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Abstract

High density tiling arrays are an effective strategy for genome-wide identification of transcrip-
tion factor binding regions. Sliding window methods that calculate moving averages of log ratios
or t-statistics have been useful for the analysis of tiling array data. Here, we present a method that
generalizes the moving average approach to evaluate sliding windows of p-values by using com-
bined p-value statistics. In particular, the combined p-value framework can be useful in situations
when taking averages of the corresponding test-statistic for the hypothesis may not be appropriate
or when it is difficult to assess the significance of these averages. We exhibit the strengths of
the combined p-values methods on Drosophila tiling array data and assess their ability to predict
genomic regions enriched for transcription factor binding. The predictions are evaluated based on
their proximity to target genes and their enrichment of known transcription factor binding sites.
We also present an application for the generalization of the moving average based on integrating
two different tiling array experiments.
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1 Introduction
Genomic tiling arrays are an adaptation of microarray technology where probes on
the array are not only representative of genes but are designed to span the entire
genome at regular intervals (Royce et al., 2006). Applications include the mapping
of transcribed sequences and DNA methylation sites (Yazaki et al., 2007). Tiling
arrays can also be used to map regions containing sequences that are bound by tran-
scription factors, proteins important for regulating transcription, the first stage of
gene expression. Transcription factors interact with their binding sequences in the
genome and can either activate or repress the transcription of target genes. The iden-
tification of these binding sequences is important for understanding gene expression
regulation and tiling arrays offer a high-throughput approach for determining their
locations in the genome.

Tiling arrays are often used to probe sequences obtained from chromatin
immunoprecipitation (ChIP). In ChIP, DNA fragments binding to the transcription
factor of interest are enriched using antibodies specific to that transcription fac-
tor. The use of ChIP followed by hybridization to an array is called ChIP-chip.
An alternative to the initial ChIP step is the DNA adenine methyltransferase ID
(DamID) method (van Steensel et al., 2001). DamID is based on a fusion pro-
tein of the transcription factor of interest to the Dam enzyme, which methylates
adenines in the sequence GATC along the genome. When the fused transcription
factor-Dam protein binds to the respective binding sequence for the transcription
factor, the fused Dam enzyme will deposit methylation tags close to the binding
sequence. The methylated sequences can then be isolated using methyl sensitive
restriction enzymes. DamID is useful when an antibody for the protein of interest
is not available to perform ChIP.

For either of the initial procedures, DamID or ChIP, the result of the tiling
array experiment is a series of intensity measurements along the genome, typically
evenly spaced (see example in Figure 1). Computational methods are available
for analyzing this type of tiling array data to predict regions of transcription factor
binding (see review by Liu, 2007). Many methods are based on sliding window
averages of the intensity values across the genome (Buck et al., 2005, Keleş et al.,
2006).

The strengths of the sliding window approaches are that they are simple
and fast. However, when initially introduced they did not account for dependencies
among neighboring probes, which occur because genomic fragments bound by the
transcription factor, obtained by DamID or ChIP, may span multiple probes. The
average fragment length is 500-1000 base pairs (bp) for ChIP and 2000-5000 bp for
DamID (Buck and Lieb, 2004, van Steensel et al., 2001), while probes may be 25-
75 bp long separated by 100-300 bp depending on the platform. Using ChIP-chip

1

Kechris et al.: Combined P-Value Statistics for Tiling Arrays

Published by The Berkeley Electronic Press, 2010



data, Bourgon (2006) illustrated that probes more than 1000 bp apart are positively
correlated if the average fragment length is 500 bp. An alternative method for tiling
array analysis that takes first order dependencies into account is the use of hidden
Markov models (Ji and Wong, 2005, Munch et al., 2006). However, computation
may become costly if longer range dependencies are taken into account. More
recently, incorporating correlations among probes into sliding window averages has
been shown to improve performance in the work of Kuan et al. (2008) (see also
Bourgon, 2006).

In a typical analysis of tiling arrays, each probe is assessed for positive in-
tensity (or log ratio intensity) to test whether intensity values significantly differ
from zero at a location. However, with more complicated experimental designs,
other hypotheses may be evaluated using different types of statistics, e.g., an F-
statistic when there are multiple factors, or non-parametric test statistics. In these
cases, a moving average of the statistic may not be appropriate. Furthermore, the
length of the sliding windows that are typically used may not have a large enough
sample size for the average to be approximately normally distributed. Therefore,
in this work, we develop a generalization of the sliding window average method
that allows for the “averaging” of results from a hypothesis test at each probe. Our
method is based on “averaging” of p-values instead of test statistics and thus ex-
pands the capabilities of current moving average approaches.

Once a p-value resulting from a hypothesis test of interest is determined at
each probe, we present a sliding window “average” of the p-values based on the
application of combined p-value statistics (Loughin, 2004) that also incorporates
correlation adjustments (Bourgon, 2006, Kuan et al., 2008). We refer to our method
as a “generalized” moving average and make evaluations on DamID tiling array data
for transcription factors where there are target genes and binding site information
to confirm predictions of transcription factor binding regions.

The paper is organized as follows. In Section 2, we describe the three bench-
mark data sets. In Section 3 we describe the Methods, including the method for
generating p-values at each probe, the two combined p-value statistics that are ap-
plied for the generalized moving average across probes and the three metrics for
evaluating predictions. In Section 4, we show two sets of results. The first set
evaluates the performance of the generalized moving average compared with other
methods, including what we define as the “standard” moving average approach for
taking averages of signal intensities, log ratios or t-statistics. To compare the differ-
ent methods in this application, the results are based on t-statistics or t-test p-values
for the standard and generalized moving average methods respectively. The sec-
ond set of results illustrates an application of the generalized moving average to an
analysis question that may not be straightforward for the standard moving average
methods. In Section 5, we end with a conclusion and discussion of the methods.
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 Figure 1: Example of Data. The chromosome arm and positions are indicated on top . first row shows log ratio intensity
values (y-axis) in a region of the chromosome for one replicate. The second row indicates the location of the hkb gene
(y-axis is for illustrative purposes). Plots were produced using the SignalMap software (NimbleGen).

. The
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2 Data

2.1 Ci Data Sets
Two data sets are based on a study of DNA binding activity of Cubitus interruptus
(Ci), the mediating transcription factor of the Hedgehog (Hh) signaling pathway
in Drosophila melanogaster (fruit fly). Two distinct forms of the Ci protein have
repressor and activator activities with respect to transcription. In cells which receive
the Hh ligand, the full length form of Ci is converted into a transcriptional activator,
directly mediating the up-regulation of known Hh targets. This process is required
for a variety of developmental events, both in the embryo and larva. In cells that do
not receive the Hh ligand, full-length Ci is processed into a repressor form. Since
both forms of Ci retain the same DNA binding motif and recognize the same DNA
sequence, it is thought that both forms bind the same DNA targets. However, the
extent to which both Ci forms bind the same sequences is unknown.

To identify the genomic regions that interact with either the activator or
repressor form of Ci, transgenic fly strains were constructed that express a consti-
tutively active form of Ci fused to the DAM enzyme. The DamID technique results
in the local methylation of DNA regions that are specific to the activator form of Ci.
The methylated genomic fragments were isolated from fly embryos, PCR ampli-
fied, and labeled with a fluorescent dye. As a control comparison, methylated DNA
from embryos expressing DAM alone were treated in the same manner. For Ci
Activator (CiA) and Ci Repressor (CiR) separately, three independent replicates of
labeled DamCi/Dam alone samples, which includes one dye-swap Dam/DamCI to
account for dye bias, were hybridized to Roche NimbleGen 385K Whole-Genome
Tiling Arrays for Drosophila (UCSC DM2 version, FlyBase v4.0). The Nimble-
Gen 385,000 feature arrays consist of 60mer oligos spaced approximately 300 bp
apart spanning the whole genome. Hybridized arrays were scanned and fluorescent
intensity ratios were calculated for the basis of this study (Biehs et al. submitted
manuscript).

Note that the Ci transcription factor in general, regardless of form, will be
referred to as Ci and that the collection of data for the two forms, CiA and CiR, will
be referred to as the Ci data sets. The individual data from one or the other Ci form
will be referred by its abbreviation respectively, CiA or CiR.
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3 Methods

3.1 Pre-processing
All analyses were performed in R 2.7.1 (R Development Core Team, 2005) and
Bioconductor 2.2 (Gentleman et al., 2004). R code developed for the methods de-
scribed in 3.3 is available upon request. The data were normalized, applying the
“loess” option for within-array normalization and “Aquantile” option for between-
array normalization based on the methods used in Wormald et al. (2006). Nor-
malization results were also inspected visually. At each probe, accounting for the
dye swap replicate(s), the log ratios between the target and control sample were
calculated using the limma package (Smyth, 2005).

3.2 P-values across Replicates
This work presents an application of existing combined p-value methods for the
analysis of tiling array data. The purpose of introducing these methods to tiling
array analysis, where moving averages are commonly calculated to identify enrich-
ment regions in the genome, is that they can be used to determine a “moving” av-
erage of p-values from any hypothesis test performed at each probe. The combined
p-value methods applied and described below are general for any test performed at
a probe. In Sections 4.1 and 4.2, the results are based on t-tests. The use of t-tests
facilitates comparisons with other methods that can be applied using the t-statistic,
the test statistic of the t-test. Then, in Section 4.3, we show results from a more
general application.

2.2 Prospero Data Set
A third data set is based on a study of DNA binding activity of Prospero (Pros),
a transcription factor that helps mediate the choice between stem cell self-renewal
or differentiation in Drosophila melanogaster (Choksi et al., 2006). The DamID
technique was also used in this study to identify genomic regions bound by Pros
and the tiling array has a similar design to the NimbleGen array used in the Ci
study, with details provided in Choksi et al. (2006). The Pros data set was provided
by the authors and consists of four replicates, two of which are dye-swaps.
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Under the null hypothesis, assuming a linear model fit, independence be-
tween probes, specified prior distributions and approximate normality of the esti-
mators, the moderated t-statistic follows a t-distribution with augmented degrees of
freedom (Smyth, 2005). These assumptions are often violated in microarray and
tiling array experiments, especially with small sample size. We found evidence
of this as well, since the calculated moderated t-statistic values are more extreme
than expected (see example in Figure S1). Therefore, the moderated t-statistics t̃
were further normalized using t̃−t̃∗

sd(t̃neg) , where t̃∗ is the mode of the distribution of
t̃ and sd(t̃neg) is the standard deviation of a symmetrical distribution based on the
negative values, t̃neg, of t̃. The mode and sd were both calculated after removing
the most extreme 5% probes. The mode is used because the distribution of t̃ tends
to be asymmetrical around zero and the standard deviation is calculated based on
the negative values because they are considered to be background (Buck and Lieb,
2004). This procedure follows techniques used in other tiling array analysis meth-
ods (Buck and Lieb, 2004, Kuan et al., 2008) and the effect is illustrated in Figure
S1, where now the t-statistics more closely follow the expected distribution, but
there are still more extreme positive values indicative of binding regions. One-sided
test p-values, pi, were then determined by the moderated t-statistic and augmented
degrees of freedom returned by the eBayes function.

3.2.2 New Application

In Section 4.3, we show an example where a t-statistic or corresponding p-value
of a t-test is not applicable for the analysis. To predict binding enrichment regions
for CiA-CiR, we can perform a Union-Intersection Test (Casella and Berger, 2002),
H0 : ∩k{µk

i = 0} and HA : ∪k{µk
i > 0} at each probe i (where k = 1,2). A p-value

3.3 P-values Across Probes - Combined P-value Approach
Because transcription factor bound fragments are typically longer than array probes,
it is of interest to find a genomic region spanning multiple probes with high signal
intensity called an enrichment region (ER). Several authors have used a sliding
window procedure to find ERs, where an average intensity value is calculated for

3.2.1 T-test Application

For the results in Sections 4.1 and 4.2, we are interested in testing the null hypoth-
esis that the mean log ratio intensity is equal to 0, H0i : µi = 0 for each probe i. Be-
cause only positive intensity signals are indicative of enriched binding sequences,
we only consider the one-sided alternative HAi : µi > 0 and use a one-sided one-
sample t-test. However, tiling array experiments may have small sample sizes (e.g.,
n = 3 in the Ci data set) and estimates of the standard error in the t-statistic denom-
inator can be unstable. Several modifications of the t-statistic have been suggested
(Smyth, 2005, Tusher et al., 2001) that pool information from all genes to obtain
more stables variance estimates. We applied an empirical Bayes procedure (Smyth,
2005), which is available in the limma package in R. First, a linear model for the
replicates was fit for each probe i with the lmFit function and then moderated
t-statistics t̃i were returned for each probe using the eBayes function.
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a series of consecutive probes. We have adapted the sliding window procedure
so that consecutive p-values across the region are combined rather than working
with a test statistic such as the average intensity across the region. In particular,
for each probe, a window size of w adjacent probes is considered on each side of
the probe. A combined p-value is then based on the l = 2 ∗w + 1 p-values in the
w-neighborhood for that probe. We discuss the selection of w below.

There are l tests in the w-neighborhood and the combined null hypothesis
H0 is that each of the i = 1, . . . , l independent null hypotheses H0i is true (Loughin,
2004). The combined alternative HA is that at least one of the null hypotheses H0i is
false. A combined p-value test statistic CP

i is then calculated for each probe i based
on the l p-values. This test statistic can be used to test H0 vs HA (i.e., the mean in-
tensity is equal to zero for all probes in the window versus at least one probe in the
window has mean intensity greater than zero). Significant probes according to the
combined p-values are predicted to be in ERs. Following a review of other appli-
cations of combined p-value methods, we detail several different combined p-value
test-statistics CP and variations of these test statistics that account for dependent
hypotheses.

3.3.1 Use of Combined P-values

Combined p-value methods are commonly used for meta-analysis and have a long
history (see reviews in Folks, 1984, Hedges and Olkin, 1985 and Loughin, 2004),
with Fisher’s Combined Probability Test dating back to 1932. In genomics, com-
bined p-values are often used to integrate data in a meta-analysis of different studies
(e.g., in Rhodes et al., 2002). But there have also been applications of the com-
bined p-value methods within a study. For example, Zaykin et al. (2002) combine

for this test is determined by the Stouffer-Liptak Test (without adjustments) for each
probe (see Section 3.3 below). This test was selected over the Fisher’s Combined
Probability Test, which puts relatively more emphasis on small p-values (Loughin,
2004) and may be problematic here since the enrichment patterns between the data
sets vary so widely. Now at each probe, a p-value has been determined for the test
of interest, and we can apply the generalized moving average methods described
below in Section 3.3.

3.3 P-values cross Probes - Combined P-value Approach
Because transcription factor bound fragments are typically longer than array probes,
it is of interest to find a genomic region spanning multiple probes with high signal
intensity called an enrichment region (ER). Several authors have used a sliding
window procedure to find ERs, where an average intensity value is calculated for

´

a
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scribed in Loughin (2004). In this framework, a parametric cumulative distribution
function F is chosen and the p-values are transformed into quantiles according to
qi = F−1(pi), for i = 1, . . . , l. The combined test statistic CP = ∑

l
j=1 qi is a sum of

independent and identically distributed random variables qi each of which follows
the corresponding probability density function for F . This can be used to obtain
the p-value for CP using the additivity property of independent and identically dis-
tributed random variables. Below, two common combined p-value test-statistics are
described that fall under this framework.

1. Fisher’s Combined Probability Test

In Fisher’s Combined Probability Test (Fisher, 1932), F is selected as the
cumulative χ2 distribution with 2 degrees of freedom. Therefore, F(x) =
1− exp(− x

2) and qi = F−1(pi) =−2ln(1− pi) and each qi follows the prob-
ability density function for a χ2 distribution with 2 degrees of freedom. The
combined p-value test statistic CP =−2∑

l
i=1 ln(1− pi) follows a χ2 distribu-

tion with 2l degrees of freedom due to the additivity property of independent
χ2. The combined p-value is p∗ = F∗(CP), where F∗ is the cumulative dis-
tribution function for the χ2 distribution with 2l degrees of freedom. These
results also follow directly from the fact that -2 times the logarithm of a uni-
formly distributed random variable is χ2 with 2 degrees of freedom. Alterna-
tively, note that if CP =−2∑

l
i=1 ln(pi) , then p∗ = 1−F∗(CP).

2. Stouffer-Lipták Test

In the Stouffer-Lipták test (Lipták, 1958, Stouffer et al., 1949), F is se-
lected as the cumulative standard normal distribution N(0,1). Therefore,
F(x) = Φ(x), where Φ is the cumulative distribution function of the standard

p-values for neighboring genomic markers in a genetic association study using the
dependence correction described in 3.3.3 and a truncated p-value product method.
In the area of microarray analysis, Affymetrix probe level p-values were combined
to obtain probe set level p-values (Hess and Iyer, 2007). For tiling arrays, Ghosh
et al. (2006) calculate Wilcoxon signed-rank test p-values across probes and then
combine the p-values across multiple replicates. In this work, we perform tests us-
ing the replicates and then combine the p-values across probes. Below, we describe
the combined p-value methods that are applied in this work.

3.3.2 Independent Tests

Under the null hypothesis, the p-value pi for a test-statistic with a continuous null
distribution is uniformly distributed in the interval [0,1]. A general framework for
combining p-values based on this feature are quantile combination methods de-
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among probes as introduced first in Kuan et al. (2008). Since the correlations are
positive, if adjustments are not made, the test statistics tend to be inflated and there-
fore statistical significance is exaggerated.

1. Dependence Adjustment to Fisher’s Combined Probability Test

When the pi’s are dependent, the distribution of Fisher’s Combined Proba-
bility test statistic CP can be approximated by a scaled χ2 distribution, cχ2

f ,
with scaling factor c and degrees of freedom f , such that CP/c∼ χ2

f (Brown,
1975). Equating E[CP] with E[cχ2

f ] = c f and Var(CP) with Var(cχ2
f ) = 2c2 f ,

we can solve for c and f and obtain

c =
Var(CP)
2E[CP]

f =
2E[CP]2

Var(CP)
. (1)

These terms depend on the mean and variance for CP which are

E[CP] = 2l (2)

and
Var(CP) = 4∗ l +2 ∑

j<k
Cov(−2ln p j,−2ln pk), (3)

since CP ∼ χ2
2l .

Exact computation of the covariance terms in Var(CP) requires numerical
integration but Kost and McDermott (2002) provide approximations by fit-
ting a polynomial regression to the true values using a grid approach rang-
ing values for the degrees of freedom (9 ≤ v ≤ 125) and the correlations

normal, and qi = Φ−1(pi). Each qi follows the probability density function
of a standard normal and using the additivity property of independent random

variables, the combined p-value test statistic CP = ∑
l
i=1 qi√

l
follows a standard

normal distribution. The combined p-value is p∗ = Φ(CP). Note that if pi
is based on a t-test, then for large sample sizes when the distribution of the
t-statistic is similar to the normal distribution, the Stouffer-Lipták test will be
equivalent to the “standard” moving average approach where t-statistics are
averaged.

3.3.3 Dependent Tests

Due to the dependencies in intensity values for neighboring probes, we considered
variations of the two combined p-value test statistics that account for correlations
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t-statistics with v degrees of freedom. In Sections 4.1 and 4.2 we present re-
sults based on applying this correction to p-values from moderated t-statistics
for the three data sets where the degrees of freedom v vary from 7.53 for CiR,
8.69 for CiA to 9.39 for Pros, which are slightly below or within the grid
values for the approximations.

2. Dependence Adjustment to Stouffer-Liptak Test´

This dependence adjustment is based on transforming the correlated quantiles
Q = {qi} into independent quantiles Q∗ as in Zaykin et al. (2002), and then
applying the Stouffer-Lipták test on Q∗. To perform this transformation, the
pi’s are assumed to be correlated according to a non-degenerate correlation
matrix Σ. Assuming that Σ is positive definite, the Cholesky factor C exists
such that Σ = CC′. By applying the transformation Q∗ = C−1Q, the q∗i ’s are
now independent and follow a standard normal distribution (Zaykin et al.,
2002). The Stouffer-Lipták test can then be applied to the q∗i ’s. This method
is used for Section 4.3 since this adjustment, unlike the adjustment for the
Fisher’s Combined Probability test, does not depend on the assumption that
the p-values are determined from t-statistics.

3.3.4 Auto Correlation

Both dependence adjustments rely on correlations between probes. The correlation
of the moderated t-statistic between neighboring probes j and k is determined using
the entire data. However, since regions of interest are contained within the entire
chromosome, to estimate the correlation between probes, we use an estimation pro-
cedure robust to outliers in R available in the robust-ts package (Spangl et al.,
2009), which is based on the work in Spangl (2008). The auto correlation is cal-

−0.98 ≤ ρ ≤ 0.98). Based on their approximations, when the p-values pi
are determined from t-statistics with v degrees of freedom and where the cor-
relations, ρ jk between probes j and k are known, then

Cov(−2ln p j,−2ln pk) = 3.263∗ρ jk +0.710∗ρ
2
jk +0.027∗ρ

3
jk

+0.727∗ 1
v

+0.327∗
ρ jk

v
−0.768∗

ρ2
jk

v
−0.331∗

ρ3
jk

v
. (4)

This approximation can be used to calculate Var(CP), which is then used to
calculate c and f . The combined p-value for Cp is then determined by using
the approximating distribution CP/c ∼ χ2

f . As stated above, the approxi-
mations are based on the assumption that the p-values are determined from
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These may be a feature of DamID data sets where the fragment lengths tend to be
longer. To use the auto correlation to estimate the correlation between probes, we
are assuming that the probes are regularly spaced. Although there are exceptions,
most of the probes are evenly spaced approximately 300 bp from each other: 81%
of the probes are spaced within 350 bp of the neighboring probes and 99% are
spaced within 600 bp. In the few cases where there are large gaps between probes
(> 700 bp) a combined p-value was not calculated for the probes at the border of
the gaps or probes within w probes of the gaps.

For chromosome arm 2L, which has overall length ∼ 22 megabases, there
is a ∼ 1.5 megabase stretch of the chromosome arm with probes every ∼ 100 bp
in addition to those that are every ∼ 300 bp. In this overlapping region, the lag-3
correlation of the 100 bp density probes is similar to the lag-1 correlation of the 300
bp density probes (data not shown). Since the locations of the 100 bp spaced probes
fall within 1-2 bp of the 300 bp spaced probes, overlapping probes are averaged
to obtain one set of probe p-values that are regularly spaced 100 bp apart in this
region. The auto correlation is calculated separately for this region to determine
the combined p-values. The rest of chromosome arm 2L, which has ∼ 300 bp
spacing between probes, is analyzed in the same manner as the other chromosome
arms. Finally, the combined p-value methods assume stationarity, i.e., the same auto
correlation is used across the entire chromosome. We examined this assumption by
dividing the chromosomes into blocks and calculating the auto correlation for each
block. Except for the blocks at chromosome ends, the auto correlation appeared to
be consistent (data not shown).

culated on each chromosome arm using the “ACF” function in robust-ts with
the Spearman’s rank option, for each lag x = 1,2, . . .. Probes were removed from
the calculation that neighbored gaps (defined as more than 700 base pairs between
probes). For probes k > j, the correlation is estimated as ρ jk = ACF(k− j). We
use window sizes of 3-8 which would correspond to a maximum lag of 16. Since
spacings between probes are roughly 300bp, these window sizes correspond to total
lengths of∼1800-4800 (2∗w∗300), which is the range of average fragment lengths
in DamID experiments.

Figure 2 shows that the auto correlation drops under .2 after a lag of 5 probes
for chromosome arm 2R for the Ci data sets and under .4 after a lag 13 for the Pros
data set. Results are similar for other chromosomes arms (data not shown). Even
with the robust alternative, all data sets had unusually high correlation (> 0) at far
lags, especially for the Pros data set, suggestive of a long-term memory process.
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Figure 2: Auto Correlation for Chromosome Arm 2R in the Three Data Sets. The y-
axis is the robust estimate of the auto correlation described in Methods. The x-axis
is the lag measured in number of probes

3.4 Determining Enrichment Regions
Each probe is associated with a combined p-value using one of the methods de-
scribed above. P-values were corrected for false discovery rate (FDR) control using
the Benjamini & Hochberg procedure (Benjamini and Hochberg, 1995). Then, ERs
were defined by scanning probes in order of the genome. If a probe had adjusted
p-values below some set cutoff a new ER was formed. The next probe passing the
cutoff is then evaluated to see if it is within w probes and 700 bp of the last probe in
an ER. If so, it is added to that ER, otherwise a new ER is designated. This proce-
dure is continued in a step-wise fashion until the last probe on the chromosome arm
is evaluated. Several different FDR cutoffs were selected to construct ERs in Sec-
tion 4.1. Alternatively, results are also presented where a set number of top probes
ranked by a specific procedure are used to construct ERs in Section 4.2. Note that
the FDR cutoffs are used to indicate false discovery control at the probe-level and
not at the level of ERs.
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method that also incorporates correlations among probes in the moving average. In
CMARRT, a Gaussian approximation is used to determine a p-value for the moving
average statistic where the variance includes covariance terms determined from the
auto correlation function. The R package for CMARRT (Kuan et al., 2008) was
run with the window.opt option set to fixed.probe and the frag.length
option set to 2000, 2600, 3200, 3800, 4400 and 5000, which corresponds approxi-
mately to the window sizes described above of 3-8, respectively, assuming probes
are spaced ∼ 300 bp apart. As with the combined p-value methods, the input for
CMARRT was the moderated t-statistic described in Section 3.2, which was also
suggested by the CMARRT manual for two-channel arrays such as NimbleGen.
One line of the original code of the ma.stat function was edited to accommodate
the larger ∼300 bp spacing between probes in the NimbleGen arrays. CMARRT
was also run with the independent option to get results based on a simple moving
average without correlation adjustment. The ER definition described above was
applied to the correlation and independent based p-values for probes returned by
CMARRT in two ways. First, only FDR adjusted probes that survived a specified
FDR control cutoff were used for the results in Section 4.1. Second, only FDR ad-
justed probes that were in a ranked list of a set number of probes were used for the
results in Section 4.2.

Another existing software for tiling array analysis is TileMap, where a first
order hidden Markov model can be used to combine neighboring probes and iden-
tify regions that have hybridization patterns of interest. As with the other meth-
ods, input for TileMap was the moderated t-statistic for each data set. We ran the
HMM option with Expected hybridization length set to 10 (for a typical
hybridization region of 3000) and Maximal gap allowed set to 700 to corre-
spond to settings used in the other methods or to settings that are appropriate for the
DamID data. For each probe, the HMM option returns posterior probabilities that
a probe is in a region of interest. We used the direct posterior probability approach
in Newton et al. (2004) to control the FDR. The ER definition described above was
applied to probes in two ways as with CMARRT. Note that the HMM option does
not have a window option, so when TileMap results are plotted with the other meth-
ods for different window sizes, the same results are repeated. TileMap only takes
first order dependencies into account and does not incorporate longer range corre-

3.5 Comparison with Other Methods
We compare the generalized moving approach, based on combined p-values, with
other existing methods for tiling array analysis. First, comparisons are made with
a “standard” moving average approach based on taking averages of signal intensi-
ties, log ratios or t-statistics. For this purpose, we use the CMARRT (Correlation,
Moving Average, Robust and Rapid method on Tiling array) software based on a
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3.6 Evaluation
All methods were applied to the CiA, CiR and Pros tiling array data described
above. For both transcription factors a consensus motif has been identified and
target genes have been predicted using gene expression data. Taking advantage of
these two sources of external information, we have used three methods to evaluate
the methods of ER prediction.

3.6.1 Target Gene Enrichment

Using gene locations from the v4.0 FlyBase collection (Wilson et al., 2008), a list
of genes associated with an ER were determined by extracting the closest upstream
and downstream gene to the ER and any genes that overlap an ER. This procedure
resulted in at least two genes predicted for each ER. Genes appearing multiple times
for different ERs were only counted once. The collection of all genes predicted to be
near or at ER, called “ER genes”, were then compared to a set of genes determined
by a series of gene expression experiments to be likely targets of Ci or Pros called
“target genes”.

Ci is the mediating transcription factor of the Hedgehog signaling pathway.
Target genes were identified by having to show a median gene expression fold in-
duction of ∼ 1.4 in genetic backgrounds where Hedgehog signaling was retained
compared to a situation where Hedgehog signaling was absent (Biehs et al., sub-
mitted manuscript). We only examined the 199 of 230 target genes that also had
annotation in the v4.0 FlyBase collection. The Pros target genes were obtained from
the list of the authors’ differentially expressed genes (Choksi et al., 2006) that had
at least log fold 2 change (n=214). Of these, 201 could be mapped to annotations
in the v4.0 FlyBase collection.

The overlap of ER genes with the predicted Ci and Pros target genes were
evaluated using the “target gene enrichment ratio”, which is equal to the percentage
of target genes that intersect the ER genes divided by percentage of all genes that are
ER genes. For example using Ci, if one set of ERs has 2695 neighboring ER genes
(∼ 20% of the 13472 total genes), which intersect with 60 target genes, (∼ 30% of
the 199 target genes), then target gene enrichment is ∼ .3

.2 = 1.5.
Gene Ontology (GO) analysis for Table S1 was performed using the GOstat

software (Beissbarth and Speed, 2004) with default options and “False Discovery
Rate correction (Benjamini)” for multiple testing correction.

lations as do the various dependence adjusted procedures. In Figures 3 and 4, we
also included the TileMap ER predictions directly based on using the HMM option.
Since there is no FDR cutoff in this case, the x-axis locations of these results are
for illustrative purposes only.
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by transcription-factor binding affinity experiments (Hallikas et al., 2006). A con-
sensus motif for Pros “taagacg” is reported in Choksi et al. (2006). We searched
for occurrences of the motifs along with its reverse complement in the set of ER
sequences. This observed number was compared to the expected number, which is
the frequency of occurrences of the motif in the entire genome multiplied by the
total length of the ER sequences,

E[# tgggtggtc in ERs] = total length ERs× # tgggtggtc in genome
length of genome

. (5)

The “motif enrichment ratio” is the ratio of observed versus expected counts.
Motif enrichment is sensitive to the lengths and number of ERs. Especially

for the longer Ci consensus, there may be few or no occurrences if the total length
of predicted ERs are short. In Figure 3, where the total ER lengths for each pre-
dicted method may be different and may bias the results, the motif enrichment value
is divided by the total length of the ER regions for a set of predictions. This num-
ber is then multiplied by 105 for plotting purposes and is referred to as the “motif
enrichment score.”

3.6.3 Distance to Gene

For each ER, the shortest distance to a gene was determined by comparing the ER
locations with all transcription start positions from the v4.0 FlyBase collection of
genes. Then, different distance cutoffs were used to find the “gene distance percent-
age”, which is the percentage of ERs whose closest gene, upstream or downstream,
is less than or equal to a defined distance (e.g., 1KB and 2KB).

This metric is also sensitive to the lengths and number of ERs. For a large
set of randomly selected ERs, this metric increases because the fly genome is rela-
tively gene dense (median distance between transcription start sites is 3500-4500bp
depending on the chromosome arm) and by chance ERs will be selected that are
close to genes (see Results). Therefore, as with the motif enrichment score, the per-
centage is divided by the total length of the ER regions for a set of predictions. This
number, the “gene distance score” is then multiplied by 105 for plotting purposes in
Figure 4. To evaluate the locations of random ERs to genes, ERs were constructed
from a set number of random probes selected over all chromosomes. This was re-
peated 10 times and for each set of 10 ERs, based on a set number of probes, the
average percentage of ERs within a distance to a transcription start were tallied and
displayed in Figures 6, S8 and S9.

3.6.2 Motif Enrichment

A consensus motif for Ci “tgggtggtc” has been identified both by its occurrence
in known Ci enhancers (Alexandre et al., 1996, Kinsler and Vogelstein, 1990) and
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4 Results
We report the evaluation of different ER prediction methods based on independent
sources of target gene and motif data (see Methods). Although in theory, the gen-
eralized moving average approach based on combined p-values is designed for any
hypothesis test, to facilitate comparison with existing methods, in Sections 4.1 and
4.2, we apply the method using p-values based on t-tests. Then, we run other meth-
ods such as CMARRT and TileMap using t-statistics, the test statistic for the t-test.
The purpose of this comparison is to observe whether any performance is lost by
using a generalized moving average based on p-values instead of the test statistics
themselves. Then, in Section 4.3, we present an example of an application that can
be more difficult to assess using other methods, but fits into the generalized mov-
ing average framework. We use three metrics to evaluate predicted sets of ERs: by
target gene enrichment, motif enrichment and proportion within a set distance to a
gene. For all three metrics, larger values are more favorable.

4.1 Evaluation of Moving Average Methods and Effect of De-
pendence Adjustment

First, the generalized moving average method, based on combining p-values from
t-tests, is compared to an existing or “standard” moving average approach, based on
averaging t-statistics. In particular, two different options of the combined p-value
method, Fisher’s Combined Probability Test (F) or Stouffer-Lipták Test (SL) are
compared to the moving average procedure of CMARRT (C). Second, the effect
of incorporating correlations among probes is evaluated by comparing the different
moving average procedures with or without the dependence adjustments and by
evaluating a third procedure, TileMap (see Methods). All results in this section are
based on the Ci Activator data set.

Figure 3 and Figure S2 show the target gene enrichment value for the dif-
ferent combinations of tests, window size and FDR cutoffs for determining ERs.
Each FDR cutoff (at the probe-level) on the x-axis determines a set of probes that
are used to construct ERs. For all tests, the target gene enrichment increases as the
FDR cutoff becomes smaller, indicating that as the threshold for significant probes
becomes more stringent, relatively more target genes are included in the ER gene
set than expected by chance. As the FDR cutoff becomes more stringent, the de-
pendent tests consistently have higher enrichment values than the independent tests
for all window sizes and for both the combined p-value and moving average meth-
ods. By not accounting for the dependence, p-values are much smaller and inflate
the significance of a probe. For example, using window size 4 a FDR cutoff of
10−12 for Fisher’s Combined Probability Test is necessary to achieve a similar size
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of predicted ERs as a FDR cutoff of 10−3 for Fisher’s Combined Probability Test
with Dependence (FwD).

The maximum value of target gene enrichment, ∼ 7.2, occurs for window
size 7 and FwD. In general, there is a slight advantage for FwD over Stouffer-Lipták
Test with Dependence (SLwD) and both have higher target gene enrichment values
than the t-statistic moving average method, CMARRT, with dependence (CwD)
except for large FDR cutoffs. The three methods without dependence adjustments
perform very similarly (F, SL and C) and achieve a maximum value of target gene
enrichment of ∼ 2.0. They appear to be less sensitive to window size than the
methods with dependence. For comparison, TileMap (TM) was also applied and
performs slightly better than the unadjusted versions, but not as well as the adjusted
methods.

Figure 3 and Figure S3 show the enrichment of the Ci transcription fac-
tor binding site motif (see Methods) for the different combinations of tests, window
size and probe-level FDR cutoffs for determining ERs. Again, the unadjusted meth-
ods perform more poorly compared to the dependence adjusted methods. In gen-
eral, the unadjusted methods identify many and long ERs; so although their motif
enrichment ratio may be high, after adjusting for the overall length of the ERs, they
have relatively worse motif enrichment score than the adjusted methods. Within the
dependence adjusted methods, depending on the window size, one of the combined
p-value methods (FwD or SLwD) performs slightly better than the moving average
approach (CwD) for smaller window sizes and FDR cutoffs. For larger window
sizes, all three methods perform similarly. TileMap again performs slightly better
than the unadjusted methods, but not as well as the adjusted methods.

Figure 4 and Figures S4 and S5 show the enrichment of ERs close to tran-
scription start sites. These results are consistent with the previous metrics in that
the adjusted methods tend to predict ERs closer to genes, after correcting for overall
ER length, compared to the unadjusted methods and TileMap and that there is also
some advantage for SLwD for smaller windows and FDR cutoffs, but this dimin-
ishes for larger windows and FDR cutoffs.

4.2 Evaluation of Additional Data Sets
The generalized and existing moving average methods that incorporate correlations
among probes appear to make the best ER predictions using the three evaluation
metrics on the CiA data set. To explore their performance on two additional data
sets, these methods were also applied to data sets based on Ci Repressor (CiR) and
Prospero (Pros) (see Methods). However, because these are more challenging data
sets, there were very few predictions. For example, at window size 3 and relatively
relaxed probe-level FDR cutoff of 0.10, only 7 ERs were predicted for a total of
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Figure 3: Target Gene and Motif Enrichment. The x-axis corresponds to probe-
level FDR cutoffs for determining ERs. On the left, the y-axis corresponds to the
“target gene enrichment ratio” (see Methods). Values greater than one, indicated by
the line, correspond to relatively more target genes predicted than expected based
on their frequency in the genome. On the right, the y-axis corresponds to the “mo-
tif enrichment score”, which is the motif enrichment ratio corrected for overall ER
lengths (see Methods). Larger values correspond to relatively more motifs in the
ERs than expected based on the frequency of the genome. The results are dis-
played for four combined p-value statistics, Fisher’s Combined Probability Test (F),
Fisher’s Combined Probability Test with Dependence (FwD), Stouffer-Lipták Test
(SL), Stouffer-Lipták Test with Dependence (SLwD), two moving average meth-
ods CMARRT (C), CMARRT with Dependence (CwD) and TileMap (TM) using
FDR cutoffs or the HMM prediction method (TM-H). See Figures S2 and S3 for all
window sizes.
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Figure 4: Gene Distance Score. The x-axis corresponds to probe-level FDR cutoffs
for determining ERs. The y-axis corresponds to the “gene distance score” corrected
for overall ER lengths (see Methods). Larger values correspond to relatively more
ERs close to genes. Distances less than or equal to 1KB and 2KB are used. See
Figure 3 for details on legend and Figure S4 and S5 for all window sizes.
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9113 bases using CwD and none using FwD. This may be due to relatively smaller
enrichment signal in the genome for these data sets or other factors that are data set
specific (e.g., Pros has relatively high auto correlation values compared to the Ci
data sets, see Figure 2).

Therefore, for these two data sets, we took a set number of top probes,
ranked by the respective method, and constructed ERs based on those probes. These
ERs were compared using the previously described evaluation criteria. This was
also repeated on the original Ci activator (CiA) data set. In addition to exploring the
behavior of the methods on the noisier data sets, the advantage of this comparison
is that because the same number of probes are being used, the total ER lengths
should roughly be the same. For example, for window size 3, using the top 1000
probes, FwD has 240 ERs (251234bp) while CwD has 215 ERs (229699bp), which
are roughly the same magnitude. Therefore, ER total length corrections are not
necessary as in Figures 3 and 4. We compared one of the generalized moving
average methods based on combined p-values with dependence (FwD) with the
moving average method with dependence (CwD).

Figures 5 and S6 show the target gene enrichment for all three data sets and
two different methods. FwD performs the best on the CiA and CiR data set for
all window sizes with enrichment value of 7.0. CwD achieves the highest value
of 2.5 for Pros. In general, the results on Pros are strikingly worse. Either the
target gene list provided by the authors has too many false positives or negatives,
the enrichment signal for Pros is relatively low or the high auto correlation makes
prediction difficult.

For motif enrichment in the CiA data set (Figures 5 and S7), except for
window size 3, where FwD achieves the maximum enrichment, FwD does better
at the higher and lower ranked probes, but then CwD achieves larger values in the
middle of the probe rankings. CwD also achieves the highest motif enrichment
ratio for CiR, with some advantage for FwD in the middle ranked probes. For Pros
the results are all poor, perhaps due to the specificity of the published consensus
motif for Pros (the authors of the original Pros study also did not find evidence for
enrichment of the motif, personal communication). However, FwD achieves the
maximum value of ∼ 1.6 for window size 8.

For the gene distance metric in Figure 6 and Figures S8 and S9, all methods
are very close, but FwD performs best for all three data sets for the highest ranking
probes. The differences between the methods is smaller for the Pros data set and the
differences also decrease as the window size becomes smaller. Based on the gene
density of the Drosophila genome, with median distance 3500-4500bp between
transcription start sites, even random ERs may be within a certain distance to a
gene. Roughly ∼ 20% and ∼ 35% of random ERs are within 1KB and 2KB to a
transcription start site respectively, with a slight increase as more probes are used to
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Figure 5: Target Gene and Motif Enrichment for Top Predictions. The x-axis cor-
responds to the number of top ranked probes used to construct ERs. On the left,
the y-axis corresponds to the “target gene enrichment ratio” (see Methods). Values
greater than one, indicated by the line, correspond to relatively more target genes
predicted than expected based on their frequency in the genome. On the right, the
y-axis corresponds to the “motif enrichment ratio” (see Methods). Values greater
than one, indicated by the line, correspond to relatively more motifs in the ERs
than expected by what is observed in the overall genome. The results are displayed
for Fisher’s Combined Probability Test with Dependence (FwD) and the moving
average method CMARRT with Dependence (CwD). See Figure 3 for details and
Figures S6 and S7 for all window sizes.
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construct the ERs (see Methods and Figures S8 and S9). After a certain set of top
probes are included, almost all methods for all data sets find ERs closer to genes
than the random sets.

4.3 New Application
In the previous sections, the results of the generalized moving average methods
showed either comparable or slightly enhanced performance to standard moving
average methods. Therefore, for the t-test application, there does not appear to be a
loss in performance by using results of the hypothesis test instead of the test-statistic
themselves and in some cases there appears to be a gain. However, the generalized
moving average approach may also be useful in situations where it is difficult to
assess significance of the moving average of certain statistics and/or asymptotic
normality does not hold. In these situations, if a problem can be expressed as a
hypothesis test at each probe and a p-value can be derived, then the generalized
moving approach can be applied as an alternative.

We present an example using the Ci data sets, where it is also of interest
to identify enrichment regions that overlap between the two forms of the Ci tran-
scription factor. Since both forms have the same DNA binding domain, it would be
expected that they would bind to similar sequences. On the other hand, the overall
shape of the two protein forms are vastly different and you might expect that one is
capable of binding to low affinity sites better than the other. These differences may
also explain why the two forms have very different levels of enrichment across the
genome. To explore this problem in more detail, we are interested in finding ERs
that overlap between the two forms. One strategy would be to take the two sets of
ERs and examine the genomic regions where they overlap, or the overlap of genes
nearby the ERs. However, as discussed above, using even relatively relaxed FDR
cutoffs, very few or no ERs are predicted for CiR for most methods. Therefore, we
have analyzed the two data sets to make integrated predictions of ERs for CiA and
CiR.

We express the problem as a hypothesis test at each probe and p-values are
determined such that the generalized moving average approach can be applied to
the resulting p-values (see Methods). We use the Stouffer-Lipták Test combined
p-value test (see Methods) with dependence adjustment and predict 1657 ERs for
CiA-CiR using window size 4 and FDR cutoff of .01, which resulted in 1029 as-
sociated ER genes. In Table S1, the GO terms associated with the ER genes range
from general categories (e.g., multicellular organismal process) to specific (e.g.,
neurogenesis or wing disc development). However, the developmental programs
that require Hh signaling in the fly are reflected in the ER genes grouped accord-
ing to their GO terms. For example, Hh signaling has largely been characterized
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Figure 6: Gene Distance Percentage for Top Predictions. The x-axis corresponds to
probe-level FDR cutoffs for determining ERs. The y-axis corresponds to the “gene
distance percentage” (see Methods). Larger values correspond to relatively more
ERs close to genes. Distances less than or equal to 1KB and 2KB are used. See
Figure 5 for details and Figure S8 and S9 for all window sizes.
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in the context of the fly wing imaginal disc and we identify a group of genes that
fall into this category. In addition, Hh signaling has shown to be required for the
development of specialized cells in the nervous system and we identify genes that
are involved in that process (see Table S1, neurogenesis and generation of neurons).
Although several conserved signaling pathways participate in the above mentioned
processes, we attribute these findings to the identification of Hh target genes. This
conclusion is based in part to the presence of known Hh target genes in these lists.

5 Conclusion and Discussion
We have described a new method for analyzing tiling arrays which generalizes the
moving average approach to scenarios where a problem can be presented as a hy-
pothesis test at each probe and a moving “average” can be applied to the p-values
resulting from this test. Our method was applied to data for the Ci and Pros tran-
scription factors, where we had information on both their target genes and binding
sites.

The first set of results based on a t-test were used to compare the perfor-
mance of the method to the standard moving average approaches where the moving
average of a log-ratio or t-statistic can be evaluated (Sections 4.1-4.2). In general,
we found that the results were comparable between the methods on the three met-
rics used. Since the t-statistic moving average approach is a special case that falls
into the generalized moving average framework, it is reassuring that the results were
consistent. Furthermore, for large sample sizes, the Stouffer-Lipták test should be
equivalent to the standard moving average approach.

The generalized moving average generally performed at least as well as the
existing moving average methods, with some variation in the best performer due
to the data set and evaluation criteria. As in Kuan et al. (2008), an adjustment
was made based on correlations between probes and our results (Figures 3-4) are
consistent with previous work that showed improvement in predictions due to the
dependence adjustments (Bourgon, 2006, Kuan et al., 2008). TileMap, which only
accounts for first order dependencies, performs more similarly to the unadjusted
methods than the dependence adjusted methods.

The ER predictions were compared using several evaluation metrics (target
gene enrichment, motif enrichment and distance to gene). These types of informa-
tion are useful for investigators to evaluate the quality of ER predictions. However,
there are caveats regarding their use. First, the consensus is based on current knowl-
edge and may not completely specify the binding specificity and second, the sets of
target genes are likely to suffer from both false positives and false negatives. This
may be especially true for the Pros results which are strikingly worse than the Ci
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results. However, the Pros results may also be due to to a relatively poorer enrich-
ment signal or considerably higher auto correlation, which may make prediction
difficult. Despite the inherent problems with the different benchmarks, using the
combination of the three can still be useful for comparing methods.

The initial set of results can also be used to evaluate how different cutoffs
and options affect the results. As expected, the more stringent FDR control cutoffs
provided more accurate ER predictions based on the metrics. However, there are
two caveats regarding these cutoffs. First, many moving averages methods includ-
ing those applied here use Benjamini & Hochberg FDR control assuming tests are
independent despite tests being locally correlated. The effect of correlation may
make FDR estimation unstable and little is known about how to account for corre-
lation (Efron, 2007, Schwartzman and Liny, 2009). Second, the FDR cutoffs are
at the probe-level not the ER-level, which is also common for many tiling array
analysis methods. It would be more ideal for investigators to have FDR cutoffs that
correspond to the ER-level test.

We also evaluated the effect of the window size option. Windows sizes of
3-8 were selected to correspond to a typical DamID fragment length of 1800-4800.
The combined p-value methods appear to be more sensitive to window length.
Larger window sizes result in the prediction of longer ERs in general and better
target gene enrichment, but worse motif enrichment and gene distance scores. In-
termediate window sizes in the range 4-5 appear to balance these two effects.

Finally, two different versions of the combined p-value methods were intro-
duced; Fisher’s Combined Probability Test and Stouffer-Lipták Test. For the most
part, there appears to be an advantage of FwD compared to SLwD on smaller win-
dow sizes based on the evaluation metrics. In general, Fisher’s Combined Proba-
bility Test puts relatively more emphasis on small p-values than the Stouffer-Lipták
Test (Loughin, 2004). This would be more of a problem when the p-values that are
combined are very disparate in magnitude, as in the analysis of the two Ci data sets
in Section 4.3.

Although t-statistics were used in the first set of results, the use of the gen-
eralized moving average need not depend on that specific type of test as long as the
problem can be expressed in a hypothesis testing framework and p-values can be
determined for each probe. In the second set of results (Section 4.3), we presented
another application to illustrate this point and the generalized moving average with
dependence adjustment could be applied across probes. Using a standard moving
average in this scenario may not be appropriate, since the moderated t-statistics at
each probe from the two different experiments (CiA and CiR) have different degrees
of freedom and it is of interest to identify regions where there is enrichment of at
least one or both signals. Alternatively, TileMap provides the flexibility to make
comparisons under multiple experimental methods (e.g., mutant 1 < wild type <
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mutant 2), but in this application, it was not easily adapted to test for binding under
the two conditions (personal communication). In this context, the generalized mov-
ing average method provided an alternative analysis method with predictions near
genes that are consistent with annotation for known Hh targets.
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