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Abstract

The recent emergence of massively parallel sequencing technologies has enabled an increas-
ing number of human genome re-sequencing studies, notable among them being the 1000 Genomes
Project. The main aim of these studies is to identify the yet unknown genetic variants in a genomic
region, mostly low frequency variants (frequency less than 5%). We propose here a set of statis-
tical tools that address how to optimally design such studies in order to increase the number of
genetic variants we expect to discover. Within this framework, the tradeoff between lower cover-
age for more individuals and higher coverage for fewer individuals can be naturally solved.

The methods here are also useful for estimating the number of genetic variants missed in a discov-
ery study performed at low coverage.

We show applications to simulated data based on coalescent models and to sequence data from
the ENCODE project. In particular, we show the extent to which combining data from multiple
populations in a discovery study may increase the number of genetic variants identified relative to
studies on single populations.
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Introduction

New developments in sequencing technologies have brought along substantial
reductions in cost and increases in genomic throughput by more than three
orders of magnitude (Shendure and Ji, 2008; Tucker et al., 2009; Metzker,
2010). These improvements have in turn contributed to the launch of the
1000 Genomes Project (http://www.1000genomes.org/page.php), and to an
increasing number of smaller scale sequencing studies. These studies have as
one of their goals the identification of the genetic variation in the region under
study, mostly low frequency variants, with the ultimate goal of performing
association testing between rare variants and complex diseases (Li and Leal
2008, Madsen and Browning 2009).

The number of genetic variants identified in these studies depends
on several factors. Among these the most important are the number of indi-
viduals sequenced, and the sensitivity to call variants present in a sequenced
individual. With the new sequencing technologies the sensitivity to detect a
variant is influenced directly by the depth of coverage at the variant position.
Therefore when designing a variant discovery study researchers need to de-
cide the number of individuals that can be sequenced, and the average depth
of coverage to be used for each individual given a fixed study cost in order
to maximize the expected number of variants to be discovered. The natural
tradeoff is between lower depth of coverage for more individuals, and higher
coverage depth for fewer individuals. In this paper, we propose analytical
methods that allow estimation of the number of genetic variants we expect to
identify in sequencing studies performed at reduced coverage, and that provide
a natural solution to this tradeoff.

We frame the problem of estimating the genetic variation in a popu-
lation as a species problem in ecology, where one is interested in estimating the
number of species in a closed population (Sekar and Deming, 1949; Efron and
Thisted, 1976; Bunge and Fitzpatrick, 1993). Here we extend the approach in
Ionita-Laza et al. (2009) to account for imperfect probability of variant detec-
tion in an individual, and this extension allows us to address the optimality
issue of the current sequencing studies. The approach is appealing in that it
makes few and reasonable assumptions, and it makes use of already generated
sequence data in the region of interest to empirically estimate the underlying
distribution of the variant frequency. In the remaining of the paper we present
details of the approach and show applications to simulated data based on a
coalescent model and to the ENCODE data.
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Methods

We present here a statistical framework for estimating the number of genetic
variants we expect to identify in a fixed number of individuals. We start by
introducing several assumptions on the underlying frequency distribution of
variants in the population, and on the process of calling variants in a set of
sequenced individuals. We assume here that variants are in linkage equilib-
rium, and that their population frequencies follow a Beta distribution (Wright,
1959), and hence the observed frequency counts follow a Beta-Binomial distri-
bution. This assumption in addition to theoretical justification has also proved
to work well in practice.

In the context of current sequencing technologies, the probability of
calling a truly present variant is a function that depends on several factors,
including the number of reads observed at the variant location (i.e., the cov-
erage depth) and the number of reads consistent with the non-reference allele
at the location (we assume that the reference allele is known). We focus here
on the discovery of true variants, and assume that the probability of calling
a non-existent variant is negligible. Note that this latter probability can be
made as small as desired by imposing a more stringent variant calling rule.

Expected number of variants to be identified

We assume that the average depth of coverage across the genome is denoted
by λ (per base), which means that each variant position is sequenced λ times
on average; the value of λ is known. Accordingly, the number of reads, say
m, at a given location (i.e., the coverage depth) is approximately Poisson(λ).
The number of reads at a location is an important covariate as it affects the
probability that a truly present variant in an individual is detected. In general,
the higher the number of reads at a location, the greater the probability of
making a call at a variant position. The specific algorithm for calling variants
can vary from study to study. For our purposes we assume that a variant
is called whenever at least k copies of the same (non-reference) allele are de-
tected among all the reads at a position; however other calling procedures can
be accommodated as well, but require more specific information about the
sequencing technology used. If we let perr be the error probability for a single
read per base (assume the errors are independent), m be the total number of
reads at a location, and mnoerr be the number of reads without error, then the
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calling probability can be modeled using a binomial distribution, as follows:

Cm,k = P (call a variant in an individual | #reads at a location is m)

= P (mnoerr ≥ k), (1)

where mnoerr is approximately Binomial(m, 1− perr). A plot of Cm,k as a func-
tion of m when k = 3 is shown in Figure 1 for two different values of the error
probability perr, 1% and 10%.

The expected number of variants with frequencies between f1 and
f2 to be discovered in Nind individuals is given by the following formula:

ENind,f1,f2,λ = M

∫ f2

f1

P (detect a variant with frequency θ)f(θ)dθ

= M

∫ f2

f1

[1− P (do not detect a variant with frequency θ)] f(θ)dθ

= M

∫ f2

f1

1−

(
1−

∑
m

Cm,kθfλ(m)

)2Nind

 f(θ)dθ, (2)

where M is the total number of variants (unknown), f1 and f2 are bounds on
the frequencies of variants, λ is the mean depth of coverage across the genome,

fλ(m) =
e−λλm

m!
(Poisson distribution function),

and

f(θ) =
θa−1(1− θ)b−1

B(a, b)
(Beta distribution function).

Parameters a and b of the Beta distribution can be estimated from available
data using maximum likelihood estimation (see Appendix).

Optimal coverage depth in order to maximize the expected number
of discoveries

For a fixed study cost we are interested in maximizing the number of variants
we expect to discover. Therefore an important aspect in the design of new
sequencing studies is choosing the average depth of coverage that one should
use per individual, and the number of individuals to sequence. In our frame-
work, this can be rephrased as maximizing the expected number of variants we
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expect to discover at a given coverage λ and for a given number of individuals
Nind, i.e.:

max
λ,Nind

ENind,f1,f2,λ (3)

with the constraint that the cost of the study is fixed. With the current
sequencing technologies, it is reasonable to assume that the cost of the study
is linear in the number of individuals, i.e. Cost = cNind · Cost(λ), where c is
a constant, and Cost(λ) is the cost of sequencing an individual at an average
coverage depth of λ. We assume here that Cost(λ) is linear in λ, although
other cost functions can be accommodated as well.

Number of variants missed in a discovery study

We assume now that we have already performed a variant discovery study at
average depth λ in Nind individuals, and we are interested in estimating the
number of genetic variants that we missed in the study. The number of unseen
genetic variants can then be decomposed into two separate components: the
number of variants missed in the Nind individuals due to the depth of coverage
used (denoted here by M1), and the number of variants missed due to our
sampling only Nind individuals from the entire population (M2). The first
component (M1) can be estimated as follows:

M1 = ENind,f1,f2,∞ − ENind,f1,f2,λ,

where ENind,f1,f2,∞ is the number of variants that we expect to discover in Nind

individuals with perfect coverage.
The second component (M2), i.e. missing variants due to our sam-

pling of only Nind individuals, can be estimated as follows. Let ∆Nind,f1,f2,∞(t)
be the expected number of new variants to be discovered if we were to do a
new discovery study in an additional t ·Nind individuals with perfect coverage.
Then

∆Nind,f1,f2,∞(t) = E(t+1)·Nind,f1,f2,∞ − ENind,f1,f2,∞. (4)

Note: Estimating the number of variants to be identified in future sequencing
studies at the same depth of coverage λ as used in the initial discovery study
follows easily using the above notations, i.e.

∆Nind,f1,f2,λ(t) = E(t+1)·Nind,f1,f2,λ − ENind,f1,f2,λ.
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Replication probability for variants in the discovery study

Once a discovery study has been performed it is often of interest to assess
the chance that we will see a variant detected in the discovery study in other
independent datasets. This replication probability depends on estimating the
posterior frequency distribution for such a variant. The information about
the frequency of each variant detected in the discovery study is given by x,
the number of times it appears in the study. Given x, we can estimate the
posterior frequency distribution for a variant, i.e.

Px(f ≤ p) = P (f ≤ p | variant is observed x times in our study),

as follows:

Px(f ≤ p) =

∫ p
0

(
∑

m θ · Cm,k · fλ(m))x(1−
∑

m θ · Cm,k · fλ(m))2Nind−xf(θ)dθ∫ 1

0
(
∑

m θ · Cm,k · fλ(m))x(1−
∑

m θ · Cm,k · fλ(m))2Nind−xf(θ)dθ

(5)

where f(θ) is the distribution function for the beta distribution. The proba-
bility of replicating a variant seen x times in Nind individuals in an additional
tNind individuals can then be calculated using (5). We now show applications
to simulated examples, and to real data from the ENCODE project.

Results

Optimal design

In a first set of examples we show applications to the optimal design of variant
discovery studies. In particular we show how the expected proportion of rare
variants to be discovered in a study varies as a function of the mean coverage
depth if we assume a fixed study cost and various values for the error proba-
bility, perr, in equation (1). As shown in Figure 1 (second column), for a fixed
cost, a mean coverage depth below or above the optimal depth level may lead
to substantial reductions in the expected number of discoveries. Also shown is
that, using the reasonable assumption that the cost function is linear in both
the number of individuals and the average coverage depth, a larger number of
individuals at a lower coverage is preferable to a lower number of individuals
at higher coverage, if the goal is to maximize the number of variants detected.
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larger coverage depth will naturally result in a larger number of discoveries.
However, there are diminishing returns as the coverage increases; and after a
certain level is reached, each additional level of coverage leads to only a small
increase in additional discoveries (Figure 1, third column).
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Figure 1: Optimal design of variant discovery studies. The error probability
per base, perr, is 0.01 (upper panel), and 0.10 (lower panel). The first column
shows the probability of calling a variant, Cm,k, when the number of reads at
a location is m and the number of reads needed without error, k, is 3. The
middle column shows the expected proportion of rare variants (frequency less
than 0.01 or 0.05) to be discovered as a function of mean depth of coverage,
λ (and, implicitly, number of individuals, Nind), when the cost of the study
is fixed, and assumed to be equal to λ · Nind. The third column shows the
expected proportion of rare variants (frequency less than 0.01) to be discovered
as a function of the number of individuals sequenced, for various levels of the
average coverage depth (λ = 2, 5, 8, 15) and assuming a cost function that
increases linearly with the number of individuals.

On the other hand, if our goal is to discover as many variants as
possible in a fixed number of individuals and the cost is not fixed, then a
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Probability of replication

Once a discovery study has been performed in a number of individuals, Nind, it
is of interest to inquire about the probability of replicating a particular variant
in future datasets. In Figure 2 we show the probability of replicating a variant
that was seen in only a few individuals in a discovery study (i.e. singletons,
doubletons etc.). As shown, for singletons many more individuals than present
in the original study are needed in order to achieve a high probability of
replication (e.g. 10 times more the discovery dataset size for a replication
probability of 93%). In contrast, for variants that occur twice or more the
number of individuals required for replication is substantially smaller (e.g. 3
times more the discovery dataset size for a replication probability of 95%).
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Figure 2: Probability of replicating a variant in a new set of individuals, given
its observed frequency count (x = 1, 2, 4) in the original discovery dataset of
size 50 individuals; perr = 0.10 and λ = 20.

In addition, we have used the sequence data on 16 CEU individuals
that are part of the ENCODE project1, to show that the estimates for the

1http://www.hapmap.org/downloads/encode1.html.en
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replication probability are sensible in a real study. To achieve this, we split
the dataset on 16 individuals into two datasets, a discovery dataset and a
replication dataset, with 8 individuals each, and compare the actual number
of replicated discoveries with the estimated one for several classes of variants,
e.g. singletons (variants that occur once in the discovery samples). As shown
in Table 1, our predictions are fairly accurate in this application.

n1 n2 n3 n4 n5

Discovery Dataset 1, 855 925 859 763 532

true #replications 993 812 826 711 526
estimated #replications 1, 020 725 774 729 522

Table 1: Accuracy for the Probability of Replicating Variants detected in a
Discovery Study: application to the CEU ENCODE data on 16 individuals.
The discovery dataset and the replication dataset each contain 8 individuals.
nx is the number of variants that occur x times in the discovery dataset.

Number of genetic variants missed from a discovery study

We use the software package Genome (Liang et al. 2007) to simulate sequence
data on 10, 000 haplotypes according to a coalescent model (Hudson 1990),
resulting in a total of 43, 305 SNVs (single-nucleotide variants) in a large ge-
nomic region on a single chromosome. We form datasets of Nind individuals
(in our examples Nind = 50, or 100 haplotypes) by randomly sampling from
the generated haplotypes. For each haplotype the number of reads at a single
location is Pois(λ), and the probability that we call a truly present variant
depends on the actual number of reads at a location and on the number of
reads without error, as explained before in (1). In Figure 3 we show that the
beta-binomial model fits the observed frequency counts very well.

With simulated data we are in the unique position to be able to
assess the accuracy of the estimates produced by our model. In particular, we
use our approach to estimate the number of missing variants in the random
sample of 100 haplotypes, and compare it with the true number of missing
variants that can be directly assessed based on the remaining 9, 900 haplotypes.
As shown in Table 2 the estimates on the missing variation are fairly accurate
even if they are based on a sample of only 100 haplotypes.
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Figure 3: Coalescent-based simulated data with reduced coverage. Fit of the
beta-binomial model to the observed frequency counts (nx). The mean cover-
age depth is λ = 8, and the model relating the probability of calling a variant
given the number of reads at a location (eq. 1) is specified by perr = 0.1 and
k = 3.

λ #Missing Variants (T/E) #Missing Variants f ≥ 0.01 (T/E)

4 22, 187± 104/21, 508± 454 1, 602± 52/1, 714± 24
∞ 20, 604± 117/19, 961± 549 917± 71/939± 26

Table 2: Accuracy of the estimates of missing genetic variation. T is the true
number of remaining variants, i.e. present in the 10, 000 haplotypes and not
seen in the 100 haplotypes in the discovery dataset; E is the estimated number
of remaining variants. λ =∞ corresponds to a perfect sensitivity case. Mean
and SD are calculated based on 100 independent samplings of 100 haplotypes;
perr = 0.1 and k = 3.
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the rare variants (population frequency less than 1%) identified in a study.
This is especially true with low coverage design and small discovery stud-
ies. In Table 3 we report for various values of λ, i.e. the coverage param-
eter, the proportion of (true) rare variants identified in 100 − 600 chromo-
somes that have a small frequency count in the study, e.g. P (x = 1|f ≤
0.01 AND identified in the study). As shown, for low coverage, 68% − 93%
of the rare variants identified in a reasonably sized study are expected to be
singletons; for a higher coverage study only 39%− 78% of rare variants iden-
tified appear as singletons. Singletons, together with other variants with low
frequency count, are therefore important to ascertain if the main goal is to
identify rare variants. Such variants can be validated by subsequent genotyp-
ing in the discovery study.

Nind λ x = 1 x = 2 x = 3 x = 4

50 8 0.78 0.17 0.03 0.01
50 4 0.84 0.14 0.02 0.00
50 2 0.93 0.06 0.01 0.00

300 8 0.39 0.22 0.14 0.09
300 4 0.46 0.24 0.14 0.08
300 2 0.68 0.22 0.07 0.02

Table 3: The proportion of rare variants detected in a study which have a
small frequency count: x = 1 − 4 as a function of the coverage parameter λ
(i.e. P (x = 1|f ≤ 0.01 AND identified in the study)).

Discovery studies in multiple populations

We have applied the methods here to the ENCODE data2 to investigate how
combining different populations in a discovery study affects the overall num-
ber of discoveries. Sequence data in ten 500-kilobase regions of the genome
were available for 39 unrelated DNA samples: 8 Yoruba (YRI), 16 CEPH Eu-
ropean (CEU), 7 Han Chinese (CHB), and 8 Japanese (JPT). These regions
were chosen to be representative of the genome in general, including various
chromosomes, recombination rates, gene density and values of non-transcribed
conservation with mouse.

2http://www.hapmap.org/downloads/encode1.html.en

Rare variants and coverage

An important class of variants is those that have low observed frequency
count (i.e. singletons, doubletons) in a study, since they contain many of
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We have compared the observed number of variants identified by
combining individuals from any two populations at a time (shown here are
CEU and YRI; CEU and CHB; CHB and JPT) with the estimated number of
discoveries, if the discovery dataset consisted of the same number of individuals
from only one of the two populations. To estimate the number of new variants
we expect to find if we had additional individuals from the same population
we used ∆Nind,0,1,∞(t) (eq. (4)). In Table 4 we show that, as expected, adding
more individuals from a different population (rather than the same population
as in the discovery study) may lead to an increase in the overall number of
discoveries. This is particularly striking when combining individuals from
CEU and YRI, and comparing with only CEU individuals. More precisely,
the observed number of discoveries in the combined CEU and YRI datasets
is 13, 968 compared to only 10, 766 estimated in the same number of CEU
individuals. While many of the additional discoveries may be specific to the
YRI population, some will also be polymorphic in the CEU population.

Datasets 16 CEU 8 YRI 16 CEU + 8 YRI 16 CEU + 8 CEU 8 YRI + 16 YRI
#discoveries 10, 119 10, 315 13, 968 10, 766a 13, 479a

Datasets 16 CEU 7 CHB 16 CEU + 7 CHB 16 CEU+ 7 CEU 7 CHB + 16 CHB
#discoveries 10, 119 7, 802 11, 466 10, 700a 9, 278a

Datasets 7 CHB 8 JPT 7 CHB + 8 JPT 7 CHB + 8 CHB 8 JPT + 7 JPT
#discoveries 7, 802 7, 804 8, 613 8, 790a 8, 425a

aEstimated

Table 4: Discovery Studies with individuals from multiple populations. Data
on 8 YRI, 16 CEU, 7 CHB and 8 JPT individuals is available.

Discussion

Variant discovery studies using the new sequencing technologies are now un-
derway. Such studies aim to identify low frequency variants that may explain
the yet unaccounted for genetic variance (Manolio et al., 2009) for complex
diseases. The amount of the underlying variation identified in such studies
is influenced directly by the sensitivity to detect variants present in an indi-
vidual, and the number of individuals sequenced. In this paper we proposed
statistical approaches that can be useful in the context of such studies. In par-
ticular, we have been concerned with the optimal design of variant discovery
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studies, i.e. how does one choose the optimal depth of coverage for a given
study cost in order to maximize the expected number of discoveries. Such
a choice inevitably depends on the sequencing technology employed, but we
show here that, assuming a cost function linear in both the number of indi-
viduals and the coverage depth, sequencing a larger number of individuals at
lower coverage depth will generally lead to more discoveries than sequencing a
smaller number of individuals at deeper coverage. The assumptions we made
on the cost function are reasonable at this time. It is however possible that in
the future the cost of sequencing will increase slower than linearly as a function
of λ. In Figure S1, we illustrate the case of a logarithmic cost function in λ,
and show that the same overall conclusion still holds.

Our approaches are based on several reasonable model assumptions
(e.g. linkage equilibrium, Beta-binomial model), and as such results may be
sensitive to deviations from these assumptions. Therefore we sought it was
important to apply the proposed methods to both coalescent-based simulated
data and real sequence data from the ENCODE project. We showed in our
applications that the proposed methods work well, and in particular that the
predicted number of missing variants is very close to the true number.

With low coverage many of the rare variants will tend to appear
as singletons. Since singletons are also enriched for sequencing errors it is
important that such variants discovered in a study be confirmed by subse-
quent genotyping of the discovery data. Discovery studies with individuals in
multiple populations can be useful as well. Having data from multiple popula-
tions in a discovery study not only ensures a more representative study of the
global human variation, but may also increase the overall number of discover-
ies compared with individual populations. Therefore when there is population
stratification, and thus individuals from several subpopulations are included
in a study, more genetic variants may be discovered than for the same number
of individuals in a single subpopulation.

We have focused here on the estimation of the number of true vari-
ants to be identified in a sequencing study, and have assumed that the prob-
ability of calling non-existent variants is small. This latter probability can
be made arbitrarily small by adopting a more stringent variant calling rule,
for example, by requiring a large number of the non-reference allele, k, to be
observed at a variant position. Having fixed such a rule, the same methods we
already described apply.
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time at an expected coverage, λ. An alternative design, suitable mostly when
the sequencing error is low, is to sequence pools of DNA samples together
(Futschik et al. 2010). DNA pooling could prove more cost-effective for variant
detection in the future, and the methodology described here can be adapted
easily to accommodate such a design.

The approach we proposed is appealing since it makes few and rea-
sonable model assumptions, is flexible enough to take into account important
covariates that influence variant detection (in this case the coverage depth),
and at the same time provides fast and accurate estimates for the number of
missing variants from a discovery study.

Software R code implementing these methods is freely available on the first
author’s webpage.

Appendix

Fitting the Beta-Binomial model

We assume that the observed frequency counts can be modeled using a Beta-
Binomial model. The probability that at a position the frequency count is x
is given by:

Px =

∫ 1

0

(
2Nind

x

)
(
∑
m

θ · Cm,k · fλ(m))x(1−
∑
m

θ · Cm,k · fλ(m))2Nind−xf(θ)dθ

for x ≥ 0. Since we only observe those variants that have frequency count 1
or above, the truncated probabilities are:

P t
x =

Px∑2Nind

x=1 Px

for x ≥ 1. The likelihood function can then be written as:

L(a, b) =

2Nind∏
x=1

(P t
x)
nx

and the log-likelihood function is:

LL(a, b) =

2Nind∑
x=1

nx log(P t
x),

Current sequencing studies focus on sequencing each individual at a
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where we assume that the variants are in linkage equilibrium. We maximize
LL(a, b) to obtain the maximum-likelihood estimators (MLEs) for a and b.
The maximization is carried out through the Newton-Raphson method.

Cost=log(λ)Nind

(λ,Nind)

P
ro

ba
bi

lit
y 

of
 D

et
ec
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n

(2,1442) (5,621) (10,434) (15,369) (20,334)

0.
0

0.
2

0.
4

0.
6
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8

1.
0
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0.01

Figure S1: Cost function is logarithmic in λ (the average coverage depth).
Shown is the expected proportion of rare variants (frequency less than 0.01
or 0.05) to be discovered as a function of mean depth of coverage, λ (and,
implicitly, number of individuals, Nind), when the cost of the study is fixed,
and assumed to be equal to log(λ) ·Nind.
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