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Abstract
Hypochlorites efficently dehydrate hydroperoxyacetals to furnish the corresponding esters. The
reaction, which can be accomplished with stoichometric Ca(OCl)2 or with catalytic amounts of t-
BuOCl, appears to involve formation and heterolytic fragmentation of secondary chloroperoxides,
species not previously described in solution chemistry.
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1. Introduction
Hydroperoxyacetals, readily available intermediates,1 are substrates for a number of useful
fragmentations, including Fe(II)-mediated cleavage to alkoxy radicals,1c,2 heterolytic C-O
bond migrations of tertiary peresters or persulfonates (Criegee rearrangement),3 and the
base-promoted dehydration of hydroperoxyacetals or derived peresters or persulfonates.1c,
4,5 In the course of investigations into the addition of oxygen nucleophiles to ozonolysis-
derived carbonyl oxides,6 we observed the rapid dehydration of secondary
hydroperoxyacetals in the presence of commercial bleach.7 We now report that Ca(OCl)2, t-
BuOCl, and trichloroisocyanuric acid mediate the rapid heterolytic dehydration of
hydroperoxyacetals through the apparent intermediacy of secondary chloroperoxides,
species whose solution chemistry has not been previously described.

2. Results and Discussion
Most of the substrates employed in this study were prepared via ozonolysis of alkenes in the
presence of an alcohol.1a Addition of Ca(OCl)2 (1.3 equiv) to CH3CN solutions of
hydroperoxyacetals 1a–h furnished esters 2a–h (Table 1) after evaporation of solvent and
filtration through a short silica column.7,8 The reaction could also be conducted in CH3OH/
CH2Cl2; however reaction in CH2Cl2, THF, or toluene was limited by solubility of
Ca(OCl)2. The dehydration proved compatible with a free primary alcohol (entry 4) or a
chloroethyl acetal (entry 8). Little reaction was observed with aq. NaOCl.
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Comparable yields were available with t-BuOCl (Table 2).9 Reactions, although conducted
for the same duration as for Ca(OCl)2 were now complete within 1 min (TLC).10 The rate
and yield were not affected by protection from laboratory light (entry 2), use of CH2Cl2 as
solvent (entry 3), or the presence of acid (entry 4). However, the presence of methanol
slowed reactions considerably (not shown). Dehydration could be conducted with catalytic
(0.25 eq) quantities of t-BuOCl (entries 5 and 8), although the reactions now required 15
min for completion.

No reaction was observed betweeen t-BuOCl and a silylated hydroperoxyacetal (1i, Scheme
1). However, a secondary hydroperoxide (1j)11 underwent rapid dehydration; the low yield
likely reflects product volatility. Dehydration of secondary allylic hydroperoxides (not
shown) required excess t-BuOCl and furnished the expected α,β-unsaturated ketones as
mixtures with significant amounts of byproducts lacking unsaturation.

The fragmentation can be combined with alkene ozonolysis to afford a convenient one-pot
synthesis of esters (Scheme 2).

The fragmentation is likely to involve initial formation of chloroperoxides, species
previously prepared only in tertiary systems.12 The intermediacy of ROOCl is consistent
with the lack of reaction of silylated hydroperoxyacetal 1i. In an effort to access
chloroperoxides with reagents other than hypochlorites, we discovered that commercially
available trichloroisocyanuric acid promotes the dehydrative fragmentation as or more
efficiently than t-BuOCl (Scheme 3).

The conversion of the chloroperoxides to esters could in principle proceed through either
homolytic or heterolytic pathways (Scheme 4), and several additional experiments were
conducted to discriminate between these possibilities (Scheme 5).

Chloroperoxides are reported to undergo homolytic scission to generate ROO• and Cl•.12,13
For this reason, we initially hypothesized the dehydrations involved a radical chain initiated
by abstraction of the acetal C-H; the resulting carbon radical would be expected to fragment
to the product ester and a propagating radical (•OCl). However, the dehydrations were
insensitive to the presence or absence of visible light and did not occur in the presence of
PhI(OTFA)2, a reagent known to promote peroxyl radical formation.14 Perhaps most
convincingly, dehydration of 1k, a hydroperoxyacetal substrate incorporating a fast radical
clock (Scheme 5), proceeded with no detectable formation of ring-opened products.15

The potential role of alkoxy radicals was probed with hydroperoxyacetals 1l and 1m16
(Scheme 5); the α-oxygenated alkoxy radicals derived from either substrate would be
expected to readily undergo β-scission.17 However, both 1l and 1m undergo dehydration
with no signs of radical cleavage. In contrast, a hydroperoxyketal unable to dehydrate (1n)
undergoes a much slower (30 min) reaction to furnish chloroalkanoate 3, the product of
alkoxy radical cleavage.

The results support fragmentation through the heterolytic pathway illustrated in Scheme 4,
presumably through a mechanism analogous to Criegee or Hock fragmentation (activation of
hydroperoxides by protonation or Lewis acid complexation).3,18 The specificity for
migration of hydrogen relative to Ph or Bn (1j, 1l) under nonbasic conditions is interesting.
However, as has recently been demonstrated for Baeyer-Villiger rearrangements of
alkoxybromanes derived from hemiacetals,19 the nature of the activating reagents can have
a strong influence on rearrangements to electron-deficient oxygen. The proposed mechanism
predicts regeneration of HOCl, 20 and is consistent with the high conversion obtained in the
presence of substoichiometric t-BuOCl or trichloroisocyanuric acid. The results may be of
relevance to atmospheric decomposition of primary chloroperoxides.21
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3. Conclusions
We have developed a new fragmentation of hydroperoxyacetals to esters based upon
heterolytic fragmentation of intermediate chloroperoxides.

CAUTION: While we experienced no hazards in the course of this work, any preparative
work with peroxides should be conducted with an awareness of the potential for spontaneous
and exothermic decomposition reactions.22
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Scheme 1.
Substrates other than hydroperoxyacetals
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Scheme 2.
Application in tandem with ozonolysis
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Scheme 3.
Dehydration with trichloroisocyanuric acid.
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Scheme 4.
Mechanistic possibilities
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Scheme 5.
Additional substrates
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