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Abstract
Eukaryotic DNA polymerase delta (pol δ) is a member of the B family of polymerases and
synthesizes most of the lagging strand during DNA replication. Yeast pol δ is a heterotrimer
comprised of three subunits: the catalytic subunit (Pol3) and two accessory subunits (Pol31 and
Pol32). Although it is one of the major eukaryotic replicative polymerase, the mechanism by
which it incorporates nucleotides is unknown. Here we report both steady state and pre-steady
state kinetic studies of the fidelity of pol δ. We found that pol δ incorporates nucleotides with an
error frequency of 10−4 to 10−5. Furthermore, we showed that for correct versus incorrect
nucleotide incorporation, there are significant differences between both pre-steady state kinetic
parameters (apparent Kd

dNTP and kpol). Somewhat surprisingly, we found that pol δ synthesizes
DNA at a slow rate with a kpol of ~1 s−1. We suggest that, unlike its prokaryotic counterparts, pol
δ requires replication accessory factors like proliferating cell nuclear antigen to achieve rapid rates
of nucleotide incorporation.

Eukaryotic DNA polymerase δ (pol δ), a member of the B family of DNA polymerases, is
responsible for synthesizing the bulk of the lagging strand of genomic DNA during normal
replication [1–3]. In addition, pol δ participates in nucleotide excision repair, base excision
repair, and double strand break repair [4]. It also plays an important role in maintaining
genome stability, as mutations in pol δ cause an increased frequency of cancer in mice [5–7]
and have been found in cell lines derived from human cancers [8,9].

Yeast pol δ is a heterotrimer, comprised of three subunits: Pol3 (125 kDa), Pol31 (55 kDa),
and Pol32 (40 kDa) [10]. Pol3 is the catalytic subunit and possesses both DNA polymerase
and 3′-5′ exonuclease catalytic activities [11,12]. Pol31 is an accessory subunit that is
essential for viability [13]. By contrast, Pol32 is an accessory subunit that is not essential for
viability; however, cells lacking this subunit show defects in DNA replication and repair
[13]. Pol32 also contains the consensus proliferating cell nuclear antigen (PCNA) binding
motif, and interactions with PCNA significantly increase the processivity of pol δ[14,15].

The structure of the Pol3 catalytic subunit of pol δ bound to both DNA and incoming dNTP
substrates has recently been determined [16]. Overall, the structure of the Pol3 subunit
resembles that of the bacteriophage RB69 DNA polymerase, another member of the B
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family of DNA polymerases [17,18]. The catalytic subunit has three domains: an N-terminal
domain, an exonuclease domain, and a polymerase domain, which contains palm, fingers,
and thumb sub-domains. The palm sub-domain contains the conserved, acidic residues of
the polymerase active site that coordinate the metal ions necessary for catalysis. The fingers
sub-domain contacts the nascent base pair, and the thumb subdomain contacts the duplex
region of the DNA substrate along the minor groove. The DNA polymerase and exonuclease
active sites are ~ 45 Å apart and are located on different domains. In addition, a low-
resolution structure of the trimeric form of pol δ shows that the protein has an elongated
shape with the Pol31 subunit bridging the Pol3 and Pol32 subunits [19].

The general mechanism of nucleotide incorporation by nearly all DNA polymerases
examined to date follows the same overall scheme [20–22]. During non-processive DNA
synthesis, this scheme features four events. First, the polymerase binds the DNA substrate to
form the polymerase-DNA binary complex in its pre-incorporation state. Second, the
polymerase-DNA binary complex binds the incoming dNTP to form the polymerase-DNA-
dNTP ternary complex. Third, the incoming nucleotide is then incorporated onto the 3′ end
of the primer strand of the DNA substrate followed by release of pyrophosphate. This results
in the formation of the polymerase-DNA binary complex in its post-incorporation state.
Fourth, the polymerase dissociates from the DNA substrate. During processive DNA
synthesis, the polymerase cycles between the nucleotide-binding event, the nucleotide-
incorporation event, and an additional event in which the polymerase-DNA binary complex
in its post-incorporation state translocates forward one base pair along the DNA to form the
binary complex in its pre-incorporation state. We note that these events are likely
composites of several elementary steps along the reaction pathway including conformational
changes in the polymerase.

Although both the polymerase activity and the proofreading exonuclease activity contribute
to the fidelity of DNA synthesis by many DNA polymerases [23–25], we will focus here on
the contribution of the polymerase activity. Polymerases generally prefer to incorporate
incoming nucleotides that form correct base pairs with the template base compared to those
that form mispairs. This preference often leads to significant differences in the apparent
dissociation constant for the incoming dNTP (the apparent Kd

dNTP) and in the maximal first-
order rate constant for nucleotide incorporation (kpol) for correct versus incorrect nucleotide
incorporation. Some polymerases, such as the Klenow fragment of E. coli pol I, have
significant differences in the kpol, but not in the apparent Kd

dNTP [26,27]. By contrast, other
polymerases, such as the bacteriophage T7 DNA polymerase, have significant differences in
both the apparent Kd

dNTP and the kpol [28,29].

Despite the importance of pol δ in DNA replication and repair and in maintaining genome
stability, the mechanism by which it incorporates nucleotides is unknown. Here we report
steady state and pre-steady state kinetic studies of yeast pol δ to measure the fidelity of this
enzyme and to understand how the kinetics of nucleotide incorporation differs with correct
versus incorrect nucleotides. We find that pol δ incorporates most nucleotides with an error
frequency of 10−4 to 10−5, and we find that there are significant differences between both
the apparent Kd

dNTP and the kpol for correct versus incorrect nucleotide incorporation. In
addition, we find that in the absence of other protein factors, the rate of nucleotide
incorporation by pol δ is slower than expected. We suggest that, unlike its prokaryotic
counterparts, pol δ requires interactions with other factors like PCNA to achieve the rapid
rates of nucleotide incorporation necessary for DNA replication in vivo.
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EXPERIMENTAL PROCEDURES
Proteins

S. cerevisiae pol δ was over-expressed in yeast YRP654 cells carrying plasmids pBJ1244
(containing GST-Pol31), pBJ1180 (containing Pol32), and pBJ1581 (containing FLAG-Pol3
exo−). The protein, which lacked exonuclease activity because it contained two amino acid
substitutions in the exonuclease domain (D321A/E323A), was purified as described
previously [30,31]. Protein concentrations were determined by the BioRad method and by
active site titration, and both methods gave similar results (within 10%).

DNA substrates
For steady state and pre-steady state kinetic studies, the primer strand was a 32-mer
oligodeoxynucleotide with the sequence: 5′-GGT AGC CAG CCT CGC ACC CGT CCA
ACC AAC TC-3′. The four template strands were 52-mer oligodeoxynucleotides with the
sequence: 5′-GAC GGC ATT GGA TCG ACC TNG AGT TGG TTG GAC GGG TGC
GAG GCT GGC TAC C-3′. In these oligodeoxynucleotides, the N represents G, A, T, or C.
The primer strand was 5′-32P-end-labeled with T4 polynucleotide kinase and [γ-32P] ATP.
The primer and template strands were annealed at 2 μM in 25 mM Tris acetate, pH 7.5 at 90
°C for 2 min followed by slow cooling to room temperature.

Steady state kinetics
Reactions were performed in 25 mM Tris acetate, pH 7.5, 150 mM sodium acetate, 5 mM
magnesium acetate, 1 mM DTT, and 10% glycerol at 30 °C. In the case of correct dNTP
incorporation, 50 nM of the 5′-32P-labeled DNA substrate was pre-incubated with various
concentrations of the incoming nucleotide (0 to 10 μM), and pol δ (5 nM) was added to the
solution to initiate the reaction. Reactions were quenched after one minute with 10 volumes
of formamide loading buffer (80% deionized formamide; 10 mM EDTA, pH 8.0; 1 mg/ml
xylene cyanol; 1 mg/ml bromophenol blue). The samples were then analyzed on a 15%
polyacrylamide sequencing gel containing 8 M urea and formation of DNA products was
quantified by measuring the intensities of bands using an Instant Imager (Packard). In the
case of incorrect dNTP incorporation, the dNTP concentrations used ranged from 0 to 5
mM, and the reactions were quenched after one hour.

The observed rate of product formation, which was determined by dividing the amount of
product formed by the reaction time, was plotted as a function of dNTP concentration. The
kcat and Km values were determined from the best fit of the data to the Michaelis-Menten
equation using SigmaPlot 8.0. The error frequency was determined by calculating the ratio
of the catalytic efficiency (kcat/Km) for incorporating each incorrect dNTP to the sum of the
catalytic efficiencies for incorporating the correct and the three incorrect dNTPs.

Pre-steady state kinetics
Reactions were performed under the same buffer conditions as the steady state studies. For
correct base pair formation, the reaction times needed to be very short, and thus the use of a
rapid chemical quench flow apparatus (KinTek) was necessary. Pol δ (60 nM final active
concentration) and various concentrations of the DNA substrate (0 to 150 nM final
concentration) were pre-incubated in one syringe of the quench flow. The reactions were
initiated by adding various concentrations of dNTP (0 to 100 μM) from the other syringe.
The quenching solution (0.2 M EDTA) was added to each reaction after short time intervals
(0 to 20 sec). The synthesized DNA product was then analyzed using polyacrylamide gel
electrophoresis as described above. For incorrect base pair formation, longer reaction times
(0 to 300 sec) were used, and thus experiments could be performed by hand. For these
experiments, 150 nM DNA substrate was pre-incubated with 60 nM pol δ and the reactions
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were initiated with addition of various concentrations of nucleotide (0 to 5 mM). To ensure
reproducibility, each set of DNA and dNTP concentrations was repeated multiple times.

For each experiment involving the formation of a correct base pair, the concentration of
product formed (P) was plotted as a function of time (t). The observed first-rate constant of
the fast exponential phase (kobs), the amplitude of the fast exponential phase (A), and the
velocity of the slow linear phase (ν) were determined from the best fit of the data to the burst
equation:

For experiments in which various DNA concentrations were used, the amplitudes of the fast
exponential phases (A) were plotted as a function of DNA concentration ([DNA]). The
concentration of active pol δ in our protein preparations ([pol δ]) and the dissociation
constant for DNA binding (Kd

DNA) were determined from the best fit of the data to the
quadratic form of the binding equation:

For experiments in which various dNTP concentrations were used, the observed first-order
rate constants of the fast exponential phases (kobs) were plotted as a function of dNTP
concentration ([dNTP]). The apparent dissociation constant for the incoming dNTP
(Kd

dNTP) and the maximum first-order rate constant for nucleotide incorporation (kpol) were
determined from the best fit of the data to the rectangular hyperbolic equation:

For each experiment involving the formation of an incorrect base pair, the concentration of
product formed was plotted as a function of time. The kobs was determined from the slope of
the best fit line divided by the concentration of active pol δ. We carried out kinetic
simulations to ensure that the kobs values determined in this manner were valid. The kobs
was then plotted as a function of dNTP concentration, and the apparent Kd

dNTP and the kpol
were determined from the best first of the data to the rectangular hyperbolic equation.

RESULTS
Eukaryotic pol δ synthesizes most of the lagging strand during DNA replication and plays an
essential role in several DNA repair pathways. Despite its central role in maintaining
genome integrity, the kinetic mechanism of nucleotide incorporation by this enzyme is
largely unknown. To understand better the mechanism of this enzyme, we have carried out
both steady state kinetic studies and pre-steady state kinetic studies of yeast pol δ. We
specifically examined its rate of nucleotide incorporation, its fidelity of nucleotide
incorporation, as well as differences between the kinetics of correct and incorrect nucleotide
incorporation. To eliminate any complexities arising from the proofreading exonuclease
activity of this enzyme, we have used an exonuclease-deficient mutant form of the protein in
all of our experiments.
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Fidelity of pol δ
The error frequency of a DNA polymerase is measured by taking the ratio of the catalytic
efficiency (kcat/Km) for incorporating an incorrect dNTP to the sum of the catalytic
efficiencies for incorporating the correct and the three incorrect dNTPs. Thus to determine
the error frequency of pol δ, we have used steady state kinetics to measure the kcat and Km
values associated with the formation of all sixteen possible correct and incorrect base pairs
(Table 1). For example, the kcat and Km for incorporating the correct dCTP opposite a
template G were 2.7 min−1 and 1.4 μM, respectively. By contrast, the kcat and Km for
incorporating the incorrect dGTP opposite a template G were 0.020 min−1 and 630 μM,
respectively. Consequently, pol δ misincorporates a dGTP opposite a template G with an
error frequency of 1.6 × 10−5. The highest error frequency occurred with dGTP
incorporation opposite a template T (4.5 × 10−4), which is a wobble base pair. The lowest
error frequency occurred with dCTP incorporation opposite a template C (less than 1 ×
10−5), which was beyond the estimated detection limit for our experiments. The error
frequency for all of the other incorrect base pairs was in the range of 10−4 to 10−5.

Pol δ incorporates nucleotides with biphasic kinetics
While steady state kinetics often provides a convenient means of measuring DNA
polymerase fidelity, it provides little information regarding the events occurring at the
enzyme active site when correct and incorrect nucleotides are incorporated. Thus, we used
pre-steady state kinetics to examine the fidelity of nucleotide incorporation by pol δ. To do
this, we first needed to determine whether pol δ displayed biphasic kinetics (i.e., burst
kinetics) under pre-steady state conditions. We pre-incubated pol δ (60 nM final
concentration as determined by active site titration – see below) with the DNA substrate
containing a C in the template position (150 nM) in one syringe of a rapid chemical quench
flow instrument, and we initiated the reaction by adding dGTP (50 μM) from the second
syringe. Fig. 1 shows the kinetics of forming a correct G·C base pair in which two phases of
nucleotide incorporation are clearly visible. The fast exponential phase represents nucleotide
incorporation during the first enzyme turnover, while the slow linear phase represents
incorporation during subsequent, steady state turnovers. The rate of incorporation during
subsequent turnovers is limited by a slow step in the reaction pathway that occurs after
nucleotide incorporation, and this slow step likely represents DNA dissociation, which is
generally the case with DNA polymerases. From the best fit of this data to the burst
equation, we determined that the observed first-order rate constant (kobs) of the fast phase
was equal to 0.58 s−1 and the amplitude of the fast phase was equal to 37 nM.

Active site titration of pol δ and determining the KdDNA

Because pol δ displays biphasic kinetics, we were able to carry out an active site titration to
determine the fraction of active pol δ enzyme in our protein preparations and to determine
the dissociation constant for DNA binding (Kd

DNA). We pre-incubated pol δ (60 nM) with
various concentrations of the DNA substrate containing a template C (0 to 150 nM) and
initiated the reactions by adding 50 μM dGTP (Fig. 2A). The data in each plot were fit using
the burst equation, and amplitudes of the fast phases were determined from the best fits.
These amplitudes are directly proportional to the amount of active pol δ-DNA complex
formed during the pre-incubation period. Thus, the concentration of active pol δ and the
Kd

DNA could be determined by plotting the amplitudes as a function of DNA concentration
(Fig. 2B). From the best fit of these data to the quadratic form of the binding equation, we
determined that the concentration of active pol δ enzyme was equal to 60 nM and that the
Kd

DNA was equal to 30 nM.
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Kinetics of correct nucleotide incorporation by pol δ
To determine the apparent Kd

dNTP and the kpol for correct nucleotide incorporation by pol δ,
we examined the pre-steady state kinetics of forming a correct G·C base pair. We pre-
incubated pol δ (60 nM) and the DNA substrate with a template C (150 nM) and initiated the
reaction by addition of various concentrations of dGTP (0 to 100 μM) (Fig. 3A). The data in
each plot were fit using the burst equation, and the kobs values of the fast phases were
determined from the best fits. These kobs values were plotted as a function of dGTP
concentration (Fig. 3B). From the best fit of these data to the rectangular hyperbolic
equation, we determined that the apparent dissociation constant for nucleotide binding
(Kd

dNTP) was equal to 36 μM and the maximal first-order rate constant for nucleotide
incorporation (kpol) was equal to 1.0 s−1. Table 2 provides the mean and standard errors of
the apparent Kd

dNTP and the kpol values obtained from multiple independent experiments.

Kinetics of incorrect nucleotide incorporation by pol δ
We next examined the pre-steady state kinetics of forming incorrect G·G, G·A, and G·T base
pairs. We pre-incubated pol δ (60 nM) and the DNA substrate with either a template G,
template A, or template T (150 nM) and initiated the reaction by addition of various
concentrations of dGTP (0 to 2 mM). Fig. 4A shows the kinetics of forming the incorrect
G·G base pair. The data in each plot were fit to the linear equation and the kobs values were
determined by dividing the slope of the line by the active enzyme concentration. These kobs
values were plotted as a function of dGTP concentration (Fig. 4B). From the best fit of these
data, we determined that the apparent Kd

dNTP was equal to 630 μM and the kpol was equal to
0.0021 s−1. The mean and standard error values of the apparent Kd

dNTP and kpol parameters
for the formation of all three incorrect base pairs obtained from multiple independent
experiments are provided in Table 2. The apparent Kd

dNTP was approximately 15 to 30-fold
lower in the context of a correct base pair than an incorrect base pair. With the exception of
the unusual G·T wobble base pair, the kpol was approximately 250 to 400-fold faster in the
context of a correct base pair than an incorrect base pair. Therefore, there are significant
differences between both the apparent Kd

dNTP and the kpol for correct versus incorrect
nucleotide incorporation.

DISCUSSION
Pre-steady state kinetic studies have been used to examine the mechanisms of a variety of
prokaryotic and eukaryotic DNA polymerases. These include eukaryotic repair polymerases
like pol β [32,33], pol λ [34], and pol μ [35], eukaryotic translesion synthesis polymerases
like pol η [36,37], pol κ [38], pol ι [39], and Rev1 [40], as well as the mitochondrial
polymerase pol γ [41]. By contrast, very little is known about the mechanisms of the
eukaryotic B-family replicative polymerases, which are responsible for synthesizing the
leading and lagging strands during genomic DNA replication. Thus, to better understand the
mechanism of eukaryotic pol δ, we examined its fidelity of nucleotide incorporation using
steady state and pre-steady state kinetics.

The steady state kinetic analysis reported here shows that the exonuclease-deficient form of
yeast pol δ has an error rate of about 10−4 to 10−5. This is in close agreement to previous
studies of the exonuclease-deficient form of yeast pol δ that determined its error rate either
from a more limited steady state kinetic analysis or during DNA synthesis across the lacZ
gene [42,43]. The fidelity of pol δ is similar to the fidelity of the eukaryotic mitochondrial
DNA polymerase, pol γ, which has an error rate ranging from 10−4 to 10−6 [41]. The fidelity
of pol δ is similar to, although in some sequence contexts slightly lower than, the fidelity of
the eukaryotic leading strand polymerase, pol ε, which has an error rate of about 10−4 to
10−7 [44]. By contrast, the fidelity of pol δ is greater than the fidelity of eukaryotic
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translesion synthesis polymerases such as pol ζ [45], pol η [46,47], pol κ [48], and pol ι
[45,49,50], which have error rates as high as 101 for pol ι and as low as 10−4 for pol ζ and
pol κ.

The kinetics of correct base pair formation by pol δ reported here allows for a direct
comparison of this enzyme with other DNA polymerases. The apparent Kd

dNTP of pol δ, for
example, is ~20 μM, which is similar (i.e., within a factor of 5) to the apparent Kd

dNTP

reported for replicative DNA polymerases from bacteriophage, such as the T7 DNA
polymerase [28], the T4 polymerase [51], and the RB69 DNA polymerase [52]. By contrast,
the kpol of pol δ is ~1 s−1, which is at least 200-fold slower than those reported for these
bacteriophage replicative polymerases [28,51,52]. This kpol value is, in fact, more typical of
some of the eukaryotic DNA repair polymerases of the X family, such as pol β [32], pol λ
[34], and pol μ [35] and eukaryotic translesion synthesis polymerases of the Y family, such
as pol η [36], pol ι [39], and pol κ [38]. It is important to point out that this low kpol is not
due to inactive pol δ in our protein preparations. This low kpol was observed with multiple
protein preparations, and active site titrations showed that nearly all of the pol δ in our
preparations was active. This low kpol value, however, is similar to the kpol reported for calf
thymus pol δ, which was ~6 s−1 [53]. Therefore, it seems that eukaryotic pol δ may be
intrinsically slow at nucleotide incorporation in the absence of replication accessory factors
when compared to replicative polymerases from simpler bacteriophage systems.

We believe that the interactions with other factors, such as PCNA (the sliding clamp
processivity factor), are required for pol δ to achieve the rapid rate of DNA synthesis
necessary for DNA replication in vivo. Support for this comes from the fact that PCNA was
shown to increase the kpol of calf thymus pol δ by more than 3-fold [53]. In that study,
however, PCNA was inefficiently loaded onto the DNA, because replication factor C (the
clamp loader) was not present and the ends of the DNA were not blocked to prevent PCNA
from sliding off the substrate. Thus, when loaded onto DNA by RFC, PCNA would enhance
the rate of nucleotide incorporation by calf thymus pol δ to a greater degree than has been
previously reported. Moreover, we note that data presented by Chen et al [54] show that
PCNA dramatically stimulates the nucleotide incorporation activity of S. pombe pol δ and
not merely its processivity.

A comparison of the kinetics of correct and incorrect nucleotide incorporation reported here
shows that the fidelity of DNA synthesis by pol δ results in significant differences between
both the apparent Kd

dNTP and kpol for correct versus incorrect nucleotide incorporation. For
example, the apparent Kd

dNTP is 26-fold tighter when the base pair is correct (G·C) than
when it is incorrect (G·G), and the incoming nucleotide is added to the 3′ end of the primer
strand 400-fold faster when the base pair is correct than when it is incorrect. One must be
careful, however, about interpreting these differences in terms of the elementary steps along
the reaction pathway. Recent studies have called into question the assumptions that the
apparent Kd

dNTP reflects the ground state binding affinity of the incoming dNTP [55,56].
Moreover, there is significant debate in the literature regarding the contributions of the
chemical step of phosphodiester bond formation and a conformational change step (both in
its forward and reverse directions) that precedes the chemical step [57–59]. Thus, proper
interpretation of the changes in the apparent Kd

dNTP and kpol in terms of the elementary
steps along the reaction pathway and how these steps contribute to the fidelity of pol δ will
require a complete analysis of all steps including any conformational change steps.

Nevertheless, with respect to these significant differences in both the apparent Kd
dNTP and

the kpol for correct versus incorrect nucleotide incorporation, pol δ resembles other
replicative DNA polymerases including the bacteriophage T7 DNA polymerase [28,29], the
S. solfactaricus pol B1[60], and human mitochondrial pol γ [41]. This is in contrast to some

Dieckman et al. Page 7

Biochemistry. Author manuscript; available in PMC 2011 August 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



non-replicative polymerases including repair polymerases like E. coli pol I (Klenow
fragment) [26,27] and translesion synthesis polymerases like S. solfactaricus Dpo4 [61] and
eukaryotic pol η [36,37]. Many of these non-replicative polymerases only have significant
changes in the kpol for correct versus incorrect nucleotide incorporation. This suggests a
general trend across both prokaryotes and eukaryotes whereby replicative polymerases tend
to have significant differences in both the apparent Kd

dNTP and kpol and non-replicative (i.e.,
repair and translesion synthesis) polymerases tend to have significant differences in the kpol.

The X-ray crystal structure of the catalytic subunit of yeast pol δ has recently been
determined [16], which to our knowledge is the only available structure for a eukaryotic,
replicative DNA polymerase. Moreover, a low-resolution structure has been determined for
the complex containing all three subunits of yeast pol δ [19]. These structures make yeast
pol δ the ideal system for examining the structure-function relationship in a eukaryotic B-
family polymerase. The kinetics of pol δ reported here provides an excellent platform for
these studies. It also provides a basis for understanding the impact of the cancer-causing
mutant forms of this protein as well as understanding the role of replication accessory
factors, such as PCNA, in promoting its DNA synthesis activity.
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Fig. 1.
Nucleotide incorporation by pol δ displays biphasic kinetics. Pol δ (60 nM) was incubated
with the DNA substrate (150 nM), and dGTP (50 μM) for various reaction times up to 20
seconds. The solid line represents the best fit of the data to the burst equation with a kobs for
the fast exponential phase equal to 0.58 ± 0.08 s−1 and an amplitude of the fast exponential
phase equal to 37 ± 3 nM.
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Fig. 2.
Active-site titration of pol δ. (A) Pol δ (60 nM) was incubated with various concentrations
of the DNA substrate (●, 10 nM; ○, 20 nM; ■, 50 nM; □, 75 nM; ▲, 100 nM; △, 150 nM)
and dGTP (50 μM) for various reaction times up to 20 seconds. The solid lines represent the
best fit of the data to the burst equation. (B) The amplitudes of the fast exponential phase
were plotted as a function of DNA concentration. The solid line represents the best fit of the
data to the quadratic form of the binding equation with a Kd

DNA equal to 30 ± 11 nM and a
concentration of active pol δ equal to 58 ± 7 nM.
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Fig. 3.
Pre-steady state kinetics of correct base pair formation by pol δ. (A) Pol δ (60 nM) was
incubated with the DNA substrate with a template C residue (150 nM) and various
concentrations of dGTP (●, 2 μM; ○, 5 μM; ■, 10 μM; □, 20 μM; ▲, 50 μM; △, 100 μM)
for various reaction times up to 20 seconds. The solid lines represent the best fit of the data
to the burst equation. (B) The kobs of the fast exponential phases were plotted as a function
of dGTP concentration. The solid line represents the best fit of the data to the rectangular
hyperbolic equation with an apparent Kd

dNTP equal to 36 ± 5 μM and a kpol equal to 1.0 ±
0.1 s−1.
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Fig. 4.
Pre-steady state kinetics of incorrect base pair formation by pol δ. (A) Pol δ (60 nM) was
incubated with the DNA substrate with a template G residue (150 nM) and various
concentrations of dGTP (●, 0.05 mM; ○, 0.1 mM; ■, 0.2 mM; □, 0.5 mM; ▲, 1 mM; △, 2
mM) for various reaction times up to 300 seconds. The solid line represents the best fit of
the data to a linear equation. (B) The kobs values were plotted as a function of dGTP
concentration. The solid line represents the best fit of the data to the rectangular hyperbolic
equation with an apparent Kd

dNTP equal to 630 ± 180 μM and a kpol equal to 0.0021 ±
0.0003 s−1.
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Table 1

Fidelity of pol δ.

Base pair kcat Km kcat/Km Error frequencya

min−1 μM μM−1min−1

dGTP·G 0.020 ± 0.004 630 ± 350 3.2 × 10−5 1.6 × 10−5

dATP·G 0.020 ± 0.002 380 ± 150 5.3 × 10−5 2.7 × 10−5

dTTP·G 0.062 ± 0.001 400 ± 30 1.6 × 10−4 8.0 × 10−5

dCTP·G 2.7 ± 0.4 1.4 ± 0.6 1.9 N/Ab

dGTP·A 0.024 ± 0.006 780 ± 440 3.1 × 10−5 5.2 × 10−5

dATP·A 0.044 ± 0.008 960 ± 360 4.6 × 10−5 7.8 × 10−5

dTTP·A 3.9 ± 1.0 6.6 ± 3.0 0.59 N/Ab

dCTP·A 0.020 ± 0.002 500 ± 170 4.0 × 10−5 6.8 × 10−5

dGTP·T 0.10 ± 0.01 210 ± 20 4.8 × 10−4 4.5 × 10−4

dATP·T 2.2 ± 0.2 2.1 ± 0.6 1.0 N/Ab

dTTP·T 0.022 ± 0.001 410 ± 70 5.4 × 10−5 5.1 × 10−5

dCTP·T 0.045 ± 0.002 410 ± 70 1.1 × 10−4 1.0 × 10−4

dGTP·C 3.8 ± 0.4 2.5 ± 0.8 1.5 N/Ab

dATP·C 0.042 ± 0.004 250 ± 100 1.7 × 10−4 1.1 × 10−4

dTTP·C 0.11 ± 0.01 660 ± 160 1.7 × 10−4 1.1 × 10−4

dCTP·C N/Dc N/Dc < 2 × 10−5 < 1 × 10−5

a
The error frequency is the ratio of the kcat/Km parameter for incorporating the incorrect dNTP to the sum of the kcat/Km parameters for

incorporating the correct and the three incorrect dNTPs.

b
Not applicable

c
Not detectible.
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Table 2

Pre-steady state kinetics of pol δ.

Base pair Kd
dNTPa kpol

a Kd
dNTP/Kd

dNTPb kpol/kpol
c

μM sec−1

dGTP·G 620 ± 10 0.0023 ± 0.0003 26 400

dGTP·A 330 ± 110 0.0034 ± 0.0013 14 270

dGTP·T 350 ± 30 0.026 ± 0.007 15 36

dGTP·C 24 ± 9 0.93 ± 0.25 N/A N/A

a
Value reported here are the mean and standard error from multiple independent experiments.

b
This is the ratio of the apparent KddNTP for the incorrect base pair to the apparent KddNTP for the correct base pair.

c
This is the ratio of the kpol for the correct base pair to the kpol for the incorrect base pair.
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