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Abstract
Background—Flow cytometry is one of the fundamental research tools available to the life
scientist. The ability to observe multi-dimensional changes in protein expression and activity at
single-cell resolution for a large number of cells provides a unique perspective on the behavior of
cell populations. However, the analysis of complex multi-dimensional data is one of the obstacles
for wider use of polychromatic flow cytometry.

Methods—Recent enhancements to an open-source platform - R/Bioconductor - enable the
graphical and data analysis of flow cytometry data. Prior examples have focused on high-throughput
applications. To facilitate wider use of this platform for flow cytometry, the analysis of a dataset,
obtained following isolation of CD4+CD62L+ T cells from Balb/c splenocytes using magnetic
microbeads, is presented as a form of tutorial.

Results—A common workflow for analyzing flow cytometry data was presented using R/
Bioconductor. In addition, density function estimation and principal component analysis are provided
as examples of more complex analyses.

Conclusions—The compendium - in the form of text, supplemental R scripts, and supplemental
FCS3.0 files - presented here is intended to help illuminate a path for inquisitive readers to explore
their own data using R/Bioconductor.
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Introduction
Cellular function and phenotype is governed by the expression and activation of intracellular
and cell membrane proteins. Flow cytometry is a powerful experimental platform that allows
for measuring the abundance and activation state of proteins at single cell resolution [1]. There
is an increasing appreciation for how flow cytometry can be used to provide prognostic
information by identifying rare cell subsets and to provide greater resolution into protein
patterns responsible for heterogeneity in cellular response [2,3]. In addition, developing low
cost flow cytometry equipment for use in developing countries (e.g., [4]) requires low cost
software for state-of-the-art analysis of the data. As flow cytometry experiments increase in
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complexity (i.e., increase the number of parameters measured per cell), more sophisticated
tools for data analysis become necessary [5]. In fact, one of the main obstacles for complex
multicolor analyses is data processing and proper interpretation [6]. Automated processing
algorithms have been proposed to facilitate processing of large complex datasets [7]. However,
processing of flow cytometry data is still largely performed manually. To help overcome this
obstacle for small-scale flow cytometry experiment, the objective of this document is to
illustrate a typical workflow for processing and analyzing flow cytometry data using a new
open-source platform for data analysis: Bioconductor.

Bioconductor [8], a free open-source platform built upon the statistical freeware package R
[9], provides an economical alternative to other commercial platforms. R is a system
comprising a scripting languange and a simulation environment for statistical analysis and data
graphics. The R system provides an extensive array of pre-built statistical analysis tools to
support applications developed in Bioconductor. Bioconductor was developed as an open
source and open development software project for the analysis and comprehension of biological
data, with a heavy emphasis to date on genomic data [10]. Applications of the existing
algorithms to flow cytometry data is a recent addition to the platform [11,12,13]. The novelty
of the software and the associated learning curve may present a significant hurdle for wider
acceptance of this technology. A tutorial is a common method allowing inquisitive potential
users the ability to explore the capabilities of new bioinformatics software. In the following
sections, processing of flow cytometry data obtained following isolating a CD4+CD62L+ T
cell population from mouse splenocytes using magnetic microbead sorting provides a concrete
example for data analysis using Bioconductor. In the spirit of reproducible research [14], a
compendium, including embedded R scripts, is included as supplemental material to encourage
readers to explore the dataset themselves.

Methods
Mice

Eight to 12-week old female Balb/c mice were obtained from Hilltop Lab Animals (Scottsdale,
PA). Mice were housed in sterilized microisolator cages in the university vivarium, and facility
sentinel animals were regularly screened for specific pathogenic agents. These studies were
conducted in accordance with all federal and institutional guidelines for animal use and were
approved by the West Virginia University Animal Care and Use Committee guidelines.

Antibodies and reagents
BD Phosflow Lyse/Fix buffer and FcBlock were purchased from BD Biosciences (San Diego,
CA). The CD4+ CD62L+ T cell isolation kit was purchased from Miltenyi Biotec (Auburn,
CA). FITC-conjugated rat anti-mouse CD4 (GK1.5), PE-conjugated rat anti-mouse CD44
(IM7), and APC-conjugated rat anti-mouse CD62L (MEL-14) were purchased from
eBioscience (San Diego, CA). Unless otherwise noted, all cell cultures were maintained at 37°
C in 5% CO2 in RPMI 1640 plus supplements (referred to as complete RPMI or cRPMI). The
RPMI supplements were 10% heat-inactivated fetal bovine serum (FBS) (Hyclone, Logan UT),
2 mM of l-glutamine (Medtech Inc., Herndon VA), 50 mM HEPES (Sigma Chemical, St. Louis,
MO), 49 μM β-mercaptoethanol (Sigma Chemical) and 100 μg/ml of streptomycin and 100 U/
ml penicillin (Hyclone).

Naïve CD4+ T cell isolation
Spleens from Balb/c mice were isolated and a cell suspension was made by mashing the spleens
through a nylon screen. Following lysis of red blood cells using tris ammonium chloride, the
cells obtained were pooled, and washed twice in cRPMI containing 1.5% FBS. Mouse
splenocytes were resuspended at 2.5×108/ml. Unpolarized CD4+CD62L+ (i.e., naïve) T-cells
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were subsequently isolated through negative selection by automated magnetic cell sorting,
following the manufacturer’s instructions (Miltenyi Biotec, Auburn, CA). Briefly, mouse
splenocytes were enriched for CD4+ T cells by negative selection through indirect magnetic
labeling of non-CD4+ T cells using a cocktail of biotin-conjugated monoclonal anti-mouse
antibodies against CD8a, CD45R, CD11b, CD25, CD49b, TCRγ/δ, and Ter-119 and magnetic
microbeads conjugated to monoclonal anti-biotin antibody. CD4+ CD62L+ T cells were
subsequently enriched from CD4+ splenocytes by positive selection using magnetic
microbeads conjugated to a monoclonal rat anti-mouse CD62L antibody. Enrichment for
CD4+ CD62L+ T cells was confirmed by flow cytometry using anti-CD4, anti-CD62L, and
anti-CD44 antibodies.

Flow Cytometry
Unsorted splenocytes and isolated naïve CD4+ T cells were prepared, as describe above, and
stained with fluorophore-conjugated antibodies specific for the mouse T cell markers CD4,
CD62L, and CD44. For extracellular staining, single cell suspensions were washed with ice-
cold PBS containing 1% FBS and 0.2% sodium azide (Sigma-Aldrich Chemical Co) (PBSaz)
and then incubated with purified rat immunoglobulin and purified mouse immunoglobulin (BD
Biosciences) for 30 min on ice to prevent nonspecific binding. Subsequently, the cells were
washed, incubated with buffer containing the appropriate antibody reagent for 30 min on ice.
The cycle was repeated for any additional antibodies. Finally, the cells were washed twice in
PBSaz, fixed in 0.4% paraformaldehyde, and analyzed using a FACSAria flow cytometer
(Becton Dickinson). The fluorescent intensity for each parameter was reported as a pulse area
using 18-bit resolution. Single stain controls were used to establish fluorescent compensation
parameters. Unstained cells were used as negative controls. Flow cytometry data was analyzed
using Bioconductor 2.2, a package implemented in R 2.7.2. The results are representative of
three independent experiments.

Results and Discussion
The workflow for data analysis in a typical flow cytometry experiment has evolved with recent
technological advances [15] and can be grouped into two key steps, as summarized in Figure
1. First, a pre-processing step was required to ensure that the observed levels of fluorescence
were independent and specific measures of the level of expression of the protein of interest,
assuming that the antibodies also exhibit specificity. In this study, expression of CD4, CD44,
and CD62L were used to characterize the efficiency of CD4+CD62L+ T cell isolation from
Balb/c splenocytes using magnetic microbeads. The second step involved analysis of the cell
populations including gating using statistically-based data-driven gates, estimating probability
density functions using kernel marginalization, and clustering using principal component
analysis.

Installation
Following installation of R [9], basic Bioconductor packages and additional packages that are
required to process flow cytometry data were downloaded from the web within R using:

>source(“http://www.bioconductor.org/biocLite.R”)
>biocLite(“flowCore”)
>biocLite(“flowViz”)
>biocLite(“flowUtils”)
>biocLite(“geneplotter”)
>openVignette()
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Additional Bioconductor packages may also be downloaded directly from the website [8].
Additional R packages can be installed using a menu option in the RGui (see ‘Packages’-
>‘Install package(s)’). These files need to be downloaded and installed only once. Subsequent
sessions can reload the packages using library(“package”).

Pre-processing
Data Entry

The experimental results were exported from the flow cytometer in FCS3.0 format [16] (e.g.,
foo.fcs) following data acquisition. The default working directory is the installation directory
for R. It may be more advantageous to change the directory to a working directory (see ‘File’-
>‘Change dir’) where the foo.fcs files are stored. Following the definition of an array, fclist,
that contains the names of the FCS3.0 files to be analyzed, the data files were loaded into the
R workspace using a single command:

>fs <-read.flowSet(fclist, transformation = FALSE)

A summary of the loaded flowSet can be shown by typing the variable name at the command
line:

>fs
A flowSet with 9 experiments.
column names:
FSC-A SSC-A FITC-A PE-A APC-A Time

The information contained within a particular experimental data set (i.e., one fcs file) were
read and stored in a flowFrame. A flowFrame is the name of a meta-object, a digital construct
that collects different types of information (i.e., text and numerical data) into a common
identifier. A series of flowFrames can also be collected in a flowSet. Different functions (e.g.,
phenoData() or exprs()) can be used to extract information from these meta-objects, such as
the measured fluorescent intensities of the different parameters for each cell and the time that
each cell was observed. As the filenames were not descriptive, a list of title names, shown in
Supplemental Tables 1 and 2, was created for use in subsequent figures.

Gating on Forward Scatter and Side Scatter
Non-cellular debris and dead cells exhibit non-specific staining. These potentially confounding
observations were eliminated by gating on forward scatter and side scatter to help ensure that
the fluorescent measurements exhibit specificity for the target of interest. The gates associated
with isolating live splenocytes were initialized as follows. First, cells were retained that had
Forward Scatter areas between 50,000 and the maximum intensity using a 1-dimensional gate
applied to the Forward Scatter parameter. Second, the Forward Scatter and Side Scatter
parameters were used to create a data-driven gate (norm2Filter) that was centered at the median
of the specified cell populations in both dimensions and enclosed a region that included 95%
of the population (i.e., 2 standard deviations). Additional data-driven gates can also be used
(e.g., kmeansFilter, a data-driven filter that performs one-dimensional k-means clustering),
especially for the subsequent analysis step. Further refinement of the gates was achieved by
combining individual gates using logical arguments. The logical arguments are applied right
to left and combined using ! (NOT), — (OR), and & (AND). The gates were applied to the
entire flowSet, although they can also be applied to individual flowFrames. The statistics
associated with gating were calculated to determine the number of cells retained for subsequent
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analysis (see Supplemental Table S-1). The results of the gating on the forward and side scatter
characteristics of the splenocytes are shown in Supplemental Figure S-1. The live cells are
shown in blue using a contour overlay that indicates the density of the spots. A dot plot of the
rejected cells were superimposed on the figures and shown in red.

Compensating for Fluorescent Spillover
Given the difficulty of determining appropriate compensation values ‘on-the-fly’, the current
generation of flow cytometers incorporate two advancements for the analysis of flow cytometry
data. First, contemporary software drivers for flow cytometers include an algorithm for
automatically calculating the fluorescent compensation matrix. Second, raw data is
uncompensated providing the opportunity to adjust compensation values after data collection.
The initial estimate for the compensation matrix was extracted from the text description of
MACSPurity_Tube_001.fcs. This initial estimate of the compensation matrix was based upon
prior experiments and was used to observe the data during acquisition. To illustrate
compensation using R/Bioconductor, it was not optimized.

  FITC-A PE-A APC-A
[1,] 1.000  0.12 0.00
[2,] 0.018  1.00 0.00
[3,] 0.003  0.00 1.00

To illustrate how the compensation matrix can be refined at any time following data acquisition,
unstained and single-stained controls were used to estimate the compensation matrix. The
adjusted compensation matrix, expressed in terms of a fraction of the primary signal and shown
below, was used to modify the fluorescent measurements.

>fij
FITC-A PE-A APC-A
[1,] 1.004  −0.123 −0.014
[2,] −0.032 1.004 0.000
[3,] 0.000  0.000 1.000

This adjusted spillover matrix, fij, was calculated as follows. Fluorescent spillover of the
primary parameter into secondary parameters was assumed to be linear function of the primary
parameter. The observed parameters (Oij) were linearly combined using

(1)

to estimate the true fluorescent intensity (Tij) for parameter j in experiment i, where fkj is the
fraction of parameter k that spills over into parameter j. Upon rewriting Equation (1) in matrix
notation and re-arranging the terms, the spillover matrix, F, was estimated from the single stain
controls using

(2)

by assuming that the observed intensities in the primary parameters provide an estimate of the
true fluorescent intensities (i.e., Tij=Oij if i=j else Tij=0). The matrix of the observed intensities
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(i.e., O) summarized the median values obtained from the single-stain experiments. Prior to
calculating the median values, the background fluorescence was subtracted from the raw
values. The background fluorescence, corresponding to the median intensity of an unstained
parameter, was obtained from the unstained and single-stain experiments (see Supplemental
Table S-2).

One of the challenges with single-stained controls is that the cell population used for the
experiment may be heterogeneous (e.g., splenocytes) and may bias the estimate of the median.
Partitioning the singly-stained cells into high and low expression groups via a kmeansFilter
was used to improve the estimate of O.

Linear-Log Data Transformation
A logarithmic transform is a common approach used to cope with the wide dynamic range of
the fluorescent measurements obtained by flow cytometry. However, fluorescent
compensation and subtraction of background fluorescent creates negative values. Plotting data
on logarithmic axes truncate the negative values and can lead to incorrect assessment of the
compensation for fluorescence spillover [17]. Various alternative methods for displaying
fluorescent values have been proposed [17,18,19]. A common theme for these different
solutions is to use a transform that is linear around zero and non-linear in other regions. In the
following section, a simple data transformation is implemented.

Similar to a recent transform proposed by Battye [19], one of the simplest data transformations
is to convert the raw data using a linear relationship at lower values and a logarithmic
relationship at higher values:

(3)

where Ŷ is the transformed “parameter intensity” and Xraw is the raw fluorescence value. A
smooth transition between these two relationships is ensured by setting the values and the
slopes of the linear and logarithmic relationships equal at the transition point. These two
constraints provide sufficient information to determine values for the two unknowns: Mlinear
and Mlog. In addition, we can add an additional constraint that the transformed variable must
equal zero when the raw variable equals zero. This shifts the transformed variable for both the
linear and logarithmic relationships by −b. Prior implementation of this split scale transform
required specifying five parameters. Implementing this split scale transform in R/Bioconductor
required specifying two values: the median of the untransformed population and the distance
(dist) in raw data units between the median adjusted values and the transition point. This
relationship was encoded as a function to be reused multiple times within the script:

>linlogTransform = function(transformationId, median = 0, dist = 1, …) {
+  tr <- new(“transform”, .Data = function(x) {
+  idx = which(x <= median + dist)
+  idx2 = which(x > median + dist)
+  if (length(idx2) > 0) {
+   x[idx2] = log10(x[idx2] − median) − log10(dist/exp(1))
+  }
+  if (length(idx) > 0) {
+   x[idx] = 1/dist * log10(exp(1)) * (x[idx] − median)
+  }
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+  x
+  })
+  tr@transformationId = transformationId
+  tr
+ }

The transforms were applied to the measured fluorescent values. The transition value was held
constant for all of the parameters at a value of 100. The resulting transformed values are
deposited within the flowFrame in a new parameter. Finally, confirmation of the appropriate
compensation for fluorescence spillover is shown in Supplemental Figure S-2. Together, these
pre-processing steps ensured that the parameter intensities were independent and specific
measures of the corresponding levels of protein expression, assuming antibody specificity.

Analysis
As highlighted in Figure 1, subsequent data analysis can take multiple paths depending on the
research question. To illustrate one path using R/Bioconductor, flow cytometry was used to
demonstrate the efficiency of cell sorting using magnetic microbeads. Enrichment of a CD4+

CD62L+ T cell population from mouse splenocytes involve two main steps: enrichment of a
CD4+ subset using negative selection and subsequent enrichment of a CD4+CD62L+ subset
using positive selection. Five aliquots were obtained from the pre-sort population and after
each stage of the isolation protocol: pre-sort, CD4+, CD4−, CD4+CD62L+, and
CD4+CD62L−. Expression of CD4, CD62L, and CD44 within these groups is shown in Figure
2 and Supplemental Figure S-3.

To calculate statistics for the aliquots, a statistically-based data-driven threshold was used
define whether a cell was positive for expressing the protein of interest. The threshold was
defined as the level of expression for which 95% of the unstained cells exhibited a lower level
of expression. As an alternative, a Bayesian framework could be used for gating such that the
gate could be refined based upon new data. In practice, classification of a cell into a subset can
be obtained by calculating the ratio of the marginalized density of a particular aliquot relative
to the marginalized density of a negative control population at a given level of parameter
intensity [20]. The disadvantage of this approach is that the particular parameter intensity used
for gating would depend on each aliquot.

As shown in Table 1, magnetic bead enrichment from the starting population of Balb/c
splenocytes was used to obtain a population of cells that were >98% positive for CD4+ and
>90% positive for both CD4+ and CD62Lhigh (i.e., naïve CD4+ T cells). As the population of
CD4+ CD62Lhigh splenocytes may contain a mixture of both central memory and naïve T cells,
the activation marker CD44 was used assess the contribution of the central memory pool.
Greater than 95% of CD4+CD62Lhigh cells were observed by flow cytometry to express
intermediate to low levels of CD44, consistent with a naïve T cell population (i.e.,
CD4+CD62LhighCD44low). The results suggest that contribution of the central memory
population (i.e., CD4+CD62Lhigh CD44high) was minor. In comparison, a high level of CD44
expressions was observed in the CD4+ CD62Llow population, consistent with an effector T cell
population (i.e., CD4+CD62Llow CD44high). These different T cell subsets can be clearly
identified in Figure 3.

Marginalized Probability Density Functions
The fluorescent intensities can be presented in the form of a function that describes the
probability of observing a particular parameter intensity. This function is referred to as a
probability distribution function (PDF). A PDF function is similar to a histogram but is
normalized to the total number of observed events, facilitating comparisons among
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experimental conditions and groups. The PDFs for each time point were obtained by kernel
density estimation using the function density [21]. Kernel density estimation is a non-
parametric smoothing technique used to estimate probability density functions from
independent samples drawn from the population of interest. While it shares some similarity
with estimating a density function using a normalized histogram, the kernel method exhibits
less bias in estimating the density function. The bias in a histogram estimator with a bin width
h is of order h. In contrast, the kernel is centered at each point and, by using a symmetric kernel,
yields a leading bias term for the kernel estimate of order h2. Improving the resolution of an
assay provides a clearer window into fundamental cellular behavior [22]. Default values for
the bandwidth were used. Representative PDFs for CD4 and CD62L expression are shown in
Figure 4.

More generally, a PDF is a continuous function that summarizes the distribution in protein
expression or activity within a population of cells. The presence of a bimodal PDF distribution
indicates that multiple subsets exist within a population. Quantifying the relative contribution
of a particular subset can be achieved by deconvoluting a bimodal PDF in terms of a series of
overlapping probability distributions (e.g., overlapping Gaussians) that have different median
parameter intensities. An analogous approach is used to quantify the cell cycle phase
distribution of cells following DNA staining [23,24].

Principal Component Analysis
The CD4+ and CD4+CD62L+ fractions were further characterized using principal component
analysis [25]. Principal component analysis (PCA) is a multivariate statistical technique that
allows for the discovery of variables that form a coherent subset and are relatively independent
of other subsets of variables. Variables that vary in synchrony with other variables are lumped
together into independent principal components. The utility of this approach is in creating a
lower-dimensional description of the population, such as multi-dimensional scaling or
clustering (e.g., [26]).

To illustrate the approach, three principal components (PCs) were created from the three
variables - CD44, CD62L, and CD4 - that characterize the cell population using the R function
princomp. As principal component analysis is a linear modeling technique, extreme values can
influence the quality of the results. Thus the lin-log transformed variables were used in the
analysis. The resulting scoring coefficients, shown in Table 2, were used to calculate the
principal component values for another cell fraction using:

(4)

where v’s are variable values for the p cell and C’s are the scoring coefficients for the ith
principal component (PC) and nth variable. A scoring coefficient is related to a correlation
coefficient such that a value for the CD62L scoring coefficient of 0.711 in PC1 means that
50.6% (100*0.7112) of the variance in CD62L expression is represented in PC1. The difference
in sign between the scoring coefficients for CD44 and CD62L in PC1 indicates that these two
variables are inversely related in the dataset. PC1 versus PC2 projections for the CD4+ and
CD4+CD62L+ fractions are shown in Figure 5. The difference in the two populations at a low
value for PC1 corresponds to the elimination of the CD44high subset in the CD4+CD62L+

fraction, as seen in Figure 3 and inferred from the PC loading coefficients.

As mentioned above, PCA identifies linear relationships embedded within high dimensional
data. As the number of dimension increases in a flow cytometry experiment, generating and
analyzing each pairwise comparison between parameters becomes an onerous task. In addition,
a three-way relationship among parameters can be difficult to identify from two-dimensional
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projections. PCA may be particularly helpful in focusing the analysis to specific combinations
of parameters that exhibit interesting relationships, such as the inverse relationship between
CD44 and CD62L. Depending on the motivating question, non-linear relationships can be also
investigated in R using computationally intensive techniques such as Gaussian Mixture Models
(e.g., MCLUST [27]).

In summary, R/Bioconductor is a versatile platform for the analysis of complex data, such as
polychromatic flow cytometry data. The value of flow cytometry to inform biological questions
requires a multi-step process where the quality of the data can be ensured. As illustrated here,
this process for quality control, whether in a high-throughput or low-throughput setting, is aptly
suited to R/Bioconductor. A compendium of text, data, and R scripts provides a clear-cube,
rather than black box, approach to the analysis and interpretation of flow cytometry data. The
additional effort required to learn this new computational tool is rewarded by the ability to
apply a large suite of statistical and graphical tools to your dataset. Specifically, processing
can be streamlined by establishing a common workflow in the form of R script templates for
typical flow cytometry experiments. Subjectivity can be minimized via use of data-driven
gates. Scientific judgement can be focused quickly on embedded trends within this high-
dimensional data. Ultimately, the existing analysis algorithms within the R platform provide
a rich resource for asking complex questions using polychromatic flow cytometry.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of the steps associated with the use of flow cytometry as a tool in biological research.
This manuscript will focus on how Bioconductor can be used during pre-processing and
analysis steps.
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Figure 2.
Pairwise density plots for CD4, CD62L, and CD44 expression shown separately for aliquots
obtained from CD4+CD62L+, and CD4+CD62L− fractions. Each panel corresponds to a
particular pair: CD44 versus CD4 (left panel) and CD62L versus CD4 (right panel). The solid
lines indicate the expression threshold for a cell to be associated with positive expression.
Ninety five percent of the unstained cell fraction was contained below the threshold. The dotted
line indicates the upper limit of CD44 expression for 95% of the CD4+CD62L+ fraction.
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Figure 3.
A smoothed contour plot for CD62L versus CD44 expression. The CD4+ population (left panel)
is comprised of two populations: a CD62L+CD44med subset and a CD62L−CD44high subset.
The CD62L−CD44high subset was eliminated from the CD4+CD62L+ population (right panel)
upon sorting using an anti-CD62L antibody. The contours are colored by density estimation.
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Figure 4.
Marginalized probability density functions for CD4 (A) and CD62L (B) expression shown for
the different aliquots obtained during MACs cell sorting of Balb/c splenocytes: Unstained
fraction (dot-dashed), Pre-sort fraction (solid), CD4+ fraction (dashed), and CD4+CD62L+

fraction (dotted).
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Figure 5.
Projections of the CD4+ (filled circles) and CD4+CD62L+ (squares) fractions within the
subspace defined by principal component 1 and principal component 2.
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Table 1

Efficiency statistics for naïve CD4+CD62L+ T cell isolation from Balb/c splenocytes

Fractions Total Cells CD4+ (%) CD4+CD62L+ (%) CD4+CD62L+ CD44high (%)

Pre-sort Populations 6090 30.46 18.92 3.50

CD4+ Subset 7501 97.77 85.14 6.12

CD4− Subset 6149 21.52 11.21 1.54

CD4+CD62L+ Subset 7141 98.46 90.46 4.08

CD4+CD62L− Subset 7165 96.51 64.98 6.69
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Table 2

Summary statistics for Principal Component Analysis of CD4+ Fraction

Parameters PC1 PC2 PC3

CD4 0.190 0.953 0.235

CD44 −0.677 0.301 −0.671

CD62L 0.711 0.031 −0.703

Std Dev 1.227 1.006 0.695
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