of
the two populations is evident from the PSTHs, Figure 4 Ai and
Aiii. The “yes” and “no” cells spike in a strong binary pattern
during the two different trial categories, whereas the +f1 and —f1
cells spike in a graded pattern.

Figure 4 hints at some differences between cells that carry
memory related activity during the delay period and those that do
not. In Figure 4 Bi, memory cells from the “yes” group show an
elevated ACP during the second stimulus period compared with
those with no memory. On the other hand, cells from the “no”
group do not show a difference between the two populations. To
further examine this relationship, we disregarded the group struc-
ture from Figure 3 and simply categorized cells into two groups:
memory and decision cells and decision only cells. We used strict
criteria (see Materials and Methods) to ensure that only those cells
with significant decision and memory related activity are included in
the analysis thereby reducing noise from cells that show marginal or
transient significance. Memory and decision cells outnumber deci-
sion only cells 225 to 173. To determine whether one group becomes
associated with the decision faster than the other, we calculated the

Comparison of data with

existing models

Two competing computational models,
by distinct subsets of the current authors,
have proposed different mechanisms by
which neural circuits could achieve the memory-to-decision
transformation displayed in the current data. Both the Machens-
Romo-Brody (MRB) model (Machens et al., 2005) and the
Miller-Wang (MW) model (Miller and Wang, 2006) have as-
sumed that PFC is the locus of both the memory of f1 and the
discrimination between f1 and f2. But the mechanism differs in
the two models, leading to different predictions for how the core
computational cells encode task variables. Given the great diver-
sity of responses seen in PFC, e.g., in Figure 3, we asked how well
supported are each of the models in the data—that is, we ask what
fraction of cells observed in the data fit the predicted response
characteristics described by each model. Below, we first describe
an overview of the stimulus encoding found in the data (Fig. 6).
We then summarize the basic properties of each of the two mod-
els, and describe the cell classes that each model predicts. We then
make the comparison between models and data (Fig. 7).

To examine this question, we need to categorize the activity of
each cell to stimulus values. We again apply our standard regres-
sion analysis using strict criteria to ensure that cell responses are
robust to task stimuli. In this analysis, we will focus on how cells
change encoding signs from one task epoch to another; e.g., ifa
cell encoded +f1 during the first stimulus period does it remain
positive during the delay or switch signs to become negative or
possibly lose f1 encoding altogether? Since the models have dif-
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Figure 6.  Overview of stimulus encoding in the population. A, Fraction of cells in the popu-
lation showing significant regression to stimuli broken down by type and sign. Color scheme is
identical to the one used in Figure 3. Gray lines before f2 onset appear here because the full
regression model is used for the whole task. This was done to show the relative representation
of f1and the comparison in the population using the same criteria. B, Number of significant sign
flips as a function of time. C, Venn diagram showing the number of cells categorized as: f1-
sensory encoding during 1 presentation (circle containing yellow segment), f1 memory encod-
ing in the delay (circle containing lavender segment), comparison encoding during f2
presentation (circle containing light green segment), and the combination of intersections
between all three categories. Numbers in each segment are exclusive.

ferent predictions for fl-sensory, f1 memory, and comparison
encoding in PFC cells, we may be able to disambiguate the two
models from the evidence in the data.

In Figure 6, we show an overview of stimulus encoding in the
population. Figure 6 A shows the total fraction of cells that have
significant regression coefficients (see Significance of regression
in Materials and Methods) broken down by stimulus type and
sign as a function of time. In essence, Figure 6 A is a summary of
Figure 3 showing the total fraction of cells in each color for every
time bin. However, in Figure 6A we used the full regression
model for the entire task rather than just after the second stimu-
lus. We did this to show more clearly how the representation of
the comparison (solid red and dashed pink lines) is stronger than
the representation of f1 during the first stimulus presentation and
delay (solid dark green and dashed light green lines). In compar-
ing the two models, we will be emphasizing transitions in encod-
ing signs from one epoch to another. Figure 6B shows an
overview of the number of significant transitions that occur
throughout the task. Anytime a cell regressed significantly differ-
ent from the origin at one time interval then switched sign signif-
icantly at a later time interval, we counted that as a sign switch at
the latter time. In Figure 6 B, very few of the sign switches occur

Jun et al.  Heterogeneous Coding in Prefrontal Cortex

before the onset of the second stimulus. After second stimulus
however, many cells switch signs. Interestingly when the sign
switch is triggered on the f2 sign (gray line), a large peak at the
beginning of the {2 period appears. When the switch is triggered
on f1 (black line), however, there is no initial sharp peak; after a
short delay the number of flips rises to 2 levels and falls with
it to the end of the f2 period. Another interesting feature is the
sharp peak for both lines after the f2 period. Many cells reverse
their decision encoding, e.g., from f1 —{2 to f2—f1, during this
time; this is also evident in Figure 3 where many cells in the red
group turn pink and cells in the pink group turn red between
4 and 4.5 s.

When comparing the two models, we required that cells be
significant over extended periods in each epoch; something that
cannot be gleaned from Figure 6 A alone. Therefore, we applied a
strict criteria to the number of time bins that a cell has significant
regression coefficients to categorize encoding types (see Catego-
rization in Materials and Methods). Figure 6C shows a Venn
diagram depicting the intersection of three categories of cells: (1)
f1-sensory encoding during the f1 stimulus period, (2) f1 mem-
ory encoding during the delay, and (3) comparison encoding
during the 2 stimulus period. By category, 361/912 (40%) of cells
were f1 sensory encoding, 455/912 (50%) of cells were f1 memory
encoding, and 398/912 (44%) of cells were comparison encoding.
There are 703/912 (77%) cells that fit into at least one category
and are shown in Figure 6C. Of these, many neurons were
counted in one category but not in any of the others (296/703,
42%). Many neurons were counted in some combination of two
of the categories (303/703,43%). A smaller number of neurons fit
into all three categories (104/703, 15%). As a comparison, if one
randomly shuffles the three categories for all 912 cells, the ex-
pected number of cells fitting at least one category is 756, with
377/756 (50%) of cells fitting only a single category, 300/756
(40%) of cells fitting two categories, and 79/756 (10%) of cells
fitting all three categories. We performed a Pearson’s x* test that
the percentage of cells fitting exactly one, exactly two, and all
three categories are different from the null random expected val-
ues. We found that all three percentages were significant with
p-values of 5.3E-6, 0.0048, and 6.0E-4 for exactly one, two, and
three categories respectively. The significance of our findings sug-
gests that being in one category is correlated with being in an-
other category, more than expected by chance. In other words, we
found more combined fl1-sensory encoding, f1 memory encod-
ing, and comparison encoding than expected by chance. We note
here that in Fig. 6 A, the fraction of cells with significant regres-
sion to the decision is much higher than the fraction of cells with
significant regression to fl during the delay at any given time.
However, the number of cells categorized as f1 memory encoding
during the delay is comparable to the number of cells categorized
as comparison encoding during the second stimulus period. This
is primarily due to differences in regression models (and associ-
ated significance analysis) used for the two periods. Also, since
the delay period is longer and cells can be memory encoding
during anytime of the delay, there are more opportunities to be
categorized as an f1 memory encoding neuron. However, the
categorization is not simply due to noise as we had strict require-
ments for inclusion in each category. Also, shuffling stimulus pair
labels for the regression produced very few cells in each category:
3/912 for f1-sensory encoding during the f1 period, 28/912 for f1
memory encoding during the delay, and 0/912 for comparison
encoding during the f2 period. We tested a number of different
criteria for categorization (data not shown), with little difference
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mutual inhibition architecture. Thus, in
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Figure 7. Schematic and accounting of different cell encoding types. 4, The two MRB cel types. Schematic of the model s tation to delay, led to the postulate that

shown on the left. The two trajectories show an idealized diagram for how the regression coefficients change in the three task
epochs. Numbers beside dots indicate the epoch (see the legend at the bottom right corner of A). Below each trajectory, a diagram
of how the color encoding should unfold in time, as in Figure 34, for each cell type. Above each trajectory, numbers indicate the
total from the population categorized into the archetype. Numbers to the side indicate the total. Conventions used in panel A hold
for all panels. B, The two MW comparison cells without memory. C, The two MW memory cells. D, The two MW comparison cells

with memory. E, Four types not predicted by either model but discovered in the data.

to the general trend of the data presented here and in the com-
parison of the two theoretical models that follows.

With the overall picture in hand, we now turn to the specifics
of the two theoretical models. The two models predict distinct
neural signatures that would be observed using the analysis tools
of Figure 1C. As we will describe below, the MRB model predicts
the presence of 2 neural signatures, and the MW model predicts
the presence of 6 signatures. No class belongs to both models, and
we therefore expect that determining which classes predominate
in the data should allow us to distinguish between the models. We
now discuss each of the predicted signatures in turn.

A key assumption of the MRB model is that the same set of
PFC neurons both encode the memory of f1 during the delay and
perform the binary comparison during 2. The core of the MRB
model is a demonstration of how a single neural circuit in PFC,
with a fixed architecture, can accomplish both graded persistent
activity and binary decision-making. In this model, the popula-
tions of cells that have positive monotonic encoding of f1 (“plus”
cells) and those that have negative monotonic encoding (“mi-
nus” cells) mutually inhibit one another to form a line attractor
circuit (Seung, 1996) during the delay period. A decrease in tonic
excitation to such a circuit transforms it from a line attractor,
capable of graded persistent activity, to a bistable circuit, capable
of binary decision-making. This dual capacity is a result of the

between the f1 period and the 2 period,
there should be a switch in the sign of the
effective connectivity between sensory ar-
eas and PFC. The MRB model was con-
structed based on the assumption that this
postulate was correct. Biophysically, such
a switch could be accomplished using ei-
ther a context-dependent signal and an inhibitory switch in S2
(Machens et al., 2005), or by using appropriately chosen, fixed
synaptic weights from S2 to PFC (Chow et al., 2009).

In the MRB model, then, neurons that are plus (minus) f1-
sensory encoding during f1 presentation should remain plus (mi-
nus) fl memory encoding during the delay and become f1—f2
(“yes”) comparison encoding during 2 presentation. Such neu-
rons, if analyzed using the standard method illustrated in Figure
1C, would display the dynamics diagramed in Figure 7A, left
(plus) and right (minus).

Struck by the inelegance of requiring a within-trial sign switch
in effective connectivity from sensory areas to PFC, and moti-
vated by considering the existence of such a switch implausible,
Miller and Wang (2006) devised a competing model in which no
switch or connectivity change is required anywhere in the circuit.
In contrast to the MRB model, the MW model uses two separate
neural populations for the memory and the comparison/decision
operations. Sensory stimuli from S2 drive a population of com-
parison/decision cells (labeled “C” cells), which in turn drive a
bank of cells capable of graded memory (“M” cells, configured as
a line attractor/integrator). The M cells perfectly integrate in-
coming signals from the “C” cells and in turn provide negative
feedback to the “C” cells. An f1 sensory stimulus thus causes an
increase in the activity of “C” cells, which in turn causes an in-
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crease in the activity of “M” cells, and this increase continues
until the activity of the “M” cells has grown to the point where
their negative feedback to the “C” cells exactly cancels the sensory
input. At this point the “C” cells no longer drive an increase in
“M” cell activity. When the sensory stimulus turns off, the “M”
cells continue to fire persistently at a rate that depends on the
value of the previously presented f1 stimulus. The “M” cells thus
encode a memory of f1 throughout the delay. The “C” neurons
are inhibited by the “M” neurons and hence are quiescent. Dur-
ing f2, sensory stimuli driving the “C” cells will encounter the
incoming stimulus input and the continuing negative feedback
from the “M” cells which is in proportion to the memory of fl.
Thus, “C” cells will only respond to f2 if it is sufficiently large to
overcome the negative feedback. That is, the “C” cells only fire if
f2>f1. As a result, these cells in the MW model perform the f1
versus f2 comparison without requiring any switch in effective
connectivity.

If analyzed using the standard method of Figure 1C, the “C”
cells would be driven into “plus” activity during f1; the inhibition
from the “M” cells would silence the “C” cells again by the end of
f1, leading the “C” cells to have no encoding during the delay;
finally, during f2 these cells would fire when 2 is greater than f1.
A diagram of the dynamics of such “C” cells is shown in Figure 7B
left. “M” cells analyzed in the same way would become “plus”
during f1 presentation, remain “plus” during the delay, and then
during f2 would fire in a manner that increased as a function of
f1+1£2; this is illustrated in Figure 7C left.

The MW model does not strictly require having both a “plus”
and a “minus” population. Nevertheless, the model can be con-
structed in either the “plus” configuration or in the “minus”
configuration. Furthermore, having both configurations greatly
facilitates the final readout of the decision. Thus the MW model
also predicts activity patterns diagramed in Figure 7, B and C
right, which are the “minus” circuit versions of Figure 7, Band C
left.

As described thus far, the MW model does not account for
neurons that change the sign of their stimulus-dependency from
the delay to f2. Miller and Wang observed that their model could
be modified to account for such cells by having some of the inte-
grator “M” cells ignore inputs below a minimum threshold 6.
This has the advantage of increasing the robustness of the “M”
cell integrator. The MW model further proposes that throughout
each trial, a tonic input drives “C” cells to fire at 6. Thanks to this
input, an extra input from the f1 stimulus drives the “C” cellsto a
firing rate above the “M” cell threshold, therefore affecting the
“M” cells and leading to the negative integral feedback process:
the negative feedback from the “M” cells would increase until it
brought the “C” cells back to the firing rate 6, thus canceling the
fl input. After this, when the f1 input ceases at the end of the first
stimulus period, the “M” cells continue firing at a rate propor-
tional to f1, thus holding the f1 memory; and the inhibitory input
from the “M” cells, combined with the lack of the f1 sensory input
and the tonic excitation, drives the “C” cells to a firing rate pro-
portional to 6 — f1. That is, the sign of the “C” cell encoding to f1
switches from “plus” during f1 to “minus” during the delay.
When f2 is presented, “C” cells will be initially driven to a firing
rate proportional to 0 + (f2 — f1). Thus values of f2 that are
greater than the previously presented f1 will lead “C” cells to fire
above 6, whereas values of {2 less than f1 will lead the “C” cells to
fire below 6. The “C” cell firing rate can therefore be used to form
the appropriate decision (f1 > 22 Y or N), with 6 forming the
decision boundary. Using again the tools of Figure 1C, the “plus”
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circuit version of these “C” cells is illustrated in Figure 7D left,
and the “minus” circuit version is illustrated in Figure 7D right.

In summary, the analysis tools of Figure 1C lead us to seek 2
different signatures compatible with the MRB model (Fig. 7A)
and 6 different signatures compatible with the MW model (Fig.
7B-D). No class belongs to both models, and we therefore expect
that determining which classes predominate in the data should
allow us to distinguish between the models. We analyzed the
firing rates of 912 recorded neurons and classified each into the
eight different classes defined in Figure 7A-D. Additionally, we
classified cells into categories not predicted in either model, Fig-
ure 7E-H.

Categorization was based on regression and significance anal-
ysis. Details can be found in Materials and Methods. Briefly, for
the two stimulus periods, we require that at least half of the time
bins within the middle 250 ms have significant regression coeffi-
cients with all significant bins having the same encoding sign. For
the delay period, we divided the 3 s into 6 equal 500 ms segments.
Within each segment, we required that at least half of the bins
regressed significantly and were of the same sign. If any one seg-
ment passed criteria, we defined the cell as having memory. Cells
with multiple segments passing criteria would also need to have
all signs be identical. For situations where cells were required
specifically to not encode any stimuli, we set a lower threshold for
the number of significant bins which a cell had to be under to
pass. Regressions for this analysis was performed on PSTHs cre-
ated using a Gaussian kernel with a SD of 50 ms during stimulus
periods and 150 ms during all other times. Gaussians were trun-
cated and normalized for edge effects at epoch boundaries.
Therefore, for example, memory of f1 during the delay is not
attributable to convolving spikes from the stimulus periods. In
our analysis, we do not consider the temporal dynamics of
each neuron. In principle, the MRB and MW models rely on
fixed-points to maintain f1 memory encoding during the delay
period. Therefore, average firing rates should remain steady
throughout the delay. Many cells, however, show strong tem-
poral dynamics which are reliable on a trial-to-trial basis. To
simplify our analysis, we did not attempt to define cells based
on temporal characteristics.

Figure 7 shows the total number of cells conforming to each
cell type at the top of each panel and the total for each model
along the sides of the panels. Overall, only a small fraction of cells
(80/912, 9%) fit into one of the eight categories outlined above
for both models. Of those, a total of 47 fit into the MRB model
categories whereas a total of 33 fit into the MW model categories.
The two numbers that are most readily comparable in this anal-
ysis are between the MRB neurons of Figure 7A and the MW “C”
neurons with memory of Figure 7D. These cells have the most
similar set of criteria, differing only in the signs of the combina-
tions of encodings. When these two sets are compared, the MRB
model has the same 47 cells, whereas the MW model has 19 cells.
Thus, the MRB model, based on these numbers alone, would
appear to be better represented in the data.

One might be concerned that the paucity of numbers reported
here are due to overly zealous selection criteria or that if the
statistical power on all cells were increased that we may have
found more favorable accounting for each model. To demon-
strate that this is not the case, in Figure 7, E-H, we show 8 cell
categories that are not predicted by either the MRB or the MW
models. The numbers for these categories were generated using
the same set of criteria used for both models and can be compared
with one another. For example, purely sensory cells, Figure 7, E
and F, account for 45 cells that show f1 activity during the first
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stimulus and delay followed by 2 activity during the second stim-
ulus and account for 31 cells that show f1 activity throughout the
entire task. A few categories that show decision related activity
but are not predicted by either model are shown in Figure 7, G
and H. Of these, a small number, 17, show activity like MRB cells
during f1 and the delay, but then show decision activity opposite
to that predicted by the model. A far greater number, 77, show no
stimulus related activity throughout the f1 and delay period, but
then show decision related activity during 2.

The 16 categories shown in Figure 7 are only a sample of the
total possible categories. In the supplemental Material, Table S1
(available at www.jneurosci.org) shows the numbers of cells that
fit into all possible categories, including those enumerated here,
and using the same strict categorization criteria throughout. This
procedure leads to a well defined category for 568/912 (62%)
neurons. The remaining 344 (38%) neurons cannot be unambig-
uously categorized with these methods.

Therefore, as a second approach, we applied a simpler set of
categorization criteria (see supplemental Fig. S4, available at
www.jneurosci.org as supplemental material). During the f1 pe-
riod and separately for the delay period, we placed one of three
labels on each cell: positive f1-encoding, negative f1-encoding, or
nonencoding. During the {2 period, we used the following three
labels: “yes” decision-encoding, “no” decision-encoding, and
non-decision-encoding (but could encode f1 or £2), see Materials
and Methods for more details. The three labels in three epochs
provides 27 nonoverlapping encoding combinations. Two com-
binations represent neurons that are most similar to the predic-
tions of the MRB model (Fig. 7A); a total of 105 of 912 neurons
(12%) best fit this profile (46 of the 105 best fit the left panel of
Fig. 7A, whereas the remaining 59 best fit the right panel). Two
combinations represent neurons that are most similar to the “C”
cells without memory in the MW model (Fig. 7B); a total of
32/912 neurons (4%) best fit this profile (24 of the 32 best fit the
left panel, whereas the remaining 8 fit the right panel). Two com-
binations represent neurons that are most similar to the “C” cells
with memory in the MW model (Fig. 7D); a total of 55/912 neu-
rons (6%) best fit this profile (28 of the 55 best fit the left panel,
whereas the remaining 27 best fit the right panel). These numbers
can be compared with two unpredicted decision cell types shown
in Figure 7, G and H. A total of 61/912 neurons (7%) best fit the
profiles shown in Figure 7G (29 of the 61 best fit the left panel,
whereas the remaining 32 best fit the right panel). A total of
81/912 (9%) neurons best fit the profiles shown in Figure 7H (43
of the 81 best fit the left panel, whereas the remaining 38 best fit
the right panel). Supplemental Figure S4 (available at www.
jneurosci.org as supplemental material) reports the number of
cells that best fit each of the 27 combinations, including the ones
described above. It also replots Figure 3 by showing the neurons
sorted according to the simplified categorization scheme de-
scribed above.

In this analysis, of all the cells showing decision related behav-
ior, the two MRB profiles had the highest number of cells that
best fit their encoding combinations. However, the numbers
were only a few percent higher than other leading categories.
Also, the simplified categorization has the disadvantage of under-
estimating nonencoding categories—a single bin of significance
places a cell as encoding in this set of criteria—which is a disad-
vantage for the MW “C” neuron without memory (Fig. 7B). Note
that this is an unavoidable problem as determining nonencoding
is not simply the negative of determining encoding; there is a
substantial middle ground where cells may show weak or barely
significant encoding. Nevertheless, together with the more strin-
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memory/comparison transformation required in the task. 4, A network that completely sepa-
rates memory and comparison/decision. B, Similar to A, except that feedback from comparison/
decision feeds back onto the memory population creating decision related information in those
cells that is epiphenomenal. (, The Miller-Wang model. D, The Machens-Romo-Brody model.

gent set of criteria, we conclude that the cell types predicted by
either model do not dominate the data. This suggests a highly
heterogeneous code in PFC for solving the task.

Given the heterogeneity found in the data, can we constrain
future models of this task? Figure 8 sketches the outlines of four
circuit architectures that could solve the task. In Figure 8 A, the
set of neurons supporting short-term memory of fl is separate
from those supporting the comparison between f1 and {2 and/or
the formation of the binary decision. The scenario is simple in
the sense that each module, or group of neurons, has a single,
fixed, and well defined computation. In this scenario, we
would not expect memory neurons to carry binary decision-
related signals, nor would we expect decision-related neurons
to carry memory signals. Neurons with these properties are
found in the experimental data. Figure 6C shows 91 neurons
that are stimulus-sensitive only during the delay and 130 neu-
rons that are stimulus-sensitive only during f2 presentation; they
might be the basis of the circuit sketched in Figure 8 A. Other
neuronal types (e.g., neurons that are stimulus-sensitive during
both the delay and f2 presentation) might be epiphenomenal with
respect to the current task and driven by the neurons fully compat-
ible with Figure 8 A. Such a view predicts that neurons carrying both
memory and decision-related signals, i.e., the “epiphenomenal”
cells, should have lower average choice probability (ACP) than
those carrying purely memory signals during the delay and purely
decision signals during 2. In Figure 5, we compared the ACP of
memory and decision cells to non-memory and decision cells; we
found ACP favors memory and decision cells during 2. To test
the former prediction, we calculated the ACP during the delay
period for memory-only cells and memory and decision cells. In
supplemental Figure S1 (available at www.jneurosci.org as sup-
plemental material), we show the ACP as a function of time
within the delay; we further break down the population of cells
based on when they show significant memory activity: early (0-1
s of delay only), middle (1-2 s of delay only), late (2-3 s of delay
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only), persistent (entire delay), and all others (anything remain-
ing from the above). No difference between the two populations
(memory only vs memory+decision) are apparent; again, if any-
thing, the memory+decision cells have a higher ACP when the
memory component is persistent. The data, therefore, suggests
the scenario of Figure 8 A unlikely.

A variation on the scenario of Figure 8 A is shown in Figure
8 B. Once again the memory module and the comparison/deci-
sion module are kept separate, except that once the decision is
formed, the result is fed back to the memory module, thus leading
to neurons that carry both memory and decision information, as
commonly observed in the data. In the scenario of Figure 8B,
such feedback is not necessary for the circuit to perform the task;
the purpose of the feedback could be related to other tasks that
the prefrontal cortex participates in. Nevertheless, if such feed-
back were present, the 225 neurons (of 912 neurons, 25%) that
have both memory and decision-related activity could be ac-
counted for. In such a scenario, we would expect decision-related
activity to arise slightly earlier in decision-only neurons than in
memory-and-decision neurons, since the former drive the latter.
Furthermore, we would expect decision-only neurons to have
higher choice probability than memory-and-decision neurons,
since they would be more closely linked to the circuit’s decision
output. Yet, Figure 5 shows precisely the opposite of these two
predictions, namely, that memory-and-decision neurons have
higher choice probabilities and shorter decision latencies than
decision-only neurons. For these reasons, we consider the sce-
nario of Figure 8 B unlikely.

Discussion

In this paper, we focused on the phenomenology of neural firing
rates in PFC during a two-interval, two-alternative forced-choice
task where subjects must compare two vibrotactile frequencies
presented serially with a delay. Subjects must use short-term
memory to perform the task well above chance. As described in
the Introduction and the Results, each trial of the task is com-
posed of three distinct periods (Fig. 1A): (1) the “f1 period”,
lasting 500 ms, during which the first stimulus is presented; (2) a
“delay period”, lasting several seconds, over which the subject
must store the value of f1 in a graded memory; (3) the “f2/deci-
sion period”, lasting 500 ms, during which a second stimulus (f2)
is presented, and during which the subject compares the 2 stim-
ulus to its memory of f1. At the end of the f2/decision period, the
subject chooses to press one of two pushbuttons to indicate its
answer to the question “f1>f2? Yes or No.”

Understanding the neural mechanisms by which subjects
complete the task requires understanding the circuits by which it
is implemented. Although much data has been collected, even
broad outlines of the connectivity between functional elements of
these circuits remain undetermined.

In our analysis of the scenarios depicted in Figure 8, we found
that the data suggests it is unlikely that PFC divides the task into
a pure “memory module” and a pure “comparison/decision”
module. Instead, neurons carrying memory of f1 in the task are
likely to be involved in computing the comparison between f1
and f2. Two competing proposals for models that would combine
memory and comparison/decision have been put forward. In the
MW model (Fig. 8C), the memory module was segregated, but
there is a stimulus/comparison module that receives feedback
from the memory module and therefore shows combined re-
sponses. In the MRB model (Fig. 8 D), memory and comparison/
decision are integrated into a single module. We counted how
many cells recorded experimentally had response properties that
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corresponded to the specific predicted properties of each model
(MW model: Fig. 7B-D; MRB model: Fig. 7A). Neither model
predicted firing properties of a large fraction of the recorded
neurons; we found that comparable numbers of cells were classi-
fied into types not predicted by either model, suggesting that the
neural representation of the task is significantly more heteroge-
neous than either model postulates. To confirm our results, we
performed a simplified categorization on the population (supple-
mental Fig. S4, available at www.jneurosci.org as supplemental
material) and found similar results.

Comparing the models only against one another, we observe
numbers slightly in favor of MRB over MW. In particular, we
found that the number of cells fitting the “M” population in the
MW model was relatively small. This suggests that should the
brain use an integrated feedback mechanism to maintain short-
term memory as postulated in the MW model that it may reside
in a portion of PFC not recorded in our dataset or in an entirely
different area. Our data indicates that the encoding of the task is
distributed among many different categories, suggesting a heter-
ogeneous code in PFC for solving the task.

Figure 3 is consistent with this view of a highly heterogeneous
representation of task variables. Nevertheless, neuronal response
properties are not random, and some general patterns are found.
Some include: First, cells having higher firing rates in the com-
parison/decision period for “f1>f22 YES” trials (“yes cells”) tend
to be positive monotonic for f1 during the delay period, i.e., their
firing rate is higher for higher values of f1 during the delay. In
mirror symmetry to “yes” cells, “no” cells tend to be negative
monotonic for f1 during the delay. However, this relationship
between decision-related responses during the comparison/deci-
sion period and memory-related responses to f1 during the delay
does not extend back into the f1 stimulus period: both “yes” and
“no” cell groups are equally likely to have been positive or nega-
tive monotonic during f1. Second, a small but significant fraction
(17%) of cells in PFC encode only memory and stimulus infor-
mation, and do not encode the comparison/decision. Some of
these cells do not respond to f2, but simply carry f1 information
throughout all three task periods. The others change to encoding
2 during f2 presentation. At first sight, such cells might be good
candidates for a pure “memory only” module. However, as noted
above, their choice probability values (supplemental Fig. S1,
available at www.jneurosci.org as supplemental material) are
lower than memory+decision neurons, indicating that they are
further removed from performance of the task.

Compared with previous studies of decision-making, our focus
in this discussion and in Figure 8 has been on how information held
in short-term memory and current stimulus information can be
combined in forming a binary decision. We have not focused on
the decision-making process itself, in part because our data do
not easily permit such a focus: during each of the two sensory
stimulus periods, information about the stimulus was delivered
relatively quickly, and the decision was performed well above
psychometric threshold (the difference |fl—f2| was typically
large, and performance on all trial types was correspondingly
high, typically >90% correct). In contrast, previous prominent
research focusing on the binary decision-making process has of-
ten used a single stimulus as a source of information, delivered
the information slowly during that stimulus, and used stimuli at
or near psychometric threshold. An example is the well known
random dots task (Newsome et al., 1989). Neural responses re-
corded during this random dots task in both PFC (Kim and
Shadlen, 1999) and lateral intraparietal area (Roitman and
Shadlen, 2002) of monkeys have been approximated with a drift-
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diffusion model in which the stimulus biases a random walk to-
ward one of two boundaries (Gold and Shadlen, 2007). Contact
with a boundary represents making a decision. In this model, the
value of the single sensory stimulus is represented by a single
parameter (drift rate). The question of how such a biased random
walk model should be adapted to make decisions based on infor-
mation about two stimuli, one incoming and the other held in
short-term memory is a very interesting one. Unfortunately, it is
not a question that would be well addressed with the dataset
examined here, and is therefore outside the scope of this paper.

Decision-making based on a combination of information held
in short-term memory and current stimuli has been previously
explored in delayed match-to-sample tasks (Miller et al., 1991).
Stimuli in these tasks typically are images and hence reside in
high-dimensional spaces, i.e., there is no simple analog represen-
tation of the image through the graded firing rate of a single
neuron. In the task analyzed here, monkeys needed to compare
the frequency between two sequentially presented stimuli. Fre-
quency is a one-dimensional analog value; therefore, the brain
could potentially adopt a very different strategy to encode and
operate on stimuli in these two tasks. Nevertheless, our results,
suggesting that memory and decision are intermingled, are com-
patible with the results of Miller and colleagues, in which neurons
with short-term memory activity also showed “match suppres-
sion” and “match enhancement” in the decision period.

In this article, our analysis focused on single-neuron proper-
ties across various phases of the task, and we compared these
single-neuron properties to predictions from two competing the-
oretical models. We attempted to show, with the greatest amount
of detail possible, the full heterogeneity inherent in the firing rates
of PFC neurons. This method is in contrast to the common prac-
tice of averaging across populations or showing only a few exem-
plar cells. Many theoretical models are hand-designed with only
the exemplars in mind. Our analysis showed that the high level of
heterogeneity displayed across different neurons makes compar-
isons to the simplified models challenging, and in general does
not strongly support either model. A different approach might
ask whether a simpler representation exists at the level of whole
neuronal populations and be expressed heterogeneously at the
level of single neurons. Singh and Eliasmith (2006) used such a
view to construct a distributed and heterogeneous representation
of neuronal responses in this task during f1 and the delay period.
Machens et al. (unpublished observations) used a similar view to
derive a simplified, data-driven representation, again during f1
and the delay period. Future work will attempt to derive simpli-
fied population-level representations that can also account for
data during the comparison/decision period. The present analy-
sis describes the single-neuron trends in the data that will con-
strain future models.
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