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Abstract
Variability in patient responses to even the most potent and targeted therapeutics is now the primary
challenge facing drug discovery and patient care, particularly in oncology and immune therapy.
Variability with respect to mechanisms of induced resistance is observed both in drug-naive patients
and among those who are initially responsive. Genomics has developed powerful tools for systematic
interrogation of disease genotype and transcriptional states (particularly in cancer) and for correlation
of these measures with parameters of disease such as histological diagnosis and outcome. In contrast,
mechanistic preclinical studies remain relatively narrowly focused, leading to many apparent
contradictions and poor understanding of the determinants of response. We describe the emergence
of a systems pharmacology approach that is mechanistic, quantitative, probabilistic, and postgenomic
and promises to do for mechanistic pharmacology what genomics is doing for correlative studies.
We focus on studies in cell lines (which currently dominate mechanism-oriented analysis), but our
arguments are equally valid for real tumors studied in short-term culture as xenografts and, perhaps
some time in the future, in humans.

INTRODUCTION
Systems biology has emerged in the past decade as a means to analyze complex biological
networks through a combination of high-throughput experimentation and computational
analysis. In biomedical research, the dominant empirical approach of molecular biology has
long coexisted with a much smaller effort in theoretical biology. In contrast, sustained attempts
to combine experimental data with explanatory or predictive mathematical models—the
essence of systems biology—are relatively new. The spirit of the effort would nonetheless have
been familiar to the founders of modern pharmacology. Despite the marked immaturity of the
tools and concepts available for effective systems-level interrogation of cells and tissues, this
review argues for the development of a systems pharmacology that fuses systematic data
collection with careful mathematical modeling of pharmacological problems. We restrict the
discussion to the study and treatment of cancer, but most of our observations are relevant to
other disease areas.

Classic pharmacology concerns itself with drug action at the cell and tissue levels, with
particular emphasis on identifying targets and understanding drug–target interaction. The effect
of variation in chemical structure on drug activity, namely, structure–activity relationships,
lies at the heart of medicinal chemistry and the practical science of developing new medicines.
However, interindividual variations in drug responses have largely been the concern of
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pharmacogenomics, a branch of “personalized medicine” that has flourished in the genomic
era. Pharmacogenomics has sought to explain, for example, patient-to-patient variation in drug
metabolism based on polymorphisms in genes encoding cytochrome p450. In many diseases,
variation in drug response at the level of the individual patient is a matter for consideration but
not necessarily the dominant concern. In cancer pharmacology, however, with large
interpatient variability being observed for virtually all targeted and cytotoxic agents, even with
drug-naive tumors, such variability attains great importance. This presumably reflects the
combined effects of the genetic heterogeneity of tumors and normal human polymorphism.
Given that the origins of variation are largely unknown and appear to be patient specific, they
cannot easily be overcome through combination therapy or differences in dosing—at least not
without patient-specific rationales, which do not yet exist for most drugs or diseases.

CORRELATIVE AND MECHANISTIC APPROACHES
Approaches to understanding variations in drug response can be classified broadly as either
correlative or mechanistic. The basic idea of correlative approaches is to match patients with
drugs empirically, and to correlate responses with measurable parameters of disease such as
histological diagnosis and with clinical factors such as family history, tumor size, and lymph
node metastasis. Recently, and increasingly successfully, genomic profiling of tumors has been
used to generate expression signatures (reviewed in refs. 1,2) and cancer genotypes (refs. 3,4)
that are predictive of disease progression and drug response. In some cases, genomic data
provide important mechanistic insight. Famously, epidermal growth factor receptors carrying
mutant kinase domains (e.g., ErbB1-L858R) have been shown to have higher affinity for kinase
inhibitors such as gefitinib,5 thereby explaining the remarkable sensitivity of some lung cancers
to treatment. Despite this, the application of genomics to pharmacology remains largely
correlative, often involving the use of expression signatures.

Mechanistic studies of drug response seek a detailed understanding of interactions between
drugs and their targets, the consequences of binding for downstream proteins, and, ultimately,
the impact on cell fate. Such studies are heavily dependent on analysis of cell lines grown in
vitro, but advances in intravital imaging6 and in situ analysis of tumors7 suggest that
mechanistic studies will soon be possible in more sophisticated settings. It has long been known
as exemplified by the NCI60 anti cancer drug screen project, that cell lines exhibit up to 1,000-
fold differences in the concentration of a drug required for 50% target inhibition (IC50; see
data at NCI website).8 Such differences have been studied extensively in the expectation that
the origins of these clinical variations would become clear. Unfortunately, this expectation
remains largely unfulfilled.

Given these failures, we should recall that some sources of variation in drug responses—such
as the aforementioned epidermal growth factor receptor mutations—do translate faithfully
from cell culture to the clinic.9 Even in this case, however, the precise biochemical mechanisms
that determine drug sensitivity remain obscure. Recent studies have demonstrated that
epidermal growth factor receptor mutation is not the only factor in making cells highly
responsive to kinase inhibitors; changes in the levels of myriad interacting proteins, including
other cell surface receptors, are also involved.10,11 Indeed, from the perspective of a cell
biologist, it is remarkable how poor our understanding is of the consequences of drug–target
interaction, even in cell culture.

INTEGRATIVE ANALYSIS OF DRUG RESPONSES
In our view, one obstacle to identifying the causes of variability in drug response is the
disjointed nature of measurements typically made during preclinical studies; a second is the
informed, nonquantitative nature of most biochemical modeling. In contrast, genomicists
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routinely employ large-scale multidimensional analyses to identify informative correlations.
12 It is now time to undertake mechanistic studies that are quantitative, systematic, and
computation-savvy in equal measure. The net result of such a systems pharmacology approach
would be an integrated landscape of genotype–phenotype relationships in which banks of tumor
cell lines would be studied for insight into the diversity of response mechanisms. Such a
landscape would be constructed using single-cell methods (multifactorial imaging and flow
cytometry, for example) and would therefore contain information on cell-to-cell variability and
on differences in the responsiveness of bulk populations as compared with specific
subpopulations (e.g., tumor stem cells). In this view, we would not expect a one-to-one
correspondence between real tumors and tumor cell lines, but across a landscape of responses
we should nonetheless uncover many determinants of response (there is evidence for this from
expression profiling and sequencing13,14). Translation of these findings from cell culture to
humans would then involve working out (using biomarkers or in vivo assays) which of the
response mechanisms are relevant to which patients or tumors.

Getting drugs into cells
Drug companies perform careful pharmacokinetic and pharmacodynamic experiments to
determine and optimize the time-dependent concentrations of compounds in circulation.
However, remarkably few cell culture studies actually attempt to reproduce these time-
dependent changes or even apply drugs at concentrations at or below peak plasma drug
concentration. In part, this is because of the poor quality of the data detailing the actual levels
of drugs achieved clinically in tumors and tumor cells. It is generally assumed that drugs get
into cells simply by diffusion across the plasma membrane, but recent studies show that
transmembrane transporters and carrier proteins probably play a dominant role.15 To date, most
of the research on the relationship between drug concentrations outside and inside cells has
focused on a small subset of the 48 ATP–binding cassette transporters that can cause drug
resistance in vitro when overexpressed,16 while the roles of other transporters in efflux have
been little studied.17

One approach is to develop fluorescent probes as drug surrogates, given that fluorescence
measurements are readily adapted to high-throughput assays.18 By combining fluorescent
drugs with RNA interference in multiple cell lines, it should be possible to advance our
understanding of factors that determine drug concentrations in cells. However, significant
technology development is required to get around the problem that pharmacological properties
of drugs are often dramatically altered by linking them to fluors.19 Intravital imaging of drug
responses in mice or rats is now becoming feasible and, coupled with suitably labeled
compounds, should reveal how tumor vasculature, geometry, and genotype affect drug delivery
to tumor cells. By combing through these data, it will be possible to construct data-driven,
multiscale mathematical models that relate drug dosing in patients to drug concentrations in
the cytosol of tumor cells (of varying genotypes). Modern microfluidic devices can then
recreate relevant temporal and spatial gradients across tumors for careful mechanistic analysis
in vitro.20

Consequences of target inhibition in the context of a cellular pathway
The majority of modern drug discovery focuses on identifying compounds that interact with
targets in isolation. However, target proteins are invariably parts of complex pathways
containing many other components, and there is rarely a direct correlation between the levels
of the target and the consequences of its inhibition for downstream biochemistry.21 In many
cases, proteins in parallel pathways take over or stress responses are induced, such that the
cellular effects of target inhibition are mutated. Thus, potent monotherapies such as imatinib
for chronic myeloid leukemia appear to be the exception rather than the rule.22 However,
understanding precisely how complex cellular networks respond to drugs at a mechanistic level
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is remarkably challenging, and most studies to date have been tightly focused. In fact, many
arrive at seemingly contradictory conclusions—the controversy about whether epidermal
growth factor receptor amplification is positively correlated with gefitinib sensitivity highlights
this point.23,24 This is an area in which systems biology clearly has a role because integrated,
quantitative understanding of gene and protein networks is a fundamental goal of the field.25

Some preclinical successes are already evident, including MM-121, a therapeutic antibody
against the ErbB3 receptor whose development followed careful computational analysis of
signaling pathways in tumor cells.26 However, the experimental and computational tools
required for dissecting the biochemistry of signaling networks (where most drug targets are
found) are significantly less mature than those for gene regulatory networks (whose
components have been less druggable). Therefore, significant effort will be required to advance
network-oriented analysis of drug mechanisms.

The role of the microenvironment
Interactions between tumor and stromal cells are known to play major roles in the development
of cancer,27 and recent studies also demonstrate a role for the microenvironment in drug
responses.28 For example, the potency of trastuzumab changes dramatically when tumor cells
are grown in 2D culture or 3D matrix29 and when cells are plated on different extracellular
matrices.30 Even though many tumor cells can be induced to die in vitro when treated with
chemotherapeutics, the relationship between these responses and tumor regression in vivo is
unclear.31 There is ample evidence that interaction with the immune system, specifically with
natural killer cells, can lead to tumor regression.28 It is now feasible to account for some of
these effects through systematic experimentation in vitro: high-throughput 3D assays are
available,32 array-based methods make it possible to explore the effects of diverse extracellular
matrices,33 and cellular response to drugs can be assayed in the presence of diverse ligands.
34 Ultimately, high-throughput imaging methods will make it possible to explore interactions
between tumor cells and immune cells, and the results from such studies should be superior to
those of any mechanistic studies performed so far.

The impact of cell-to-cell variability
Because of its reliance on population averages, traditional cancer pharmacology has addressed
variance only between cells from genetically different cell populations. However, recent and
potentially significant discoveries from careful single-cell studies in vitro have shown that even
genetically identical cells can vary dramatically in phenotype as a consequence of stochastic
biochemical processes that mediate protein expression.35–39 Such cell-to-cell variation has the
potential to impact responses to drugs in patients and is an attractive explanation for the ubiquity
of fractional killing by cancer chemotherapy (see ref. 40 for a recent review of this topic). In
actual tumors, nongenetic sources of variation within clonal cell populations will converge
with variations arising from genetic changes that occur over the course of tumor evolution, and
with variations arising from differences in micro-environment. Recently, much of the
variability in the responses of tumor cells to drugs has been ascribed to the presence of cancer
stem cells (reviewed in refs. 41,42). We now need to apply single-cell assays and quantitative
modeling to determine which of the observed phenomena arise from biochemical processes
that are inevitably stochastic (the nongenetic variability discussed above), reflecting the rapid
emergence of drug resistant subpopulations through epigenetic effects,43 and which ones are
explained by the presence of special subpopulations of primitive stem-like cells. Resolving
this question is likely to have a fundamental impact on our choice of which drugs to explore
therapeutically.
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MOVING BEYOND IC50: DEVELOPING MULTIFACTORIAL
PHARMACOLOGICAL RESPONSE SIGNATURES

For many years, the efficacy of cancer drugs in cell culture has been measured via inhibition
of cell growth or induction of cell death (the ubiquitous GI50 assay). This assay is inexpensive
and can be applied to any cell line or drug, but a dose–response curve for cell survival
interrogates the whole pathway and fails to capture the underlying mechanistic complexity.
Variation has been documented in every step in a typical drug response pathway (Figure 1) for
at least some drugs in some cancer cells. Consequently, this leads to a complex and
compounding relationship between in-cell drug concentrations, target engagement, and
existence of pathway redundancy. For example, mutations that affect drug uptake and efflux
will presumably shift the GI50 value but not the slope of the response or the level of maximum
response, Emax (Figure 2a). In contrast, the presence of tumor stem cells and nongenetic
variability are expected to have an impact on Emax but not necessarily on the GI50 value (Figure
2b,c).

Real drug responses are complex, time-dependent, and probabilistic at the single-cell level.
The systematic analysis we envision must therefore monitor responses at multiple time points
using quantitative, single-cell assays. Integrating this data into pharmacological response
signatures with the same contextual richness and systems-level information as genetic
signatures will not be simple, and the development of better modeling and informatics emerges
as an urgent priority. However, by linking response signatures collected in vitro with genomic
signatures collected both in vitro and from patients, it should be possible to better translate
preclinical insight into effective treatment.

CONCLUSIONS
Modern drug discovery is effective at identifying small molecules and therapeutic antibodies
that inhibit oncoproteins implicated in human disease. Although important cancer genes no
doubt remain to be identified, and many new drugs remain to be developed, the fundamental
challenge in cancer therapy is no longer finding targets and drugging them effectively. Instead,
it centers on solving three related problems: translation, variation, and resistance. Responses
to specific therapies are less dramatic and specific in patients than had been hoped, often
because the consequences of target inhibition for protein networks in tumor and normal cells
are unknown; considerable patient-to-patient variation is observed, and methods for predicting
response on the basis of pretreatment status are not particularly effective (with some dramatic
exceptions44); and resistant tumors usually emerge over the course of treatment, and it is often
unclear how these should be treated, or prevented in the first case.

We believe that these challenges can be addressed with a systems approach to pharmacology
that is (i) mechanistic in explaining tumor cell phenotypes in terms of the detailed biology of
disease genes, drug targets, and other biomolecules; (ii) quantitative in applying mass-action
kinetics and other mathematical formalisms to predict the behaviors of ensembles of interacting
proteins through knowledge of their individual biochemistries; (iii) probabilistic in accounting
for the variability between cells with respect to drug response, with the attendant likelihood
that only a fraction of tumor cells will arrest or die in response to treatment with a
chemotherapeutic drug; (iv) postgenomic in analyzing diverse tumors in the light of knowledge
of their genetic differences and with the possibility of applying powerful knockout/-in and
RNA interference strategies to alter genotypes in preclinical studies; and (v) integrative in
assuming that determinants of drug response are multifactorial, that physiological,
morphological, and genetic features are important, and that multiple interacting pathways
rather than single genes or proteins must be studied.
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Figure 1.
Different types of variation in drug response affect dose–response curves differently. The
panels on the left illustrate a simple drug response pathway in cancer cells. The drug crosses
the cell membrane via transporters and inhibits its oncogenic target, leading to alteration of the
downstream pathways and ultimately affecting the cell phenotype. A real example of such a
pathway is inhibition of the Bcl-Abl kinase by imatinib.22 The panels on the right illustrate
dose–response curves for three measured parameters: the ratio of drug concentrations inside
and outside the cell (dotted lines), the fraction of activated targets (red lines), and cell fate
response (blue lines). (a) Cancer cell in which the drug is effective. (b) Cancer cell that
overexpresses a drug efflux pump for which the drug is a substrate, such as ABCG2. Dose–
response for both target activation and phenotypic readouts are shifted to the right, and the cell
is drug resistant. This cell could be sensitive to co-drugging with an ABCG2 inhibitor. (c)
Cancer cell that overexpresses another oncogenic target, such as the Bcl2 oncogene, acting
downstream of the original target. The dose–response for target activation is unaffected,
whereas the dose–response for phenotype is shifted to the right. This cell could be sensitive to
co-drugging with a Bcl2 inhibitor.
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Figure 2.
Cell-to-cell variability in drug sensitivity. Individual cells in an isogenic population will always
have slightly different biochemical properties because of stochastic fluctuation in protein
levels. They may also have differences in biological state regulation, e.g., different cell cycle
states. These variations at the single-cell as well as population levels will affect the perceived
drug responses, measured as EC50. (a) A standard view of drug sensitivity; two cell populations
vary in EC50 value, as measured by population-level survival curves at a fixed time point.
Green depicts a more drug-sensitive population; red depicts a more drug-resistant one. (b) A
less commonly considered possibility, in which two cell populations differ in Emax for survival
and not in EC50. Variation in drug penetration, for example, is expected to alter only EC50
because increasing drug concentrations will eventually achieve maximal efficacy. The effects
of variation after the drug reaches the target are less predictable. Depending on the kinetic
nature of the drug response pathways, they could cause variations in EC50, Emax, or both. (c)
Single-cell behavior as a function of time in an isogenic population for which Emax is ~50%
survival. In order for the whole population to show the smooth red curve illustrated in a and
b, individual cells in the population must behave nonuniformly, choosing either death (cell B)
or survival (cell A). In order to measure this nonuniform behavior directly, single-cell
measurements such as high-content imaging and flow cytometry must be used.

Yang et al. Page 9

Clin Pharmacol Ther. Author manuscript; available in PMC 2010 September 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


