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Abstract
Fractal analysis methods are used to quantify the complexity of the human cerebral cortex. Many
recent studies have focused on high resolution three-dimensional reconstructions of either the outer
(pial) surface of the brain or the junction between the grey and white matter, but ignore the structure
between these surfaces. This study uses a new method to incorporate the entire cortical thickness.
Data were obtained from the Alzheimer’s Disease (AD) Neuroimaging Initiative database (Control
N=35, Mild AD N=35). Image segmentation was performed using a semi-automated analysis
program. The fractal dimensions of three cortical models (the pial surface, grey/white surface and
entire cortical ribbon) were calculated using a custom cube-counting triangle-intersection algorithm.
The fractal dimension of the cortical ribbon showed highly significant differences between control
and AD subjects (p<0.001). The inner surface analysis also found smaller but significant differences
(p< 0.05). The pial surface dimensionality was not significantly different between the two groups.
All three models had a significant positive correlation with the cortical gyrification index (r > 0.55,
p<0.001). Only the cortical ribbon had a significant correlation with cortical thickness (r = 0.832,
p< 0.001) and the Alzheimer’s Disease Assessment Scale cognitive battery (r = −0.513, p = 0.002).
The cortical ribbon dimensionality showed a larger effect size (d=1.12) in separating control and
mild AD subjects than cortical thickness (d=1.01) or gyrification index (d=0.84). The methodological
change shown in this paper may allow for further clinical application of cortical fractal dimension
as a biomarker for structural changes that accrue with neurodegenerative diseases.

Keywords
Fractal Dimension; Cortex; Complexity; Alzheimer’s disease; Cortical Thickness; Gyrification
Index

Correspondence should be addressed to: Richard D. King, MD, PhD, Director, Alzheimer’s Image Analysis Laboratory, Center for
Alzheimer’s Care, Imaging and Research, Department of Neurology, 650 Komas Dr. #106 A, Salt Lake City, UT 84104, Office:
801-585-6546, Fax: 801-581-2483, richard.king@hsc.utah.edu.
*Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in the analysis or writing of this report.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2011 November 1.

Published in final edited form as:
Neuroimage. 2010 November 1; 53(2): 471–479. doi:10.1016/j.neuroimage.2010.06.050.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1. Introduction
Neuroimaging studies in recent years have highlighted the numerous important properties of
the human cerebral cortex. One of the more interesting characteristics of the cortex is that it
displays fractal properties (i.e. statistical similarity in shape) over a range of spatial scales
(Bullmore et al., 1994; Free et al., 1996; Im et al., 2006; Jiang et al., 2008; Kiselev et al.,
2003; Lee et al., 2004; Majumdar and Prasad, 1988). These fractal properties arise secondary
to the folding of the cortex (Hofman, 1991). The complexity of the brain can be quantified by
a numerical value known as fractal dimension (Mandelbrot, 1977, 1982). The underlying
cerebral white matter, as well as the cerebellum and supporting white matter tracts are amenable
to study using fractal approaches (Esteban et al., 2007; Liu et al., 2003; Wu et al., 2010; Zhang
et al., 2006a; Zhang et al., 2006b). This approach has been used to study gender differences
(Luders et al., 2004), epilepsy (Cook et al., 1995), schizophrenia (Casanova et al., 1989;
Casanova et al., 1990; Ha et al., 2005; Narr et al., 2004; Sandu et al., 2008), stroke (Zhang et
al., 2008), multiple sclerosis (Esteban et al., 2009), cortical development (Blanton et al.,
2001; Thompson et al., 2005; Wu et al., 2009), cerebellar degeneration (Wu et al., 2010) and
Alzheimer’s disease (King et al., 2009).

There are many methods for computing the fractal dimension of the cerebral cortex. Initial
studies used discontinuous voxel-based images as the basis for the fractal analysis. With the
advancement of surface-based reconstructions over the past ten years, it is now possible to
semi-automatically generate three-dimensional continuous tessellated polygon models of the
inner and outer cortical surface. These surface reconstructions offer sub-millimeter resolution,
and are ideal targets for shape analysis (Im et al., 2006; Jiang et al., 2008; Luders et al.,
2004).

Two recent studies using three-dimensional cortical surface reconstructions have documented
the correlation between fractal dimension and other features of shape including folding area,
sulcal depth, cortical thickness, and curvature (Im et al., 2006; Jiang et al., 2008). These studies
found a strong positive correlation with the folding measures, but a weak negative correlation
with cortical thickness. In these studies, an infinitely thin surface model (the pial surface of
the cortex) was used as the basis for the complexity measurement. The thickness of the cortex
was not felt to have a significant influence on the fractal assessment of the cortical shape.
However, other work using two-dimensional profiles of the cortical ribbon derived from the
three-dimensional surface reconstructions demonstrated a strong positive correlation between
fractal dimension and cortical thickness as well as gyrification index (King et al., 2009). Thus,
neurodegenerative changes that decrease both cortical thickness and gyrification index have
complementary effects. Methods that directly incorporate cortical thickness into the fractal
complexity measure may be more sensitive for detecting shape changes that result from
neurodegeneration.

The purpose of this paper is to describe a robust method for computing the fractal dimension
of the cortical ribbon (e.g. the cortical surfaces and the structure between them). The fractal
properties of the cortical ribbon will be compared with that of the pial surface as well as the
surface reconstruction of the interface between the grey matter and the white matter (grey/
white junction). We will compare the clinical utility of the cortical ribbon to the pial and grey/
white surfaces in terms of capturing atrophic changes that occur with Alzheimer’s disease. We
then compare the cortical ribbon directly to cortical thickness and gyrification index measures.
We hypothesize that fractal analysis of the cortical ribbon will be superior to analysis of either
the pial or grey/white surfaces because these analyses will directly incorporate cortical
thickness, which is known to be strongly affected by Alzheimer’s disease. Furthermore, the
fractal dimension of the cortical ribbon will have a greater distinction (as measured by effect

King et al. Page 2

Neuroimage. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



size) between normal controls and mild Alzheimer’s disease patients compared to cortical
thickness or gyrification index measures.

2. Methods and Materials
2.1 Source Data

The data used in this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (www.loni.ucla.edu/ADNI). The ADNI project was launched in
2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA), by private
pharmaceutical companies, and by non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). Anatomic data was
obtained using the MP RAGE sequence (magnetization-prepared 180 degrees radio-frequency
pulses and rapid gradient-echo). The parameters are: axial orientation, 6.4ms TR, 4.4ms TE,
12° FA, 49.9 kHz BW (195Hz/px), 24×19.2cm FOV, 256×192 matrix, 124 contiguous
partitions, each 1.2 mm in thickness. The inversion time (TI) and the delay time (TD) are
1000ms and 500ms respectively. For up-to-date information see www.adni-info.org.

MP-RAGE Images from 70 patients (39 Male, 31 Female) were selected from the on-line
database. There were 35 control subjects (75.0 ± 5.0 years old, Clinical Dementia Rating score
= 0) and 35 subjects with mild Alzheimer’s disease (75.4 ± 7.1 years old, Clinical Dementia
Rating score = 1–2). The ages were not statistically different between groups ( p = 0.798). Two
patients in the mild Alzheimer’s disease group were missing data from the ADAS-cog test at
the time of data download.

2.2 Segmentation procedure
Images segmentation was performed using FreeSurfer. This semi-automated software suite
has been described in detail in prior publications (Dale et al., 1999; Fischl et al., 2001; Fischl
et al., 2002; Fischl et al., 1999; Fischl et al., 2004; Han et al., 2006; Jovicich et al., 2006;
Segonne et al., 2007). Please refer to these publications for full details of the parameters used
in the segmentation process. Briefly, processing the images occurred in several steps
automatically through the FreeSurfer suite. The original images were converted from the
DICOM format into a single file with all images from a particular scan protocol. Following
motion correction and intensity normalization, extracerebral voxels were removed, using a
“skull-stripping” procedure. Head position was normalized along the commissural axis, and
then cortical regions were labeled using an automated procedure. A preliminary segmentation
of the grey matter from the white matter was generated based on intensity differences and
geometric structure differences in the grey/white junction (Fischl and Dale, 2000). The pial
surface was generated using outward deformation of the grey/white surface with a second-
order smoothness constraint (Dale et al., 1999; Fischl and Dale, 2000). The smoothness
constraint allowed the pial surface to be extended into otherwise ambiguous areas. The resulting
surfaces have sub-voxel accuracy. Examples of the 3D surface reconstruction of the pial and
grey/white surfaces are shown in Figure 1. Cortical thickness measurements are generated
during the segmentation and surface generation process. FreeSurfer was also used to calculate
the gyrification index of each hemisphere.

2.3 Computing the Fractal Dimension of the Cortical Surfaces
The fractal dimension (f3D) of the cortical surfaces was computed using a 3D cube-counting
algorithm. This algorithm has been used by several previous investigators (Im et al., 2006;
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Jiang et al., 2008), and has been found to be a robust and accurate method of computing cortical
complexity (Jiang et al., 2008). The implementation of this algorithm is very similar to Jiang,
et. al (2008). In brief, each 3D surface is composed of tessellated triangles (~200,000 per
hemisphere). The intersection of each triangle (including the edges) with a cube matrix
covering the entire brain is computed using standard geometry. Each cube is counted only once,
resulting in a cube count of the total number of intersections. This process is shown in Figure
2. The cube size is then changed, and the intersection computation is repeated. f3D is computed
as the change in the log of the cube count divided by the change in the log of the cube size (see
Equation 1).

(1)

Natural objects, such as the cerebral cortex, only possess fractal properties over a limited spatial
scale. The range over which the fractal analysis is valid can be determined by measuring the
consistency (scale invariance) in the cube count/size slope (Zhang et al., 2006b). Using a point-
to-point slope cutoff of 0.1, the minimum spatial scale for all three cortical models (cortical
ribbon, pial surface, and grey/white surface) was 0.5 mm. The upper range for all three cortical
models was set to 15 mm, as this was the value identified in the vast majority of subjects. There
was no difference in the spatial ranges determined for the three cortical models. Although still
highly linear, both the pial surface and grey/white surface were less stable in terms of point-
to-point slope compared to the cortical ribbon. The coefficient of determination (R2) for the
resulting regression lines were as follows: cortical ribbon > 0.9999, pial surface > 0.9984, grey/
white surface > 0.9979. Please see King et al. (2009) for a graphical representation of this
process.

This algorithm was implemented using a custom build software program called the Cortical
Complexity Calculator (C3). C3 was written on Mac OS X (10.5) using the XCode environment
in Objective C with graphic implementation using OpenGL. The software directly reads the
FreeSurfer surface files and performs the cube counting and regression calculations from
native-space image data.

2.4 Analyzing the Cortical Ribbon by Generating Intermediate Surfaces
While the inner and outer cortical surfaces are represented by physical models, there is no
actual model of the space between these surfaces generated by FreeSurfer. Without an extra
step, many cubes between the surfaces would go uncounted. The number of intersecting cubes
contained between the pial and grey/white surfaces increases exponentially as the cube size
decreases. While it is possible to compute these intersections using vectors normal to each
surface, there is no way to assure every box is counted. Instead, we solve this intersection
problem by generating dynamic intermediate surfaces. We take advantage of the fact that the
pial surface is itself a derivative of the initial grey/white segmentation. There is an exact 1:1
correspondence of vertices between these two surfaces. Note that the distance between the two
surfaces is not uniform, but is in fact determined by the cortical thickness. The cortical thickness
can range from 0 (in non-cortical sections of the surface, such as arbitrary triangles generated
in the midline; these triangles are removed prior to fractal analysis) to a maximum thickness
~5 mm.

An intermediate surface can be generated by moving each vertex of grey/white surface a
predetermined percent distance along a vector between the corresponding vertices of the pial
and grey/white surfaces. In regions of higher cortical thickness, this distance is larger than in
thinner regions. The number of surfaces needed to assure that no fractal counting cubes are
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missed can be computed exactly as the maximum cortical thickness divided by the cube size.
The intersection of these intermediate surfaces and the counting cubes can be computed using
the same algorithm with the pial and grey/white surfaces. See Figure 3 for a graphic
representation of this process.

2.5 Statistical Analysis
Group differences were computed using 2 sided t-tests and effect sizes were computed using
Cohen’s d statistic. Regression coefficients were computed using the least squares method. All
analyses were performed using statistical functions within Microsoft Excel 2008 for Mac
Version 12.2.4.

2.6 Approach
In this study, the f3D of the pial surface, grey/white surface, and cortical ribbon were calculated,
and the ability to distinguish control subjects from those with AD were computed. The three
cortical models were then regressed against the cortical thickness, gyrification index, and
ADAS-cog scores. The cortical thickness values and gyrification index values were also
regressed against the ADAS-cog scores as well as each other. Finally, the ability of the cortical
ribbon to distinguish control subjects from mild AD was compared to cortical thickness and
gyrification index measures.

3. Results
3.1 Comparing the three cortical models

There was no significant difference between the cortical f3D of men and women in either the
control group (p = 0.56) or the mild Alzheimer’s disease group (p = 0.72), although the women
trended slightly higher on average. Comparison of the f3D for control and AD subjects using
the three cortical models are shown in Figure 4. For the pial surface, there was no significant
difference between the f3D of control subjects and those with Alzheimer’s disease ( p = 0.27,
effect size d = 0.26). Fractal analysis of the grey/white junction did show a group difference
that reached statistical significance ( p < 0.05, effect size d = 0.53). When the cortical ribbon
was used as the basis for the f3D calculation, the group differences are highly significant ( p <
0.001, effect size d = 1.12).

For comparison to previous studies (Im et al., 2006; Jiang et al., 2008), the correlation between
f3D and both cortical thickness and gyrification index (a measure of cortical folding) are shown
in Figure 5A–B. As in the previous studies, the pial surface f3D showed a strong positive
correlation with gyrification index ( r = 0.679, p < 0.001) and essentially no correlation with
cortical thickness ( r = −0.024, p =0.844). The f3D of the grey/white surface, which was not
assessed in the previous papers referenced above, showed a strong positive correlation with
gyrification index ( r = 0.586, p < 0.001) and a weak negative correlation with cortical thickness
( r = −0.169, p = 0.168). The f3D of the cortical ribbon had a significant positive correlation
with both gyrification index ( r = 0.555, p< 0.001) and cortical thickness ( r = 0.832, p < 0.001).
Cortical thickness and gyrification index are poorly correlated with each other ( r = 0.184, p =
0.128, data not shown).

In Figure 5C, the correlation between cortical f3D and the Alzheimer’s Disease Assessment
Scale-Cognitive (ADAS-cog) is shown. The ADAS-cog is the most commonly used
neuropsychiatric assessment battery in clinical trials in Alzheimer’s disease. The f3D of neither
the pial surface ( r = −0.185, p = 0.286) nor the grey/white surface ( r = −0.284, p = 0.098)
were significantly correlated to the ADAS-cog. The f3D of the cortical ribbon did show a
significant correlation with the ADAS-cog ( r = −0.513, p = 0.002)
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3.2 Comparing the cortical ribbon to cortical thickness and gyrification index
There is a statistically significant difference in the value of both cortical thickness ( p < 0.001,
d = 1.01) and gyrification index ( p < 0.001, d = 0.84) between the control group and the mild
AD group (see Figure 6). Note that the effect sizes are smaller than for the cortical ribbon
f3D ( p < 0.001, effect size d = 1.12). Just like the cortical ribbon f3D ( r = −0.513, p = 0.002),
the values of cortical thickness ( r = −0.441, p = 0.008) and gyrification index ( r = −0.418, p
= 0.012) are negatively correlated with performance on the ADAS-cog (see Figure 7). ROC
curves for all the measures used in this paper are shown in Figure 8. The area-under-the-curve
values are as follows: cortical ribbon f3D 0.837, pial surface f3D 0.572, grey/white surface
f3D 0.671, Cortical thickness 0.798, and Gyrification index 0.734.

4. Discussion
While all three cortical models have a significant correlation with cortical folding (as measured
by gyrification index), only the cortical ribbon has a strong correlation with cortical thickness
measurements. Hence, known changes that occur in cortical thickness in Alzheimer’s disease
would be missed by the pial and grey/white cortical models. This likely accounts for much of
the improved ability to discriminate between clinical groups used in this paper. It also may
explain why the cortical ribbon was the only model to have a significant correlation with the
ADAS-cog. All three cortical measures we have analyzed (cortical thickness, gyrification index
and FD of the cortical ribbon) provided a significant difference between normal subjects and
patients, even though the greatest effect size was obtained using the FD of the cortical ribbon.
In terms of separating controls from mild AD patients, the area under the ROC curve analysis
suggests that cortical ribbon f3D is a “good” test, cortical thickness and gyrification index are
“fair” tests, grey/white surface f3D is a “poor” test, and pial surface f3D is a “worthless” test.

Atrophic changes that occur on the pial surface could either increase or decrease the
complexity, depending on how the atrophy occurs. For example, a change in the pial surface
that decreased the folding area would decrease complexity; conversely, if the change increased
sulcal depth, then the complexity would increase. Both types of changes are noted on the brains
used in this study. By using the cortical ribbon, the conflicting effects on the pial surface are
overcome by adding the complementary effects of the cortical thickness changes while also
incorporating the structural changes occurring at the grey/white junction.

Our results also corroborated the well established observation that there are significant
differences in the average cortical thickness of control subjects compared to patients with mild
Alzheimer’s disease. We also found that the gyrification index is also significantly different
between control and mild AD patients. To the best of our knowledge, this effect has not been
clearly documented in Alzheimer’s disease.

The effect size using the cortical ribbon f3D was larger than either using cortical thickness or
using the gyrification index. Moreover, the fractal analysis technique using the cortical ribbon
is able to account for more of the variance in the ADAS-cog scores than either the cortical
thickness or gyrification index measures. This improved discrimination will likely be needed
to correctly categorize less clinically distinct cases (i.e. normal vs. mild cognitive impairment).

There are many other structural factors that likely influence the cortical ribbon f3D. Atrophic
changes that occur at the grey/white junction are likely to be affected by volume change
occurring in the sub-cortical white matter, basal ganglia, and lateral ventricles. These changes
could be an important source of cortical fractal dimensionality change, and thus should not be
removed in the context of this paper (e.g. transforming images into a Talairach space,
covariance). Further exploration of the specific effects of changes in these volumetric factors,
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along with other measures including normalized brain volume, age, or normalized cortical
surface area, on cortical f3D is needed.

The methods used in this paper take advantage of high-contrast magnetic resonance imaging
to generate high-resolution three-dimensional continuous models of the cerebral cortex. This
approach has been used in several other recent studies of high resolution models of the pial
surface (Blanton et al., 2001; Im et al., 2006; Jiang et al., 2008; Luders et al., 2004; Narr et al.,
2004; Sandu et al., 2008; Thompson et al., 2005) and grey/white junction surfaces (Sandu et
al., 2008). These surface based methods provide higher resolution data than voxel-based
masking methods. Consequently, using intermediate surfaces to generate fractal data from the
entire cortical ribbon generates a continuous 3D volume model that is more topologically
accurate than a grey matter voxel mask. Note that this limitation in using the grey matter voxel-
mask may eventually be overcome using very high field (i.e. > 7 Tesla) high resolution images.

While this whole-brain fractal measure is quite promising, there are several limitations to this
analysis technique. First, the whole-brain approach is generating an aggregate measure across
the entire cerebral cortex. However, the atrophic changes that occur in Alzheimer’s disease do
not occur in all regions of the brain equally. There are also significant regional variations in
cortical f3D values (Jiang et al., 2008; King et al., 2009). This technique could be improved by
performing a more localized analysis. This would be beneficial for several reasons. By focusing
on regions of interest, the discriminative power could be significantly increased. Furthermore,
different neurodegenerative diseases, such as Frontotemporal dementia and Dementia with
Lewy Bodies, have very different asymmetric patterns of cortical involvement. Obtaining
statistically normalized spatial maps will likely be needed to perform a prospective
categorization. Moreover, the significant global atrophic changes associated with normal aging
are not accounted for. In this paper, age was averaged within the two groups. A better method
may utilize regression models to generate a map showing Z-scaled significant deviations
comparing subjects to age-matched controls. These two methodological improvements are
likely to greatly increase the sensitivity and specificity of the fractal analysis technique.

Finally, it is likely that no single imaging biomarker will have enough specificity and sensitivity
for prospective diagnosis. Therefore, having as many complementary biomarkers as possible
will aid in prospective categorization. Cortical f3D could serve as an important adjunct to
currently used imaging markers such as volumetric assessments (i.e. hippocampal volume,
lateral ventricle volume), functional measures (i.e. Fluoro-deoxyglucose Positron emission
tomography, functional magnetic resonance imaging), and direct amyloid binding agents
(i.e. Pittsburg Compound B, AV45).

5. Conclusion
This study demonstrates the potential of using the f3D of the cerebral cortical ribbon as a
quantitative marker of cerebral cortex structure in mild Alzheimer’s disease. The results of this
paper suggest that studies of cerebral cortex f3D may benefit from adapting their techniques to
include analysis of the entire cortical ribbon. It is our hope that with continued development,
fractal analysis methods will find a place alongside currently used morphometric and functional
measures to help us provide better care for our patients suffering with neurodegenerative
diseases.
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Figure 1. Example source data and resulting 3D surface models
(Left column) MP-RAGE image from a control subject in the ADNI database. The upper
image is an axial section through the mid-thalamus. The lower panel shows a 3D reconstruction
of the MP-RAGE generated using the Osirix 3D viewer (Rosset et al., 2004). (Right
Column) The corresponding 3D surface models are shown. The outer edge of the pial surface
is colored red, and the inside edge of the grey/white surface is colored blue. The edges between
the pial and grey/white surface are both shown in grey. The slab shown in the upper panel is
~5mm thick. The ribbon appears wavy because the cortex has a high degree of curvature. The
lower panel shows an oblique slice of both 3D surface models.
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Figure 2. 3D cube/surface intersections
A. The upper panel shows the left hemisphere pial surface from a healthy control subject. A
section is magnified with the triangular mesh displayed. B. Example of the intersection of a
triangle with a lattice of cubes. Intersections are computed for each side of the triangle (which
will count cubes that intersect either a side or a vertex). C. An example tiling of cubes over the
pial surface.

King et al. Page 12

Neuroimage. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Intermediate surfaces capture cubes between the pial and grey/white surfaces
A–C. Simplified 2D projections are shown for the pial (red solid line), grey/white (blue dashed
line) and intermediate (dash-dot line) surfaces. The cubes that intersect the surfaces are filled
in grey, while non-intersecting cubes are left unfilled. B. When the cubes are large, no
intermediate surfaces are needed. C. As the cube size decreases, more intermediate surfaces
are needed to capture all the cubes located between the pial and grey/white surfaces. The left
column shows the cube-cortex intersections without the intermediate surface, while the right
column shows the intersections with intermediate surfaces. D. Intermediate surfaces can be
generated dynamically as needed. Each point in the intermediate surface lies on a vector
between corresponding vertices in the pial and grey/white surfaces. The percent distance along
the vector determines the image. The pial surface is shown in red, and the grey/white surface
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is blue. The grey surfaces represent intermediate surfaces 25%, 50%, and 75% of the way
between the bounding surfaces.
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Figure 4. Differences in fractal dimension between groups of normal subjects and patients with
mild Alzheimer’s Disease (AD) as measured on the pial surface, grey/white surface and the cortical
ribbon
The boxes show the median value as the thick black line, and the upper and lower boundaries
are the upper and lower quartile, respectively. Normal subjects are in blue, while AD subjects
are in red. The pial and grey-white surfaces use the left axis (range 2.20– 2.25). Using the
cortical ribbon results in a higher value for the fractal dimension, as shown on the right axis
(2.58 – 2.63). Analysis of the cortical ribbon resulted in a much better separation between the
two clinical groups.
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Figure 5. Correlations between the fractal dimension of the three cortical models and gyrification
index, cortical thickness, and the ADAS-cog. A. Gyrification Index
All three models have a significant correlation with the gyrification index, with the pial surface
having the highest correlation. B. Cortical Thickness: The pial surface is uncorrelated, and the
grey/white surface has a trend towards a negative correlation. The ribbon has a strong positive
correlation. C. ADAS-cog: Only the cortical ribbon shows a significant correlation with this
cognitive neuropsychologic battery of the Alzheimer’s Disease Assessment Scale.
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Figure 6. Differences in fractal dimension between groups of normal subjects and patients with
mild Alzheimer’s Disease (AD) as measured on by cortical thickness, gyrification index, and the
cortical ribbon fractal dimension
This figure uses the same conventions as Figure 4. All three measures generated a significant
difference between the two groups (p < 0.001). The greatest effect size was generated using
the cortical ribbon fractal dimension.
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Figure 7. Correlations between the ADAS-cog and cortical thickness, gyrification index, and the
cortical ribbon
This figure uses the same conventions as Figure 5. All three cortical metrics have a significant
negative correlation with the ADAS-cog scores. The correlation coefficient is of greatest
magnitude for the cortical ribbon.
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Figure 8. Receiver Operator Curve (ROC) characteristics
ROC curves indicating sensitivity and specificity separating control subject from AD subjects
the for each of the measures are shown. Area under the curve values are included in the figure
legend. Left- Cortical Models: The curves for cortical ribbon f3D, pial surface f3D and grey/
white surface f3D. Right- Cortical Metrics: The curves for cortical ribbon f3D, cortical
thickness, and gyrification index. The cortical ribbon f3D has the highest AUC of all measures
used in this paper.
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