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Abstract

Background: Since the introduction of large-scale genotyping methods that can be utilized in genome-wide
association (GWA) studies for deciphering complex diseases, statistical genetics has been posed with a tremendous
challenge of how to most appropriately analyze such data. A plethora of advanced model-based methods for
genetic mapping of traits has been available for more than 10 years in animal and plant breeding. However, most
such methods are computationally intractable in the context of genome-wide studies. Therefore, it is hardly
surprising that GWA analyses have in practice been dominated by simple statistical tests concerned with a single
marker locus at a time, while the more advanced approaches have appeared only relatively recently in the
biomedical and statistical literature.

Results: We introduce a novel Bayesian modeling framework for association mapping which enables the detection
of multiple loci and their interactions that influence a dichotomous phenotype of interest. The method is shown to
perform well in a simulation study when compared to widely used standard alternatives and its computational
complexity is typically considerably smaller than that of a maximum likelihood based approach. We also discuss in
detail the sensitivity of the Bayesian inferences with respect to the choice of prior distributions in the GWA
context.

Conclusions: Our results show that the Bayesian model averaging approach which explicitly considers gene-gene
interactions may improve the detection of disease associated genetic markers in two respects: first, by providing
better estimates of the locations of the causal loci; second, by reducing the number of false positives. The benefits
are most apparent when the interacting genes exhibit no main effects. However, our findings also illustrate that
such an approach is somewhat sensitive to the prior distribution assigned on the model structure.

Background
Given the hugely decreased economic costs of utilizing
large-scale single-nucleotide-polymorphism (SNP) geno-
typing to study the genetic architecture of a phenotype
of interest, GWA analyses have become popular within
many areas of molecular medicine. An excellent review
[1] of the statistical challenges in GWA studies high-
lights the fact that no single approach has yet appeared
which would comply to all immediate desiderata in this
context, such as high power, reasonable control of spur-
ious findings and relatively inexpensive computational

effort. The plethora of different modeling and testing
approaches for detecting single and multiple polymorph-
isms associated with a complex phenotype that has
recently appeared in the literature demonstrates the
urgent need for reliable and in practice applicable statis-
tical methods in this context [2-9]. A variety of causal
and graphical modeling ideas, as well as more standard
regression modelling methods have been investigated in
these works.
Some of the most challenging aspects of GWA ana-

lyses are how to sensibly handle the question of multiple
model comparisons and how to identify influential gene-
gene interactions since the number of putative model
terms is astronomic and some interactions may involve
polymorphisms that lack main effects, leading to
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reduced power with single-locus tests. From a theoreti-
cal statistical perspective it could be expected that the
Bayesian approach [10] would provide satisfactory
answers to these issues due to its ability to combine
information over many models with varying parametric
dimensionality. Advantages of the Bayesian methods in
genetic association studies have been discussed in a
recent review [11]. However, a primary burden is then
how to specify a sensible prior probability distribution
for all putative association models, which is a complex
task [1]. The fully Bayesian approach has been employed
in the context of GWA studies using regression and gra-
phical models; however, the published approaches have
not explicitly considered gene-gene interactions due to
the computational burden [4,7].
In the current work we have aimed to address these

challenges by developing an efficient Bayesian modeling
approach that explicitly considers gene-gene interac-
tions. Our work is partially inspired by the work of Mar-
cini et al. where Bayesian single-locus association tests
were developed [5]. Furthermore, we have examined in
parallel the Bayesian graphical modeling approach intro-
duced in [4] and discuss the particular sensitivity of
Bayesian inferences with respect to the choice of prior
distributions in the GWA context. We show how the
marginal likelihood score can be analytically derived for
a variety of Bayesian gene-gene interaction models,
which in turn enables the use of highly efficient non-
standard Monte Carlo model learning [12]. The advan-
tages of such an approach compared to standard
Markov chain Monte Carlo (MCMC) computation have
been demonstrated for very high-dimensional model
learning problems [12-14]. Moreover, contrasted with
the maximum likelihood estimation of comparable logis-
tic regression models as in [2], our method is consider-
ably faster, which is of primary importance given the
astronomic number of models that can be examined for
a single data set.
The present article is structured as follows. In the

Methods section we introduce our Bayesian model and
learning algorithm for multilocus association mapping,
provide a brief overview of alternative methods, and
describe a simulation study utilizing real genome-wide
SNP data as a basis for generating realistic levels of link-
age and molecular variation. The results from the simu-
lation study are presented in Results. In Discussion, we
summarize the advantages and disadvantages of our
approach and discuss some challenges encountered.
Conclusions concisely summarizes the main points.

Methods
Bayesian multilocus association model
Consider a case-control study involving N individuals
for which yi Î {0, 1} denotes the phenotypic status such

that yi = 1 and yi = 0 correspond to the presence and
absence of a disease, respectively, for i = 1, ..., N. Let Zij

Î {0, 1, 2}, i = 1, ..., N denote the observed genotype of
individual i at SNP locus j, j = 1, ..., L Furthermore, let
πi denote the probability of individual i carrying the dis-
ease, i.e. the event yi = 1. To simplify the notation in
the model definitions introduced below, we will occa-
sionally omit the index i from the disease probabilities
when there is no difference between the individuals.
In a typical GWA analysis, the loci (if any) that influ-

ence disease probabilities are unknown a priori, such
that the number of SNPs, their locations, and the form
of their main/interaction effects are all unknown quanti-
ties to be inferred from the observed genotype/pheno-
type data. The following five association models are
utilized as the basis of our mapping method. These
models have been partly motivated by the models used
in the simulation study in [2]:
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Where j, k = 1, ..., L, j ≠ k, and I (·) is the indicator
function, which equals unity if the argument is true, and
zero otherwise. The models specify the probability of
carrying the disease given the genotype data and they
are denoted by M1(·), ..., M5 (·,·), where the arguments
indicate the loci involved. Interpretations of these mod-
els are given as follows. Firstly, M1 (j) is a full three-
parameter single-locus model having the interpretation
that individuals with different genotypes have different
probabilities of carrying the disease. Model M3 (j, k) is a
full nine-parameter two-locus model having the inter-
pretation that every allele combination at loci j and k
implies a different probability of carrying the disease.
Model M2 (j) is a sub-model of M1 (j), corresponding to
a dominant effect disease model. Models M4 (j, k) and
M5 (j, k) are two-locus sub-models of M3 (j, k)
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corresponding to the dominant effect disease models
with or without main effects. These five model types
will be here termed as elementary models (see Figure
1a-b for visual representations of the elementary mod-
els). Let e denote the class of all distinct elementary
models, i.e.:

e a

a

M j a j L

M j k a j k

= ∈ ∈ …
∈ ⊂ …

{ ( ) | { , }, { , , }}

{ ( , ) | { , , }, { , } { ,
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Each elementary model specifies unambiguously a par-
tition S = {s1, ..., sd} of the N individuals, i.e. the indivi-
duals are divided into d non-overlapping and non-empty
subsets or classes s1, ..., sd associated with distinct dis-
ease probabilities. For instance, the elementary model
M1 (j) specifies a partition with three classes, each cor-
responding to the individuals having a particular geno-
type at locus j (Zij equals 0, 1 or 2). The following
definition enables us to formally characterize our
model-learning strategy.

Definition 1. Let  e e1
⊆ be an arbitrary subset of

elementary association models. The combined models
with respect to e1

are the models which can be defined
by combining elementary models in e1

according to the
following rules. (1) Select n elementary models
M j M ja a nn1 1( ),..., ( ) belonging to e1

, such that for any
l = 1, ..., n, a1 Î {1, ..., 5} and either j1 Î {1, ..., L} or j1 Î
{1, ..., L}2, depending on whether a1 Î {1, 2} or a1 Î {3, 4,
5}. (2) The locus indices j1, ..., jn must be disjoint, i.e. any
one locus j = 1, ..., L is allowed to be included in at most
one of the models selected. (3) Let S s Sl dl

= { ,..., }1 be the
partition of individuals specified by the lth selected ele-
mentary model, and let c1 = 1, ..., d1 denote the index for
class scl

of individuals in the partition Sl, for l = 1, ..., n.
(4) Then, an association model obtained by combining
M j M ja a nn1 1( ),..., ( ) is defined by:
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Figure 1 Model specifications. Figures 1a) and 1b) represent visually the single-locus (M1(j), M2(j)) and two-locus (M3(j, k), M4(j, k), M5(j, k))
elementary models, respectively. Figure 1c) represents visually the model obtained by combining elementary models M2(1) and M5(2, 3). This
combined model is used as an example in the text.
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where pc cn1 are arbitrary probabilities.
As an example of the combination operator, consider

the elementary models M2(1) and M5(2, 3). By omitting
the index i, a model obtained by combining these two
models is defined as:

 = = = = +
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See Figure 1c for a visual representation of this com-
bined model. More generally, a combined model has the
interpretation that when combining two models which
divide the individuals into d1 and d2 classes of unequal
disease probabilities, the resulting model specifies d1d2
classes with unequal disease probabilities. These d1d2
classes correspond to all possible intersections between
the classes of the two original models. Some important
observations should be made about the combined mod-
els. First, the elementary models themselves, as well as
the null model

M p0 0: , =

are considered combined because they can be
obtained through a combination involving either the ele-
mentary model itself, or no models at all. Second, the
elementary models involved in a combination operation
should not include any overlapping sets of loci. To
demonstrate the necessity of such a restriction, consider
the elementary models M1(j) and M5(j, k). According to
the first model M1(j) there exists a main effect on the
disease probability when the genotype at locus j
changes. However, this contradicts the second model
M5(j, k) according to which there is no such effect. The
purpose of the restriction imposed on the combination
operator is to prevent ambiguous model specifications
in this respect. Third, the combined models are formed
from main effects and two-way interactions, and do not
explicitly represent higher-order interactions. For exam-
ple, gene pairs AB and CD could be included, but not a
triplet ABC. Nevertheless, in our approach the combina-
tion of the full models of types M1 and M3 is always
permitted and it can represent even higher-order inter-
actions; however, this comes with the expense of some
redundant parameters. Indeed, the number of para-
meters (which is equal to the number of classes with
differing disease probabilities as specified by the com-
bined model) grows exponentially with respect to the
number of loci involved in the model. The growth rate
depends on whether we use full models or some lower
dimensional sub-models when formulating the com-
bined model. For example, a six-locus interaction model

can have at maximum 93 = 729 and at minimum 23 = 8
parameters, depending on whether three models of type
M3 or M5, respectively, are combined. Fourth, we note
that the set of elementary models considered here is not
exhaustive and it would be straightforward to generalize
the approach by including other types of models, for
example those with recessive main effects. Here our par-
ticular emphasis is on the situation where some causal
SNPs lacking main effects have a joint effect, as exem-
plified by models of type M5. Such SNPs are expected
to be most challenging to detect in practice when utiliz-
ing single SNP based statistical tests. Finally, we note
that models M3 and M4, although elementary, can also
be obtained by combining models of type M1 or M2,
respectively. Our reason for including them as such into
the pool of elementary models is to enhance the learn-
ing algorithm by making plausible two-locus combina-
tions immediately available as building blocks for more
complex models.
Next we provide some further details about the Baye-

sian multilocus association model. First, we derive expli-
citly the posterior probability P (M | Data) for a model,
which is defined as:

e a

a

M j a j L

M j k a j k

= ∈ ∈ …
∈ ⊂ …

{ ( ) | { , }, { , , }}

{ ( , ) | { , , }, { , } { ,

1 2 1

3 4 5 1


,, }, }.L j k≠

(6)

where the proportionality constant does not depend
on M. The first component of (6), the marginal likeli-
hood, is given by

P Data M P y p d
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where i is the index for the genotyped individual and
θ denotes jointly all the parameters of the association
model. Let M be a combined model which divides the
individuals into classes with unequal disease probabil-
ities as specified by a partition S = {s1,..., sd}. The likeli-
hood function is then given by
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where pc, c = 1, ..., d, are the model parameters. We
note that the likelihood (8) is prospective, i.e. it does
not condition on a possible matching of the controls to
the cases (see, e.g. [15]). For example, our simulation
setup is based on retrospective sampling on the basis of
which we know that the numbers of cases and controls
are equal. The advantage of the likelihood (8) is that it
is very efficient to calculate. We use independent, sym-
metric prior distributions assigned on each probability
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The values used for the hyperparameter a in the
simulation analyses are specified in the Specification of
the search parameters section. Together, (9) and (8)
allow us to evaluate (7) analytically as:
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where ncb is the number of individuals i in class c with
disease status yi = b and |sc| is the total number of indi-
viduals in class c: Formula (10) specifies the standard
marginal likelihood arising from the binomial likelihood
under the conjugate beta distribution (see, e.g. [16]).
We assign prior probabilities on the association mod-

els using a discretized exponential distribution, specified
by

P M LM( ) ,∝  (11)

where LM is the number of SNPs included in the
model M and ξ Î (0, 1). This prior specification implies
the following properties hold:

1. If M1 and M2 are two distinct models such that
M2 includes one more SNP than M1, then

P M
P M
( )
( )

2
1

= 

2. The prior distribution is uniform over all com-
bined models which include the same number of
loci.

Thus, ξ can be interpreted as the penalty resulting
from an increase in the number of SNPs in a model. In
practice, it is reasonable to set ξ equal to a small value
that depends inversely on the total number of investi-
gated SNPs. This prevents the learning of overly com-
plex models when the number of SNPs in a data set
increases. The parameter ξ will be referred to as the
structure parameter in the text. The values of ξ used in
the analyses are specified in the Specification of the
search parameters section.

Stochastic search for model learning
Utilizing the elementary and combined association mod-
els, we define a Bayesian model averaging strategy for
identifying evidence of disease associations among the
SNP loci considered. The rationale in averaging over a
set of models is that SNPs occurring often in different

high-scoring models eventually get higher probabilities.
For example, if a SNP is involved in interactions with
many different SNPs, then the results will be averaged
over models containing the alternative interactions,
although all interactions are not necessarily included
simultaneously in any single model. The learning pro-
cess consists of the following four steps:

1. Calculate the posterior probability distribution
over all elementary models in e . In the previous
section we derived analytical expressions for these
probabilities.
2. Select a set  e e1

⊆ of K elementary models
corresponding to the K highest posterior probabil-
ities, where K is a user-specified constant determin-
ing the accuracy of the approximate model averaging
(see below). Further, include all single-locus elemen-
tary models in e1

.
3. Run a stochastic search in the space of combined
models of e1

. For the search we use a non-rever-
sible MCMC algorithm [12]. Search operators are
described in closer detail below.
4. Let ∗ denote the set of all combined models
visited during the search algorithm in Step 3 and let
 j ⊆ ∗ denote the models in which jth locus is
included. Let Xj Î {0, 1} denote the indicator vari-
able of the event that locus j is included in the asso-
ciation model. The posterior probability of Xj = 1
then equals:

P X Data
P M Data

P M Dataj
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where P (M | Data) is the posterior probability of
any particular association model M, for which the
exact expression was derived in the previous section.

For the purposes of a simulation study we define a
scoring scheme for loci based on the above posterior
distribution (12). The approximate Bayesian model aver-
aging (BMA) score of locus j is given by:

S j
P X j Data

P X j DataBMA( ) log
( | )

( | )
,=

=
=
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⎠
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which is the logarithm of the posterior odds in favor
of association.
Next we describe in detail the search operators uti-

lized in the algorithm. Let M denote the current state of
the search algorithm, corresponding to a combined
model. Recall that a combined model is characterized by
a collection of elementary models such that none of
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these include the same SNPs. In the following descrip-
tion, two elementary models are conflicting if they
include the same SNPs. In the stochastic search algo-
rithm we use the following three different search opera-
tors for modifying the current model.

1. Add a new randomly selected elementary model
to the current model M. Remove from M all ele-
mentary models which conflict with the added ele-
mentary model.
2. Remove a randomly selected elementary model
from M.
3. Switch an elementary model in M with another
elementary model from e1

. The operator simply
considers jointly steps 2 and 1, in this order.

At each iteration these operators are used with the
probabilities [0.5, 0.45, 0.05].
The specific feature of the non-reversible MCMC

strategy developed in [12] is that the acceptance prob-
ability corresponding to a Metropolis-Hastings transition
kernel is defined as

min ,
( | ) ( )
( | ) ( )

,
* *

1
P Data M P M

P Data M P M

⎧
⎨
⎪
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⎫
⎬
⎪

⎭⎪
(14)

where M* is the proposed model. Note that the ratio
of proposal probabilities is omitted from the second
term in (14). This defines a non-reversible Metropolis-
Hastings algorithm satisfying the conditions under
which it was proved in [12] that the posterior probabil-
ities can be consistently estimated with

P M Data
P Data M P M

P Data M P M
M

( | )
( | ) ( )

( | ) ( )
,

*

=
∑ ∈

where ∗ is the set of models visited during the sto-
chastic search. This estimation strategy is made possible
by the fact that P (Data | M) P (M) is available analyti-
cally for all models. For a discussion of the advantages
of using the non-reversible sampler in a general Baye-
sian model learning context, see the original article or
[17], where even milder conditions for the convergence
of the algorithm were provided. The stochastic search
method and all alternative methods described in the
next section were implemented in Matlab.

Alternative methods for association mapping
As the first alternative scoring method for association
mapping we use the p-values based on the standard log-
likelihood ratio test for logistic regression models. The
p-value for the jth locus is calculated from the log-likeli-
hood ratio between the full three-parameter model

log ( ),
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jI Z a

and the null model M0. The log-likelihood ratio statis-
tic Λj has asymptotically a c2 distribution with 2 degrees
of freedom (see [18]). Thus, the marginal p-value based
score is defined by:

S j Pp value j− = − >( ) log ( ( )).10 2
2 Λ (15)

The second alternative score for a locus j is derived by
calculating p-values for interaction models (abbreviated
as GxG models) between loci j and k, for all k, using the
logistic regression model:

log ( ) ( ) ( )



   
1

0 0 0 00 1 2 3−
⎛
⎝⎜

⎞
⎠⎟

= + > + > + > >I Z I Z I Z Zj k j kand

The fitted interaction models have four parameters
analogously to the elementary model M4, and the corre-
sponding log-likelihood ratio statistic Λjk follows asymp-
totically a c2 distribution with three degrees of freedom.
The interaction p-value based score is thus defined by:

S j PGxG p value
k L k j

jk, ( ) max { log ( ( ))}.
, , ,

−
= … ≠

= − >
1

10 3
2 Λ (16)

A similar p-value could alternatively be calculated
using the Mantel-Haenszel test (see, e.g. [15]).
The third alternative is similar to the second one in

the sense that it tests marginally (in the posterior sense)
the disease association for each pair of loci. However,
the score is based on Bayes factors [19]:
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where P (Data | Ma (j, k)) is the marginal likelihood
based on the two-locus elementary model Ma (j, k) (see
Bayesian multilocus association model), and M0 is the
null model according to which all individuals have the
same disease probability. Thus, the probability of the
data under the two-locus association model (18) is given
by a mixture of three interaction models of different
complexities, each having a prior weight of 1/3. (As an
alternative to averaging over the three models, we also
considered taking the maximum over the models; how-
ever, no notable changes in the results were detected.)
Notice the difference between the Bayesian scores (13)
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and (17). In (13) the posterior probability of disease
association for locus j is obtained by summing the pos-
terior probabilities of all models in which j is included.
In (17) the posterior probability of association for locus
j is based on a single two-locus interaction model
(which, however, is a mixture of three models) maximiz-
ing the probability of data. Analytical expression for the
above Bayes factor is based on the derivations provided
in the section Bayesian multilocus association model.

Simulated data sets
As the basis of our simulations we use data on 2131 real
human subjects with approximately 500,000 SNPs from
the autosomal and X chromosomes. The data belong to
GenMets sample collected as part of the Health2000
study. Less than 0.1 percent of the observed SNPs were
missing in the original data. For the purposes of the
simulation study, we impute the missing values by draw-
ing the missing alleles from the marginal allele distribu-
tions of the corresponding SNPs. Further details about
the characteristics of the data can be found from pre-
viously published studies utilizing the data [20,21]. We
carry out experiments with two types of data sets: smal-
ler data sets consisting of 460 SNPs are used in replicate
experiments to investigate the average performance
under various biological scenarios, and larger whole
chromosome data sets consisting of approximately 8,700
SNPs are used as examples of the performance in a
computationally more challenging scenario.
The simulated data sets for the replicate experiments

contain subsets of the actual genotype data and the dis-
ease status is generated for the corresponding indivi-
duals according to one of three different disease models,
inspired by the simulation settings used in [2] and [4].
This mechanism of data synthesization preserves well
the level of challenge related to screening disease-related
loci from real data. The outline of the simulation proce-
dure for generating a single data set is as follows:

1. We specify genotype relative risk (GRR), minor
allele frequency (MAF) for the causal SNPs, and a
generative model for the disease status (see below).
2. We randomly select from among the 500,000 ori-
ginal loci four causal SNPs from different chromo-
somes whose empirical allele frequencies (calculated
from all 2131 individuals) match closely (∓1%) the
specified MAF. For each of the selected causal SNPs,
we select the genomic area surrounding the causal
SNP such that 20 closest flanking SNPs having MAF
> 0.1 on both sides of the SNP are included in the
area. The restriction to SNPs with MAF > 0.1
reflects the ascertainment bias, and is similar to the
simulations in [4]. The true causal SNP is then
excluded from the data for the corresponding area,

which mimics the situation where causal variants are
linked to the genotyped loci but their exact locations
remain hidden in a study. This procedure yields 4
genomic intervals, each of length 40 SNPs, such that
the causal SNPs are located in the centers of the
intervals (but not included in the observed data).
These intervals represent disease associated genomic
areas. We note that the linkage between the causal
SNP and the neighboring SNPs is not constant in
the resulting data sets; however, the results are aver-
aged over in this respect in the simulations.
3. We randomly select three intervals of length 100
SNPs from chromosomes not harboring any of the
selected causal SNPs. These intervals represent
genomic areas not associated with the disease.
4. We concatenate the genomic intervals to a multi-
locus genotype sequence of length 460 SNPs such
that the intervals from Step 3 are inserted between
the disease associated intervals from Step 2.
5. Based on the four causal SNPs and the specified dis-
ease model, we generate a disease status for each of
the 2131 individuals in our real genotype data using
their observed genotypes. We select the values of the
parameters in the disease models to get a prevalence
of 40 percent (for details see below). This leads to
approximately 850 observed cases in a single data set.
6. We select randomly the controls from the remain-
ing set of appr. 1280 individuals to obtain a data set
with an equal number of cases and controls. The final
data consist of the genotypes of the selected cases
and controls at the 460 SNPs and their simulated dis-
ease statuses according to the generating model.

We generate 100 replicates of synthetic data sets for
each combination of the simulation parameters (for
details see below) and use these to assess the relative
performance of the association mapping methods con-
sidered. Let j1, ..., j4 denote the causal SNPs selected.
The following three models are used for generating the
disease statuses:

 = > + > + > + >
0

0 0 0 0
1 2 3 4* ,

( ) ( ) ( ) ( )
GRR

I Z I Z I Z I Zj j j j (19)

 = > > > >
0

0 0 0 0
1 2 3 4* * ,

( ) ( )
GRR GRR

I Z Z I Z Zj j j jand and (20)

and

 = > = >
0

0 0 0 2
1 2 3 4* * ,

( )* ( )/
GRR GRR

I Z Z Z I Zj j j jand (21)

where b0 is baseline risk chosen such that the result-
ing prevalence meets the value specified in Step 5
above. According to the first generative model, the risk
of having the disease increases multiplicatively (i.e.
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additively on the log scale) by (GRR - 1) * 100% when-
ever any of the loci involved has at least one disease-
related allele. According to the second model we have
two pairs of interacting loci, (j1, j2) and (j3, j4), such that
the risk of having the disease is increased by (GRR - 1) *
100% if both loci in either pair have at least one risk
allele, and the risk is multiplicative across the locus
pairs. The third generative model requires simulta-
neously that Z j1

0> , Z j2
0= and Z j3

0> , before the
risk increases. This increase is then multiplicative with
the increase caused by j4 alone. The generative models
will be referred to as “multiplicative”, “threshold” and
“triplet”, respectively.
In the simulation setup, we use values: GRR = (1.3,

1.6, 2.0) and MAF = (0.05, 0.1, 0.2) for the causal SNPs.
For each of these MAF values, the original data set
includes more than 23,000 SNPs to choose from. The
simulation setup thus leads to 27 different parameter
settings (9 for each of multiplicative, threshold and tri-
plet generative models) and 100 replicate data sets are
generated for each setting.
In addition to the 2,700 data sets of size 460 SNPs

generated in the way described above, we simulate two
whole chromosome data sets which include approxi-
mately 8,700 SNPs each. These data sets are generated
using the threshold model with values GRR = (1.6, 2.0)
and MAF = 0.2. The disease associated genomic areas
and disease statuses are generated exactly as before,
except that chromosome 21 is excluded as a possible
origin for any of the causal SNPs. The areas not asso-
ciated with the disease are created by dividing all SNPs
in the 21st chromosome into five intervals of approxi-
mately the same size, and the complete data sets are
obtained by inserting the disease associated genomic
areas between these intervals.

Specification of the search parameters
As the initial model for the search, we used the empty
model which includes no SNPs. To fully specify the
search algorithm, K and Niter must be set, where K is
the number of elementary models whose combinations
define the search space and Niter is the number of itera-
tions in the stochastic search algorithm. These para-
meters were specified and the convergence of the search
was monitored in the different simulations as follows:

• In the analyses of the data sets with 460 SNPs we
used K = 5, 000 and Niter = 200, 000. The conver-
gence of the search algorithm is investigated by
manually inspecting the marginal likelihood trace
plots for approximately ten different data sets and
the convergence was always reached within the first
20,000 iterations. The same values were used in the
search for all the data sets.

• In the analyses of the two whole chromosome data
sets we used K = 50, 000 and Niter = 3, 500, 000.
The convergence of the search was investigated by
manually inspecting the trace plot after each 500,
000 iterations. For both data sets, the convergence
was reached during the first set of 500,000 iterations.
Further, the highest scoring model did not change
after the first 500, 000 iterations in either of the
analyses.

Although the likelihood (8) is based on a prospective
model (see the section Bayesian multilocus association
model), we can utilize the prior knowledge that the
numbers of cases and controls in a data set are equal by
selecting the hyperparameter a in the distribution (9) to
reflect this information. This hyperparameter specifies
the distribution of the disease probability parameters,
and specifically, by selecting a > 1 we give more weight
to disease probabilities close to 0.5. In the supplemen-
tary material of their article, Marchini et al. interpret
the hyperparameter in terms of odds-ratios, and con-
clude that hyperparameter values larger than unity are
better in line with odds-ratios one would expect from
typical diseases than values less than unity [5]. If not
stated otherwise, we used a equal to 3 in our analyses.
However, we note that this choice is still fairly non-
informative, and the results obtained were practically
identical when a = 1 was used (see the next section).
Furthermore, in the replicate simulations we used the
value 1/460 for the structure parameter ξ in (11). In the
investigation of the sensitivity of the inferences with
respect to the priors, we considered also values a = 1, 3,
10 and ξ = 1/46, 1/460, 1/4600. In the whole chromo-
some analyses we used ξ = 1/1000.

Results
Simulations
The statistical performance of a method can be evalu-
ated by considering a subset of highest ranking SNPs
and investigating how many disease associated areas are
detected by these SNPs and how many false positive
findings, i.e. SNPs from outside of the disease associated
areas, are included in the subset. To refrain from fixing
the size of the subset, we utilize a graphical representa-
tion where the number of disease associated areas
detected is plotted against the count of false positive
SNPs. We call these curves ROC curves due to the
apparent similarity with the commonly used receiver
operating characteristic (ROC) curves [22], where the
true positive rate is plotted against the false positive
rate. However, in our presentation the true positive rate
is replaced by the number of disease associated areas
detected, because we do not expect that all SNPs within
a single disease associated area would be assigned high
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scores. Figures 2, 3 and 4 show the ROC curves for the
BMA (blue) and p-value (red) methods in the replicate
simulations when the data sets are generated using mul-
tiplicative, threshold or triplet models, respectively. The
curves are averaged by calculating the mean count of
false positive SNPs in the 100 replicate data sets for
each number of disease associated areas detected. The
vertical axis corresponds to the number of detected dis-
ease associated areas and the mean count of false posi-
tives is shown on the horizontal axis. Variability over
data sets is displayed by the 2.5th and 97.5th percentile
curves (dotted blue) for the BMA method. These per-
centiles represent the tails of the distribution of counts
of false positives evaluated at each number of disease
associated genomic areas detected. When interpreting
the results, the red curve for the threshold model with
GRR = 1.3 and MAF = 0.05 (Figure 3, lower left-hand
panel) can be used as a baseline showing the highest
relative false positive rate. When we decreased the effect
size further from 1.3 to 1, the resulting curve for the p-
value was nearly identical with the curve shown in the
figure (exact results not shown). Note that this baseline

curve is not a straight line, because, unlike in standard
ROC curves, the vertical axis does not here represent
the number of true positive SNPs, but the number of
true positive disease associated areas detected. The fol-
lowing conclusions can be drawn from the figures:

• Detection of causal areas improves with increasing
GRR and MAF. Especially under the threshold and
triplet simulations, if the conditions GRR ≥ 1.6 and
MAF ≥ 0.1 are not satisfied, no method is clearly
better than the baseline.
• There is considerable variability between the
curves for different data sets, as can be seen from
the wide 95% intervals for the curves. This is
expected as the data sets are based on subsets of
real genotype data and may exhibit different levels of
linkage between the causal and neighboring SNPs.
• The performance of the methods is highest with
multiplicative data sets and lowest with triplet data
sets.
• The mean curve for the BMA is consistently above
the p-value curve in triplet and threshold
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Figure 2 Mean ROC curves, multiplicative model. The figure shows the average ROC curve (thick blue line) together with 2.5th and 97.5th
percentiles (dotted lines) for the BMA method (see the text for further explanation). For comparison, the average ROC curve corresponding to
the p-value method is shown (red line). The horizontal axis corresponds to the average count of false positives and the vertical axis shows the
number of detected disease associated areas. The plot in each panel is based on 100 simulated data sets. The data sets were generated
according to the multiplicative model, and the values of GRR and MAF parameters are shown on top of the respective panels. Notice that the
scale of the horizontal axis in this figure is different from the scales in Figures 3 and 4.
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Figure 3 Mean ROC curves, threshold model. The figure is interpreted similarly to Figure 2, except that the data sets were generated
according to the threshold model.
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Figure 4 Mean ROC curves, triplet model. The figure is interpreted similarly to Figure 2, except that the data sets were generated according
to the triplet model.
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simulations. In multiplicative simulations the curve
for the p-value is above the curve for the BMA,
except when MAF = 0.05 and GRR = 1.3 or 1.6. We
note that when the signal gets stronger, even the
marginal p-value is able to identify interacting SNPs
without main effects, because such SNPs show some
effect also marginally when averaged over the other
SNP.

For clarity, the ROC curves for the GxG p-value and
GxG BF methods are excluded from Figures 2, 3 and 4.
Usually these curves reside between the p-value and
BMA curves (exact results not shown).
To numerically compare the alternative methods, we

normalize the axes in our ROC curves to unity and cal-
culate the area under the ROC curve (AUC). In general,
the higher the AUC value, the better a method is per-
forming in the identification of the disease associated
genomic regions. We performed a pairwise comparison
of the results for each data set created in the replicate
simulations between BMA and the alternative methods
(p-value, GxG p-value and GxG BF). Two different cri-
teria are used: first, the AUC value; second, the location
accuracy. The location accuracy is defined by taking the
highest ranking SNP and measuring its distance in
terms of SNP markers to the nearest causal position. If
the highest ranking SNP resides outside of any causal
area the distance is set to be the maximum possible
value (which equals 20, since all disease associated areas
had length 40 and the true causal SNPs were located
between the 20th and 21st SNPs). However, in the tri-
plet simulations we modify the location accuracy criter-
ion so that we only consider SNPs outside the causal
area related to the causal SNP Z j4

in Equation (21).
The reason for this is that the SNP Z j4

is the only SNP
in the triplet model (21) which has a main effect, and
for this reason it is usually easiest to detect and gets the
highest rank. In the multiplicative simulations the loca-
tion accuracy is already investigated using causal SNPs
with main effects, therefore it would be unnecessary to
repeat this with the triplet simulations. The results of
the comparisons are jointly presented in Figures 5 and
6, and they reveal that:

• When AUC is considered, BMA is significantly
better than any other method in triplet simulations,
and, in threshold simulations, only the GxG BF
method is competitive with the BMA method. On
the other hand, in multiplicative simulations, espe-
cially when the signal is strongest (upper right cor-
ner), BMA gets lower AUC values than the
alternatives.
• When the location accuracy is considered, BMA
has consistently better or approximately equal

performance compared to the alternatives. In multi-
plicative data sets the preference for the BMA is
strongest.

The most striking feature in the results is the fact that
the BMA method is clearly inferior in terms of AUC
when the data sets are generated according to the multi-
plicative model and the signal is strongest, and, at the
same time, clearly superior to the other methods with
multiplicative data sets when measured in terms of loca-
tion accuracy. The relatively low performance of BMA
in terms of AUC for this setting can be explained as fol-
lows. When the signal was strongest and the risk
increased multiplicatively over the causal loci, it hap-
pened with some few data sets that BMA did not show
any signal to one of the four causal loci. Consequently,
many false positives needed to be included before all
four disease associated areas could be appropriately
detected. This is also visible in Figure 2, where, for
example, in the panel corresponding to GRR = 2.0 and
MAF = 0.2 the mean ROC curves for BMA and p-value
are overlapping up to three detected causal areas, but
the 97.5th percentile deviates strongly from the mean
curves at the level of four detected disease associated
regions. The reason why models with four causal SNPs
included sometimes get lower posterior probabilities
than models with three causal SNPs can be explained by
considering the generating multiplicative model. When
the increase in risk is maximal, the risk is already con-
siderably high after including any three SNPs in the
model, and, consequently, only a minor increase in risk
is left to be explained by the fourth causal SNP. Thus,
the benefit from adding this particular SNP to the
model will not always compensate the penalty resulting
from the corresponding increase in the number of para-
meters. On the other hand, the location accuracy criter-
ion only compares the location accuracy of the highest
ranking SNP in the data set, and is therefore unaffected
by this phenomenon.
As a final illustration of the results from the replicate

simulations, Table 1 shows summary information about
the variation in posterior odds values that was observed
in the replicate simulations for SNPs in disease asso-
ciated areas with different levels of MAF and GRR.
These results confirm the expectation that the larger the
effect, the higher the scores related to the disease asso-
ciated areas. The table also shows the proportion of
data sets in which some SNP from a disease associated
area was assigned the highest score among all SNPs in
a data set. Because the disease associated areas cover
160/460 ≈ 0.35 of the sequence in these data sets, the
baseline proportion is about equal to 0.35. The results
confirm that when GRR = 1.3 or 1.6 and MAF = 0.05 or
0.1 in the threshold simulations, or GRR = 1.3 and

Marttinen and Corander BMC Bioinformatics 2010, 11:443
http://www.biomedcentral.com/1471-2105/11/443

Page 11 of 20



MAF = 0.05 in the triplet simulations, the improvement
in the detection of disease associated areas provided by
the BMA method is negligible.
The results for the whole chromosome analyses are

shown in Figure 7. These results illustrate in particular
what benefits BMA based approach can provide over p-
values when applied to larger genomic segments. For
both data sets analyzed, the BMA method gives on aver-
age higher rankings to SNPs from disease associated
regions. The benefit is clear especially when GRR = 2.0

and MAF = 0.2, when the BMA is able to identify all
four disease associated areas whereas p-value misses one
disease associated area completely.

Time intensity of the methods
Obviously, calculation of the marginal p-values is the
optimal approach in terms of time intensity as the time
required is linear with the number of SNPs L in a data
set, whereas going through all gene pairs for obtaining
the GxG p-values takes a time proportional to 2
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Figure 5 Comparison of AUC. The figure summarizes pairwise comparisons based on AUC values between BMA and alternative methods.
There are nine panels in total, corresponding to all possible pairs of generating model (multiplicative, threshold, triplet) and alternative method
(GxG p-value, p-value and GxG BF). The rows of panels correspond to different generating models, as specified on the left side of the rows, the
columns of panels correspond to comparisons with different alternative methods, which have been specified on top of the columns. Each panel
is divided into nine cells, and each cell summarizes results from one hundred simulated data sets. MAF values 0.05, 0.1 and 0.2 are in columns 1-
3, respectively, whereas GRR values 1.3, 1.6 and 2.0 correspond to the rows 1-3 (from bottom to top), respectively. For each cell, we calculated
the number of times AUC value was higher/lower for BMA than for the alternative method among 100 simulated data sets, whenever the
methods had different values. A cell is colored to reflect the result of this comparison, and the colors are interpreted as follows: Red: BMA
achieves a higher AUC value more often than the alternative method and the difference is statistically significant. Light red: BMA achieves a
higher AUC value more often, but the difference is not statistically significant. White: the difference between the number of data sets in which
BMA gets a higher score and in which BMA gets a lower score is less than 5, meaning that there is in practice no difference between the
methods. Light blue: BMA achieves a higher score less often than the alternative method, but the difference is not statistically significant. Blue:
BMA achieves a higher score less often than the alternative method, and the difference is statistically significant. The statistical significance of the
difference is measured using a two-tailed p-value based on a binomial distribution using significance level of 0.05. Below each panel we show
two values a/b, where a is the number of times BMA gets a higher AUC score, and b the number of times BMA gets a lower score than the
alternative method over all the nine cells.
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The calculation of GxG BF scores takes approximately
one third of the time required for the calculation of
GxG p-value scores and this ratio does not depend on
the characteristics of simulated data sets. Most of the
calculation time for GxG p-values was consumed by the
fitting of the logistic regression model, for which pur-
pose we used glmfit from the Matlab statistics toolbox.
The numerical fitting takes considerably longer time
than the analytical evaluation of the GxG Bayes factors.
Notice also that GxG Bayes factors are based on the
average of three models as opposed to the single model
in the GxG p-value. The time consumed by the stochas-
tic search algorithm for BMA depends on the number
of elementary models K, whose combinations define the
search space, and the number of iterations of the search
algorithm. In our analyses of the chromosome-wide data
the calculation of all GxG Bayes factors took about 12
hours on a single desktop computer, while the stochastic
search required only about 15 minutes when GRR = 1.6
and 50 minutes when GRR = 2.0. This difference in the
times is a consequence of the fact that when the signal

is strong the algorithm visits higher-order models more
often and the evaluations of such models take longer.

Sensitivity to prior
The sensitivity of the BMA score, i.e. the logarithm of the
posterior odds, to different choices of prior parameters is
illustrated in Figure 8, which shows the results for a ran-
domly selected threshold data set with GRR = 1.6 and
MAF = 0.2 using three alternative hyperparameter or
structure parameter values. By examining Figure 8, it is
obvious that the structure prior parameter ξ has a consid-
erable effect on the calculated BMA scores. In particular,
making ξ larger increases the variance of the scores. On
the other hand, the hyperparameter has only a small
impact on the results, as the curves in the second plot in
Figure 8 are very closely overlapping. Notice that few
downward “spikes” in scores in the lower plot were not
caused by different prior parameters but by the fact that
the search algorithm failed in some analyses to visit a
low-scoring model visited in other analyses, and, conse-
quently, the posterior odds for the corresponding SNP
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Figure 6 Comparison of location accuracy. The figure summarizes pairwise comparisons of location accuracy between BMA and alternative
methods. The figure should be interpreted analogously to Figure 5, except that the comparison is based on location accuracy instead of AUC
values (preference for BMA is still indicated using the red color).
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were exceptionally low. Such problems could be circum-
vented by running a longer search. However, as these
downward spikes were always observed in SNPs that
would nevertheless be assigned low scores in the end, we
do not consider this to represent a serious issue. Of
course, there is no absolute guarantee that such events
would not happen for SNPs that should in reality get
high scores, unless the search is run infinitely long. In
practice this is still unlikely to happen, because the search
is directed toward models with high scores.
The prior on the model structure affects the calcu-

lated model averaged results in two ways. First, the
prior probabilities of the models over which the aver-
aging is perfomed change as a function of the structural
prior. Second, the set of models over which the aver-
aging is done can change as well, because the MCMC
algorithm will eventually traverse a subspace of different

models. A major challenge in specifying reasonable
priors is that there is a large difference in the numbers
of models of different dimensions. For example, a single
SNP can be selected to the model in L ways, where L is
the total number of SNPs, two SNPs can be selected in

2
L( ) ways etc. If we specify a reasonable prior on the

number of SNPs, e.g. a binomial distribution with some
mean µ, then adding a SNP to the association model
decreases the prior probability approximately by a factor
equal to µ/L: When L becomes large the factor
diminishes. Thus, although the models of higher dimen-
sion might together affect the posterior probabilities sig-
nificantly, any single model of higher dimension is per
se so improbable that an MCMC algorithm will only sel-
dom accept a visit to such a model and consequently
the search process will visit only a fraction of the puta-
tive higher dimensional models. The sensitivity of the
Bayesian model averaging to the prior probabilities on
model structure seems not to be specifically related to
our formulation of the association model. For example,
[4] used Bayesian graphical models to identify disease
associations. We have implemented the approach
described in their article, except that the posterior prob-
abilities are calculated by using (12), instead. Figure 9
shows the results from that alternative method for a
randomly selected synthetic threshold data set. The data
are analyzed with three different Poisson priors on the
number of disease associated components in the graph
considered, corresponding to the mean parameters 0.1,
0.01, 0.001, where 0.01 is the value used in [4]. How-
ever, their prior definition leaves some room for inter-
pretation. Namely, it is not explicitly stated how the
prior probability mass is distributed over the different
models having the same number of disease associated
components in the graph. Thus, the Poisson prior can
be considered to imply either that the Poisson probabil-
ity mass p(K) is evenly distributed among all models
with K disease associated components, or that all possi-
ble models in the considered model space have a prior
probability directly proportional to p(K). The former
interpretation leads to an extremely conservative prior,
which is unlikely to lead to the detection of any disease
associations, and thus, we chose the latter interpretation
in our implementation. Notice that although the Poisson
prior with mean 0.01 seems conservative under the lat-
ter interpretation, as the model with no associations is
approximately 100-fold more probable than any particu-
lar model with a single association, the total prior prob-
ability given to models with associations is still large
compared to the probability of no association, since the
number of models with at least one or more associa-
tions is very large. These observations illustrate well the
challenge related to the choice of a sensible prior in
the current context, as one needs to balance between

Table 1 SNP posterior odds summaries

Type GRR MAF Max Score Accuracy

Multiplicative 1.3 0.05 [-6.1,1.6] 0.57

1.3 0.1 [-4.6,7.0] 0.89

1.3 0.2 [-2.0,11.3] 0.96

1.6 0.05 [-6.0,6.8] 0.88

1.6 0.1 [-0.5,44.9] 0.96

1.6 0.2 [0.6,71.9] 1.00

2.0 0.05 [-0.6,23.9] 0.95

2.0 0.1 [1.2,77.6] 1.00

2.0 0.2 [3.8,129.4] 0.99

Threshold 1.3 0.05 [-6.8,-1.0] 0.38

1.3 0.1 [-6.4,-0.6] 0.34

1.3 0.2 [-6.2,0.2] 0.55

1.6 0.05 [-7.0,-1.3] 0.34

1.6 0.1 [-7.4,0.3] 0.38

1.6 0.2 [-3.4,16.3] 0.96

2.0 0.05 [-6.3,-0.6] 0.40

2.0 0.1 [-6.1,8.1] 0.80

2.0 0.2 [-0.7,43.5] 1.00

Triplet 1.3 0.05 [-6.2,-1.3] 0.28

1.3 0.1 [-6.3,1.1] 0.41

1.3 0.2 [-7.7,0.5] 0.47

1.6 0.05 [-6.9,0.6] 0.41

1.6 0.1 [-9.9,0.6] 0.59

1.6 0.2 [-5.4,4.6] 0.85

2.0 0.05 [-7.2,1.6] 0.43

2.0 0.1 [-5.5,11.7] 0.80

2.0 0.2 [-2.7,22.8] 0.95

The table shows summary information about the maximum BMA scores, i.e.
log posterior odds values, obtained for SNPs residing in the causal areas in
the simulated data sets. The Max Score column reports the empirical 95%
interval for the highest score observed for a SNP within any causal area in a
data set. The Accuracy column reports the proportion of all data sets in which
the SNP assigned the highest score among all SNPs in a data set belonged to
a causal area. The values reported on each row are based on 100 simulated
data sets.
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the two extremes of assigning too little or too much
prior belief in the existence of associations.

Discussion
Rationale of the multilocus modeling
A strong rationale behind the models which involve
multiple SNPs simultaneously is that only the SNPs

providing additional information about disease risk over
the SNPs already included in the model have a non-neg-
ligible chance of becoming eventually added to the
model. Therefore, fewer SNPs corresponding to the
strongest signals per disease associated genomic area
attain high scores when the models are averaged over
(for an illustration, compare panels a and c in Figure 10).

Figure 7 Whole chromosome examples. The figure shows results for the two simulated whole chromosome data sets. The two panels on top
show BMA and p-value scores for each sequence position in the first data set, the lowest two plots show corresponding results for the second
data set. The numbering of the sequence positions is the same in all panels, and it is shown only below the lowest panel. The four disease
associated areas are highlighted using grey backgound. The highest score within each disease associated area is marked by a red circle and its
ranking among all SNPs is shown next to the disease associated area. The data sets were generated using the threshold model and the values
of the parameters used (GRR and MAF) are shown above the panels.
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From the theoretical point of view, the expected benefits
include the lower number of false positives, improved
power, and improved localization of the causal SNPs. In
the GWA setting, these advantages have been illustrated
in practice using a multilocus regression model [7],
however, without including the gene-gene interactions.
Our primary target was to develop a model-averaging

approach in which gene-gene interactions are explicitly
considered. Another possibility for implementing this
would be to consider enumeratively all single-SNP and
GxG models as in our approach, while doing the
model averaging over all these models. We considered
this alternative at an initial stage of our method devel-
opment; however, such an approach was discovered to
generally suffer from a specific deficiency. To illustrate
this, suppose for example that there exist two separate
underlying interactions for a particular data set, i.e.
corresponding to four causal SNPs in total. Then it is
likely that the individual GxG models for each of these
interactions are assigned high scores relative to the
null model. Nevertheless, due to stochasticity of the
genotype counts, it may also easily happen that one of
the GxG models is assigned a clearly higher score than
the other. Because this model includes only one of the
interactions, and excludes the other, evidence against
the other interaction is obtained. As a consequence of
this, the interaction associated with the lower score
will get a very low posterior weight when the averaging

over all models is performed (for an illustration, com-
pare panels b and c in Figure 10). To resolve this
issue, it is necessary to have the ability to include both
interactions simultaneously in a model. This insight
from the initial investigations led us to propose our
final approach based on the combined models. An
additional benefit of the combined models is that they
can represent even higher-order interactions, however,
this comes with the expense of an increase in the
number of redundant parameters, which is likely to
reduce the applicability when the number of SNPs
involved in the combination is large.

Summary of the results
To compare our novel approach with some standard
approaches we carried out a comprehensive simulation
study. The simulation study was particularly challenging
as the causal variants were not included among observa-
tions in the simulated data sets. In the simulations,
three types of causal SNPs were considered, 1) SNPs
with main effects, 2) SNPs without main effects but
with a pairwise interaction effect, and 3) SNPs included
in a three-way interaction without pairwise effects. The
results show that even if multilocus association findings
may lack statistical significance under stringent criteria
for the posterior odds score, the calculated relative
scores still often correctly highlight the disease asso-
ciated genomic areas.

Figure 8 Prior sensitivity illustration. The figure shows the effect of varying the priors when calculating BMA scores for a single data set. In
the upper panel, values 1/46, 1/460, 1/4600 (green, blue, red) were used for the structure prior parameter ξ with a fixed hyperparameter a equal
to 3. In the lower panel, hyperparameter values 1, 3, 10 (green, blue, red) were used for a in the analysis with the structure prior parameter ξ
fixed to 1/460.
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The results concerning the detection rate versus false
positive rate can be summarized as follows.

• When the causal SNPs had main effects, the BMA
did not provide improvement over the other meth-
ods. On the contrary, some signals detected by the
other methods (p-value, GxG p-value, GxG BF)
investigating SNPs or SNP-pairs marginally went
undetected in some of the simulations where the
causal SNPs had main effects.
• When causal SNPs with two-way interaction
effects were considered, all methods considering
GxG interactions (BMA, GxG p-value, GxG BF)
yielded more satisfactory results than the marginal
p-value.

• When causal models with three-way interactions
were considered the BMA showed better perfor-
mance than any of the alternatives.

The final aspect in the list above suggests that when
higher-order interactions are present in data, taking
them into account in the model may improve their
detection. However, we further note that as the effect
sizes got larger, even the simplest model, the marginal
p-value, was able to identify most of the causal areas,
even if the causal SNPs did not have main effects. The
improved localization of the BMA method was most
clearly seen when causal SNPs had main effects.
In general, the GxG Bayes factor seemed more compe-

titive than the GxG p-value when compared with the

Figure 9 Example, Bayesian graphical models. The top three panels show marginal probabilities of association obtained by a Bayesian
graphical model analysis (see text). The results are shown for a single example data set generated according to the threshold model with GRR =
1.6 and MAF = 0.2. The results are obtained by using three different mean paramater values for the Poisson prior distribution and the values
used are shown in the labels of the panels. The SNPs with non-zero probabilities are further highlighted by red circles on top of each of the
panels. Disease associated genomic areas are indicated with gray background. The lowest panel shows the marginal p-values for reference.
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BMA method. This may be partly explained by the fact
that the GxG p-value handles only a single interaction
model at a time, whereas the GxG BF considers an aver-
age of three different models.
Especially in the simulations with underlying three-

way interactions, the model corresponding to the GxG
p-value may be too limited to appropriately fit the com-
plex interaction model, and consequently, a model with
more parameters might perform better. On the other
hand, increasing the complexity of the model would
decrease the performance of the GxG p-value in the
simpler simulation settings due to additional redundant
parameters.

Issues in the Bayesian model averaging
The bottleneck in terms of computational complexity in
our approach is the enumeration of all locus pairs once
and evaluating the posterior probabilities of the corre-
sponding elementary models. After this has been done,
the stochastic search increases only modestly the total

time required. The O(L2) time complexity seems una-
voidable for any method explicitly considering gene-
gene interactions. Although the enumeration of all locus
pairs is feasible with present day cluster computers even
on the scale of GWA studies, a straightforward enhance-
ment in terms of time intensity is to carry out a pre-
screening of SNPs using e.g. a marginal p-value test
with some liberal significance threshold, say, equal to
0.1. It is shown in [2] that such an approach leads to
approximately equal power in identification of gene-
gene interactions compared to the exhaustive enumera-
tion of all gene pairs.
According to our experiences, the sensitivity with

respect to the prior on the model structure may repre-
sent the primary obstacle to be appropriately handled
when Bayesian model averaging type methods are
applied to data sets with a very large number of SNPs.
One solution provided by the Bayesian approach itself is
that, instead of uniformly decreasing the value of the
structure parameter ξ (penalty from adding another SNP

Figure 10 Naive Bayesian model averaging illustration. The figure shows association probabilities for SNPs in a single data set obtained
using three different approaches. The data set is generated according to the threshold model, i.e. it includes two pairs of interacting SNPs.
However, for purposes of illustration, this data set is simpler than those analyzed in the simulation experiments as the causal SNPs are included
in this data set. Furthermore, the relative risks for the different interactions were selected unequal: the interaction involving SNPs denoted by red
circles has relative risk 2.0 and the one involving SNPs denoted by magenta squares has relative risk 1.8. The probabilities in panel a) are
calculated by comparing a single-SNP association model with the null model for each SNP in turn. Panel b) shows the probabilities from naive
model averaging, where the averaging is done over all elementary single-SNP and GxG models selected for the analysis, but not including
combined models. Panel c) shows the probabilities obtained from the full BMA analysis.
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to the model) as the number of SNPs in a data set
increases, we could assign different ξi parameters to dif-
ferent SNPs based on external knowledge about the par-
ticular loci [11]. For example, ξi might be set equal to
0.01, 0.001 or 0.0001 depending on whether a SNP
belongs to a gene whose function is expected to be
related with the disease, any gene at all, or far away
from any known gene, respectively. There does not
seem to be a simple way for including continuous cov-
ariates in our model if one wishes to preserve the ability
to analytically integrate out the model parameters,
which constitutes the basis of efficient computation. On
the other hand, including categorical covariates (such as
sex, or age after some appropriate discretization) in our
model is straightforward in principle, by treating them
similarly as the observed genotypes. However, in prac-
tice the increase in the number of parameters may over-
whelm the benefits. A possible solution might be to
average over models such that the covariates are in turn
either included or excluded. Finding an optimal way of
doing this is subject to future research.

Conclusions
We have considered the problem of identifying disease
associated marker loci when several SNPs have a joint
effect on the disease probabilities. We have introduced a
novel Bayesian model averaging approach, whose advan-
tages include explicit consideration of the GxG interac-
tions, ability to describe higher-order interactions, and
the ability to evaluate the marginal likelihood analyti-
cally enabling efficient computation. Our approximate
model averaging algorithm makes it possible to include
GxG interactions in the analysis even with large data
sets. Furthermore, it would be fairly straightforward to
modify the algorithm for learning with other model
families than the one considered in this article, for
example regression models commonly utilized in genetic
association studies. Such a generalization would require
that the model parameters can be integrated out either
analytically or approximately using e.g. the Laplace
approximation (see the supplementary material of [5]).
To conclude, our simulations confirm that an appro-

priate approach to initializing a GWA screening is to
investigate marginally each SNP, either by p-values or
corresponding Bayes factors (see, e.g. [11]), as this is the
computationally most straightforward and fastest
approach, and, in many cases, capable of finding the sig-
nals present in data. The relevance of the more complex
modeling approaches including GxG interactions is that
they may help to detect some causal SNPs which are
not visible marginally. Thus, in our opinion, using dif-
ferent approaches side-by-side may provide a more
detailed description of the data and aid in finding the
missing heritability in complex diseases [23].
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