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Abstract
GABAB, μ-opioid, and adrenergic α2 receptors inhibit substance P release from primary afferent
terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABAB
receptors inhibit transmitter release from primary afferents by activating Src family kinases
(SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study
investigated whether SFKs mediate the inhibition of substance P release by these three receptors.
Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord
slices and in vivo. In slices, NK1R internalization induced by high frequency dorsal root
stimulation was inhibited by the μ-opioid agonist DAMGO and the GABAB agonist baclofen. This
inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low frequency
stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R
internalization induced by noxious mechanical stimulation of the hind paw was inhibited by
intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the
inactive PP1 analog PP3. PP1 produced no effect by itself. The α2 adrenergic agonists
medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R
internalization induced by low frequency dorsal root stimulation. PP1 did not reverse the
inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P
release by μ-opioid and GABAB receptors, but not by α2 receptors, which is probably mediated by
the binding of G protein βγ subunits to calcium channels.
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Primary afferent activity causes the release of glutamate and substance P into the spinal
cord. Most dorsal horn neurons that express the neurokinin 1 receptor (NK1R) for substance
P receive synapses from primary afferents and project directly to the brain (Todd et al.,
2002; Todd et al., 2005). There is ample evidence that NK1Rs mediate hyperalgesia by
increasing the excitability of these neurons (Traub, 1996; Mantyh et al., 1997; De Felipe et
al., 1998; Henry et al., 1999; Laird et al., 2001). Substance P release from primary afferents
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is inhibited by several G protein-coupled receptors (GPCRs), including μ-opioid receptors
(MORs) (Jessell & Iversen, 1977; Yaksh et al., 1980; Kondo et al., 2005), δ-opioid receptors
(Kondo et al., 2005; Overland et al., 2009), GABAB receptors (Malcangio & Bowery, 1993;
Riley et al., 1997; Marvizon et al., 1999a) and adrenergic α2 receptors (Kuraishi et al., 1985;
Pang & Vasko, 1986; Ono et al., 1991a; Bourgoin et al., 1993; Takano et al., 1993). These
receptors are present in substance P-containing terminals (Li et al., 1998; Stone et al., 1998;
Ataka et al., 2000; Yang et al., 2001).

The conventional idea is that GPCRs inhibit neurotransmitter release through the
inactivation of voltage-gated Ca2+ [Ca(V)] channels by the binding of G protein β γ subunits
(Gβ γ), which is voltage-dependent (Dolphin, 2003; Evans & Zamponi, 2006; Dai et al.,
2009). However, recent evidence suggests that some GPCRs may activate other signaling
pathways. In primary afferents, Ca(V)2.1 (P/Q-type) and Ca(V)2.2 (N-type) channels
control neurotransmitter release and are the ones inhibited by MORs (Rusin & Moises,
1995; Evans & Zamponi, 2006; Dai et al., 2009). Primary afferents contain a unique splice
variant of Ca(V)2.2 channels having the 37a exon instead of the 37b exon (Bell et al., 2004;
Castiglioni et al., 2006). The 37a exon contains a consensus site for tyrosine
phosphorylation by Src family kinases (SFKs) that is absent in the 37b exon, and this makes
these channels susceptible to a voltage-independent inhibition by MORs and GABAB
receptors (Diverse-Pierluissi et al., 1997; Strock & Diverse-Pierluissi, 2004; Raingo et al.,
2007). A similar voltage-independent inhibition by SFK phosphorylation may affect
Ca(V)2.1 (type P/Q) channels (Weiss & Burgoyne, 2001). It has been proposed that, unlike
MORs and GABAB receptors, α2 receptors do not inhibit Ca(V) channels through SFK
phosphorylation, but only through Gβ γ binding (Strock & Diverse-Pierluissi, 2004).

SFKs are a group of ten enzymes that catalyze the phosphorylation of tyrosine residues and
that form part of many key signaling pathways in mammalian cells (Thomas & Brugge,
1997). Five SFKs (Src, Fyn, Lck, Lyn and Yes) play important functions in the CNS,
particularly in synaptic plasticity, by regulating the activity of Ca(V) channels and NMDA
receptors and (Kalia et al., 2004; Xu et al., 2008; Zhang et al., 2008; Chen et al., 2010).
Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of the tyrosine residues
phosphorylated by SFKs (Thomas & Brugge, 1997).

Here we investigate whether SFKs mediate the inhibition of substance P release by MORs,
GABAB receptors and α2 receptors. We used NK1R internalization to measure substance P
release, a method that is more sensitive than radioimmunoassay (Marvizon et al., 2003a),
identifies the sites of release (Mantyh et al., 1995; Abbadie et al., 1997; Allen et al., 1997;
Honore et al., 1999; Adelson et al., 2009) and reflects NK1R activation (Trafton et al., 1999;
Trafton et al., 2001).

Materials and methods
Animals

Animals used in this study were male, Sprague-Dawley rats purchased from Harlan
(Indianapolis, IND). A total of 66 rats were used in the study. Spinal cord slices were
prepared from 17 juvenile rats (3–5 weeks old). Intrathecal catheters were implanted in 49
adult rats (2–4 months old). The anesthetic used and other procedural details are given
below. All animal procedures were approved by the Institutional Animal Care and Use
Committee of the Veteran Affairs Greater Los Angeles Healthcare System, and conform to
the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Efforts
were made to minimize the number of animals used and their suffering.
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Chemicals and media
PP1 [1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3, 4-d]pyrimidin-4-amine],
PP2 [3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine], PP3
[1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine] and Tocrisolve-100 (20% soya oil
emulsified in water with Pluronic F68) were from Tocris (Ellisville, MO). Dasatinib was
from ChemieTek (Indianapolis, IN). Isoflurane was from Halocarbon Laboratories (River
Edge, NJ). Prolong Gold was from Invitrogen (Eugene, OR). Baclofen, DAMGO and other
chemicals were from Sigma.

Artificial cerebrospinal fluid (aCSF) contained (in mM) 124 NaCl, 1.9 KCl, 26 NaHCO3,
1.2 KH2PO4, 1.3 MgSO4, 2.4 CaCl2 and 10 glucose; K+-aCSF contained 5 mM of KCl, and
sucrose-aCSF contained 5 mM KCl and 215 mM sucrose instead of NaCl (iso-osmotic
replacement). All these media were constantly bubbled with 95% O2/5% CO2.

Compounds were dissolved in water except for the following. For experiments in slices,
PP1, PP2 and PP3 were dissolved at 10 mM in dimethyl-sulfoxide (DMSO) and then diluted
to their desired concentrations in aCSF. For intrathecal injection of a 3 nmol dose of PP1, it
was dissolved at 10 mM in DMSO and then diluted in saline, resulting in a final
concentration of DMSO in the injectate of 3%. For intrathecal injection of a 10 nmol dose of
PP1, it was dissolved at 100 mM in Tocrisolve-100 and then diluted in saline, resulting in a
final concentration of Tocrisolve-100 in the injectate of 1%.

Spinal cord slices
Spinal cords were obtained from 3–5 weeks old male Sprague-Dawley rats by dorsal
laminectomy. The rats were anesthetized with 3% isoflurane in an induction box and kept
under isoflurane anesthesia during the extraction of the spinal cord, which took less than 2
min and included euthanasia by bilateral thoracotomy. Coronal slices (400 μm) with one
dorsal root were cut with a vibratome (Integraslice 7550PSDS, Campden Instruments USA,
Lafayette, IN) from a lumbar spinal cord segment (L2–L4), as described (Marvizon et al.,
2003a; Lao & Marvizon, 2005; Adelson et al., 2009). The spinal cord segment was glued
vertically to a block of agar on the stage of the vibratome and immersed in ice-cold sucrose-
aCSF. Slices were cut using minimum forward speed and maximum vibration while
observing them with a stereo microscope mounted over the vibratome. Fiber continuity
between the dorsal root and the dorsal horn was assessed by examining the dorsal root and
the dorsal surface of the slice with the stereo microscope. Slices were discarded if they did
not meet the following criteria: 1) at least 80% of the dorsal funiculus had to be continuous
with the dorsal root, and 2) the dorsal root had no cuts or compression damage. Slices were
kept for one hour in K+-aCSF at 35 °C and then in regular aCSF at 35 °C, and were used
within 3 hr of preparation.

Dorsal root stimulation of slices
The dorsal root attached to the slice was electrically stimulated using a custom-made
chamber, as previously described (Marvizon et al., 2003b; Adelson et al., 2009). Slices were
superfused at 3–6 ml/min with aCSF at 35 °C. The root was placed on a bipolar stimulation
electrode (platinum wire of 0.5 mm diameter, 1 mm pole separation) in a compartment
separated from the superfusion chamber by a grease bridge. The root and the electrodes were
covered with mineral oil and any excess aCSF was suctioned away. This ensured that
electrical current circulated through the root and that the stimulus was consistent between
preparations. Electrical stimulation was generated by a Master-8 stimulator and an Iso-Flex
stimulus isolating unit in constant voltage mode (A.M.P. Instruments, Jerusalem, Israel), and
consisted of 1000 square pulses of 20 V and 0.4 ms (C-fiber intensity) delivered at 1 Hz or
100 Hz. Slices were superfused at 3–6 ml/min with aCSF at 35 °C. Drugs were present in
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the superfusate continuously starting 5 or 10 min before root stimulation. Ten minutes after
the stimulus, slices were fixed by immersion in ice-cold fixative (4% paraformaldehyde,
0.18% picric acid in 0.1 M sodium phosphate buffer). A round hole was punched in the
ventral horn of the slice ipsilateral to the stimulus in order to identify it in the histological
sections after immunohistochemistry.

Intrathecal injections
To deliver drugs to the lumbar spinal cord, rats were surgically implanted with chronic
intrathecal catheters inserted between the L5 and L6 lumbar vertebrae (Storkson et al., 1996;
Chen & Marvizon, 2009). Rats (2–4 months old rats) were anesthetized with isoflurane (2–
4% in oxygen) and kept under anesthesia on a metal platform kept at 35 °C by a feedback
device. The skin and muscle were cut to expose vertebrae L5 and L6. A 20G needle was
inserted between the L5 and L6 vertebrae to puncture the dura mater, which was inferred
from a flick of the tail or paw and the backflow of spinal fluid. The needle was removed and
the catheter (20 mm of PE-5 tube heat-fused to 150 mm of PE-10 tube) was inserted into the
subdural space and pushed rostrally to terminate over L5–L6. The PE-10 catheter was then
tunneled under the skin and externalized over the head. The skin was sutured, and the
catheter was flushed with 10 μl saline and sealed. Rats were given an antibiotic
(enrofloxacin) and an analgesic (carprofen) for 3 days after surgery. Rats were housed
separately and used for the experiment 5–7 days after surgery. A criterion for immediate
euthanasia of the rat was the presence of motor weakness or signs of paresis, but this did not
occur in any of the rats in this study.

Intrathecal injection volume was 10 μl of injectate plus 10 μl saline flush (Zorman et al.,
1982; Jensen & Yaksh, 1984; Aimone et al., 1987; Kondo et al., 2005). This volume leads
to the distribution of the injectate over most of the spinal cord, but not into the brain (Yaksh
& Rudy, 1976; Chen et al., 2007). Solutions are preloaded, in reverse order of
administration, into a tube (PE-10), and delivered with a 50 μl Hamilton syringe within 1
min. The position of the catheter was examined postmortem. We established as exclusion
criteria: 1) loss of the catheter, 2) termination of the catheter inside the spinal cord, and 3)
occlusion of the catheter tip. Twelve of the 49 rats that were implanted with catheters were
excluded from the study according with these criteria.

Noxious mechanical stimulation
A noxious mechanical stimulus was used to induce NK1R internalization in vivo, and was
given 5–7 days after implanting the intrathecal catheters. Rats were anesthetized with
isoflurane (2–3%) in an induction box and kept under isoflurane anesthesia until they were
euthanized. After the intrathecal injections, one hind paw was clamped with a hemostat
(closed to the first notch) for 30 sec (Le Bars et al., 1987). Ten minutes later, rats were
euthanized with pentobarbital (100 mg/Kg). Rats were fixed immediately by aortic perfusion
of 100 ml phosphate buffer (0.1 M sodium phosphate, pH 7.4) containing 0.01% heparin,
followed by 400 ml of ice-cold fixative (4% paraformaldehyde, 0.18% picric acid in
phosphate buffer).

Antibody characterization
The NK1R antibody was rabbit antiserum # 94168, made at CURE: Digestive Diseases
Research Center, UCLA, under the sponsorship of Dr. Nigel Bunnett, UCSF. It was
generated in rabbits using a peptide corresponding to the C-terminus of the rat NK1R
(amino acids 393–407) coupled to KLH (Grady et al., 1996). It labeled by
immunofluorescence cells transfected with rat NK1R, and it did not label nontransfected
cells. Staining of the transfected cells was eliminated by preadsorption with its immunizing
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peptide. In Western blots from cells transfected with the NK1R, it produced a single band
corresponding to a molecular weight of 100 kDa (Grady et al., 1996).

Immunohistochemistry
Spinal cord slices were fixed, cryoprotected, frozen and re-sectioned at 25 μm in a cryostat
as described (Marvizon et al., 2003a; Adelson et al., 2009). Rats were fixed by aortic
perfusion as described above, and the L4–L5 lumbar spinal cord segments were similarly
processed and sectioned at 25 μm in the coronal plane (Chen et al., 2007; Lao et al., 2008).
Sections were washed four times and then incubated overnight with the NK1R antiserum
diluted 1:3000 in phosphate-buffered saline containing 0.3 % Triton X-100, 0.001 %
thimerosal and 10 % normal goat serum (Jackson ImmunoResearch Laboratories, West
Grove, PA). After three washes, the secondary antibody (1:2000, goat anti-rabbit IgG
coupled to Alexa Fluor 488, Molecular Probes-Invitrogen, Eugene, OR) was applied at for 2
hours. Sections were washed four more times, mounted on glass slides, and coverslipped
with Prolong Gold (Molecular Probes-Invitrogen). All incubations were done at room
temperature.

Quantification of NK1R internalization
The amount of NK1R internalization was quantified using a standard method (Mantyh et al.,
1995; Marvizon et al., 2003a; Adelson et al., 2009). NK1R neurons were visually counted
while classifying them as with or without internalization, using a Zeiss Axio-Imager A1
microscope with a 63x oil immersion (numerical aperture [NA] 1.40) objective. The
criterion for having internalization was the presence in the neuronal soma of ten or more
NK1R endosomes, defined as a small region of bright staining separated from the cell
surface (Fig. 1). The person counting the neurons was blinded to the treatment. All NK1R
neurons in lamina I were counted in each histological section. In experiments in slices, at
least three sections per slice were counted. In experiments in vivo, at least four sections were
counted in the L4–L5 spinal segment for each rat.

Confocal microscopy
Images were acquired using a Zeiss LSM 710 confocal microscope (Carl Zeiss, Inc.,
Thornwood, NY), with 10x (NA 0.3) and 63x oil immersion (NA 1.4) objectives. Excitation
light for the Alexa Fluor 488 fluorophore (emission peak 519 nm) was provided by the 488
nm line of an argon laser and the emission window was 500–580 nm. The pinhole was 1.0
Airy unit: 38.2 μm for the 10x objective and 51.5 μm for the 63x objective, as determined by
the confocal microscope software. Images were acquired in grayscale as confocal stacks of
sections of 1024×1024 pixels. Photomultiplier gain and offset was individually adjusted for
each image to avoid pixel saturation and loss of background detail. Each section was
averaged 2 or 4 times to reduce noise. The separation between confocal sections, optimized
by the confocal microscope software using the Nyquist equation, was 5.98 μm for the 10x
objective and 0.38 μm for the 63x objective.

Image processing
Images of the dorsal horn obtained with the 10x objective were used to show the location of
the neurons imaged with the 63x objective (Fig. 1). The program Imaris 6.1.5 (x64, Bitplane
AG, Zurich, Switzerland) was used to crop the images in three dimensions. Images at 10x
were cropped in x-y to 1024 × 768 pixels, and in the z dimension to the two brightest optical
sections. Images at 63x were cropped in x-y to show the soma and proximal dendrites of the
target neurons, and in the z dimension into three optical sections through the middle of the
soma. Occasionally, several neurons were cropped from the same confocal stack. Image
resolution was preserved in the cropping, so that pixels in Fig. 1 correspond to the pixels
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acquired by the confocal microscope. Voxel dimensions were 830 × 830 × 5983 nm with the
20x objective and 132 × 132 × 383 nm with the 100x objective. After cropping, a two-
dimension projection picture was generated in Imaris and imported into Adobe Photoshop
5.5 (Adobe Systems Inc., Mountain View, CA), which was used to make slight adjustments
in the gamma of the images so that important details are clearly visible in Fig. 1. Adobe
Photoshop was also used to compose the multi-panel figures and to add text and arrows.

Data analysis
Data were analyzed using Prism 5 (GraphPad Software, San Diego, CA). Statistical analyses
consisted of two-way ANOVA and Bonferroni’s post-hoc test. Statistical significance was
set at 0.05. The two variables were “drugs” (drug combinations) and “stimulus” (comparing
the ipsilateral and contralateral sides). The Bonferroni’s post-hoc test was applied to the
variable “drugs” to compare effects on the ipsilateral side.

Results
Effect of SFK inhibitors on MOR and GABAB receptor inhibition of substance P release in
spinal cord slices

We hypothesized that the inhibition of substance P release produced by MORs and GABAB
receptors is mediated by SKFs. If so, then SFK inhibitors should reverse the inhibition
produced by MOR and GABAB receptor agonists. In a first experiment, substance P release
was induced in rat spinal cord slices by electrical stimulation of the dorsal root at high
frequency (100 Hz), using stimulation parameters previously found to be optimal to induce
substance P release (Adelson et al., 2009). Substance P release was measured as NK1R
internalization in lamina I neurons. The stimulus induced NK1R internalization in the
ipsilateral dorsal horn, but not contralaterally. Superfusing the slices with the MOR agonist
DAMGO (1 μM, Fig. 2A) or the GABAB receptor agonist baclofen (30 μM, Fig. 2B)
significantly inhibited the evoked NK1R internalization. The concentration of DAMGO was
chosen based on its concentration-response curve to induce MOR internalization in rat
spinal cord slices (IC50 = 30 nM, 95% CI = 20–45 nM) (Marvizon et al., 1999b). Moreover,
1 μM DAMGO inhibited NK1R internalization induced by dorsal root stimulation in slices,
and this inhibition was reversed by 10 μM naloxone (Kondo et al., 2005). The concentration
of baclofen was chosen based on its concentration-response to inhibit NK1R internalization
induced by dorsal root stimulation in slices (IC50 = 1.5 μM, 95% CI = 0.4–5.5 μM) (Lao &
Marvizon, 2005). Therefore, the chosen concentrations of DAMGO and baclofen are near-
saturation for their target receptors.

To determine whether the inhibition produced by MORs and GABAB receptors was
mediated by SFKs, we used PP1 and PP2, which are selective inhibitor of SFKs, particularly
of Lck and Fyn (Hanke et al., 1996; Liu et al., 1999). PP1 and PP2 inhibited human T-cell
proliferation with IC50s ranging from 0.5 μM to 26 μM, depending of the stimulus used to
induce proliferation (Hanke et al., 1996). Therefore, we chose a concentration of 10 μM for
PP1 and PP2. As shown in Fig. 2, PP1 reversed the inhibition of the evoked NK1R
internalization by DAMGO or baclofen, but produced no effect by itself. Inhibition by
baclofen was also reversed by PP2. PP1 and PP2 were applied to the slices for 1 hr before
the stimulus and then together with the agonist. This length of time appears to be necessary
for inhibition of SFKs and/or de-phosphorylation of their substrates by PTPs in primary
afferent neurons (McRoberts et al., 2007; Chen et al., 2010). Two-way ANOVA of the data
with DAMGO (Fig. 2A) revealed significant effects of the variables ‘stimulus’ (F1=1346,
p<0.0001), ‘drugs’ (F3=81, p<0.0001) and their interaction (F3=70, p<0.0001). Similarly,
two-way ANOVA of the data with baclofen (Fig. 2B) revealed significant effects of
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‘stimulus’ (F1=761, p<0.0001), ‘drugs’ (F3=16, p<0.0001) and their interaction (F3=14,
p<0.0001).

Next, we investigated whether the inhibition of substance P release by DAMGO and its
reversal by the SFK inhibitor PP1 also occurred when substance P release was evoked by
low frequency (1 Hz) stimulation of the dorsal root (Fig. 3). Because this stimulus induces a
relatively small amount of NK1R internalization (Marvizon et al., 1997;Marvizon et al.,
2003b;Adelson et al., 2009), we increased it by using peptidase inhibitors (captopril and
thiorphan, 10 μM) to reduce substance P degradation (Marvizon et al., 2003b;Adelson et al.,
2009). Stimulation at 1 Hz with peptidase inhibitors induced a somewhat higher amount of
NK1R internalization than 100 Hz stimulation without peptidase inhibitors (Fig. 2).
DAMGO (10 μM) substantially inhibited the evoked NK1R internalization, but this time the
inhibition was not reversed by 10 μM PP1. As before, PP1 was applied to the slices for 1 hr
before the stimulus and then together with DAMGO. Two-way ANOVA of data in Fig. 3
revealed significant effects of the variables ‘stimulus’ (F1=98, p<0.0001), ‘drugs’ (F2=34,
p<0.0001) and their interaction (F2=29, p<0.0001).

SFK inhibitors reversed MOR and GABAB receptor inhibition of substance P release in
vivo

This experiment was performed in vivo by inducing substance P release with a noxious
stimulus: clamping one hind paw with a hemostat for 30 sec, under anesthesia (Mantyh et
al., 1995; Lao et al., 2008; Chen & Marvizon, 2009). This stimulus induced abundant NK1R
internalization in lamina I of the ipsilateral L4–L5 segments (Fig. 1B), but none
contralaterally (Fig. 1A). Quantitative results are shown in Fig. 4. The MOR agonist
DAMGO (2 nmol, Fig. 1C) or the GABAB agonist baclofen (50 nmol) injected intrathecally
10 min before paw clamp significantly reduced the evoked NK1R internalization. This
intrathecal dose of DAMGO was chosen because 1 nmol DAMGO strongly inhibited NK1R
internalization and produced near-maximal analgesia in previous studies (Trafton et al.,
1999; Kondo et al., 2005). Both effects were reversed by naloxone (Kondo et al., 2005).
Likewise, the dose of baclofen was chosen based on its dose-responses to inhibit NK1R
internalization induced by noxious stimulation (Riley et al., 2001) and to produce thermal
antinociception (Malan et al., 2002). In both cases the effect of baclofen was near-maximal
at 40 nmol.

To study the involvement of SFKs, the SKF inhibitor PP1 was injected intrathecally 1 hr
before the injection of DAMGO or baclofen and then coinjected with these compounds. At a
dose of 3 nmol, PP1 produced a near complete reversal of the inhibition by baclofen and a
partial reversal of the inhibition by DAMGO (Fig. 4). Increasing the dose of PP1 to 10 nmol
(PP1* in Fig. 4, see ‘Chemicals and media’ in Material and Methods) resulted in a near
complete reversal of the inhibition by DAMGO, as can be observed in the example image in
Fig. 1D. PP1 by itself (3 nmol intrathecally) did not affect the evoked NK1R internalization
ipsilaterally or induced NK1R internalization contralaterally, showing that SFKs do not
affect the internalization mechanism of NK1Rs. The inactive PP1 analog PP3 (3 nmol) or
vehicle (1 % Tocrisolve-100) did not affect the inhibition produced by DAMGO or
baclofen, indicating that the effects of PP1 were mediated by SFKs. Two-way ANOVA of
the data in Fig. 4 revealed significant effects of the variables ‘stimulus’ (F1=1435,
p<0.0001) and ‘drugs’ (F8=37, p<0.0001) and their interaction (F8=37, p<0.0001). These
results indicate that inhibition of substance P release by MORs and GABAB receptors is
mediated by SFKs.
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A SFK inhibitor did not reverse the α2 adrenergic inhibition of substance P release
Substance P release from primary afferent terminals is also inhibited by α2 adrenergic
receptors (Kuraishi et al., 1985; Pang & Vasko, 1986; Ono et al., 1991b; Bourgoin et al.,
1993; Takano et al., 1993; Overland et al., 2009). Accordingly, we investigated whether α2
receptor agonists inhibit NK1R internalization evoked by stimulating spinal cord slices at
the dorsal root at high and low frequencies, and whether this inhibition is mediated by SFKs.

When NK1R internalization was evoked with high frequency (100 Hz) stimulation, the α2
agonist guanfacine (10 nM or 100 nM, Fig. 5A) produced a trend towards inhibition that was
not significant in a two-way ANOVA (F1=358, p<0.0001 for ‘stimulus’; F3=1.46, p=0.25
for ‘guanfacine’, and F3=0.53, p=0.66 for their interaction). The SFK inhibitor PP1 (10 μM)
produced no significant effects, either.

We then evoked NK1R internalization with low frequency (1 Hz) stimulation of the dorsal
root. As in the experiment in Fig. 2, peptidase inhibitors (captopril and thiorphan, 10 μM)
were used to reduce substance P degradation and hence boost NK1R internalization. In these
conditions, the α2 agonists guanfacine and medetomidine at a concentration of 10 nM
produced a small but statistically significant inhibition of the evoked NK1R internalization
(Fig. 5B). Guanfacine produced no inhibition at a higher concentration (1 μM). Inhibition of
substance P release by 10 nM guanfacine was not reversed by PP1 (10 μM, Fig. 5B). If
anything, PP1 showed a trend (not significant in the Bonferroni’s post-hoc test) to increase
the inhibition by guanfacine. Here again, PP1 was applied to the slices for 1 hr before the
stimulus and then together with guanfacine. Two-way ANOVA of the data in Fig. 5B
revealed significant effects of the variables ‘stimulus’ (F1=998, p<0.0001), ‘drugs’ (F4=7.2,
p=0.0002) and their interaction (F4=6.18, p=0.0002). These results indicate that inhibition of
substance P release by α2 receptors is not mediated by SFKs.

Discussion
Our results show that blockade of SFKs reverses the inhibition of substance P release
produced by MORs and GABAB receptors, but not by α2 receptors.

SFKs mediate the inhibition of substance P release by MORs and GABAB receptors
Our results, together with previous studies in cell expression systems (Raingo et al., 2007)
and in cultures of embryonic chicken sensory neurons (Diverse-Pierluissi et al., 1997;
Strock & Diverse-Pierluissi, 2004), support the two mechanisms for the inhibition of
substance P release by GPCRs illustrated in Fig. 6. One of these mechanisms is the voltage-
dependent blockade of Ca(V) channels by Gβ γ binding (Dolphin, 2003; Evans & Zamponi,
2006; Dai et al., 2009). The second mechanism involves the activation of SFKs, which then
inhibit Ca(V) channels by tyrosine phosphorylation. Since the entry of Ca2+ in the terminal
through Ca(V) channels triggers glutamate and substance P release, blockade of the channels
results in inhibition of transmitter release.

Ca(V) channels present in primary afferent terminals are mainly Ca(V)2.2 (N-type),
although Ca(V)2.1 (P/Q-type) channels are also present (Rusin & Moises, 1995; 1998). In
nodose and dorsal root ganglia, GABAB receptors inhibit exclusively Ca(V)2.2 channels,
whereas MORs inhibit both Ca(V)2.2 and Ca(V)2.1 channels (Rusin & Moises, 1995;
1998). Ca(V)2.2 channels in primary afferent neurons have a unique splice variant of their
α1 subunit containing the 37a exon instead of the 37b exon (Raingo et al., 2007), which is
largely absent in other CNS neurons (Bell et al., 2004; Castiglioni et al., 2006). Importantly,
the 37a exon, but not the 37b exon, contains a tyrosine residue susceptible to SFK
phosphorylation (Raingo et al., 2007). In HEK293 cells expressing Ca(V)2.2e[37a]
channels, MORs and GABAB receptors activate SFKs, which phosphorylate Ca(V)2.2
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channels, inhibiting them. Similar findings were obtained in cultures of embryonic chicken
sensory neurons (Diverse-Pierluissi et al., 1997; Strock & Diverse-Pierluissi, 2004), where
Ca(V)2.2 channels were found to form a complex with Src kinase (Richman et al., 2004)
and Src activation by GABAB receptors inhibited Ca(V)2.2 channels (Schiff et al., 2000).
Although SFK inhibition of Ca(V)2.1 channels has not been studied in primary afferents,
SFKs were found to phosphorylate and inhibit Ca(V)2.1 channels in adrenal chromaffin
cells (Weiss & Burgoyne, 2001). Hence, this may contribute to the MOR inhibition of
substance P release.

Our data show that SFK-mediated inhibition of Ca(V) channels does occur in mammalian
primary afferents and plays a key role in controlling substance P release. When substance P
release was evoked by high frequency stimulation, SFK inhibitors reversed most of the
inhibition by GABAB receptors and MORs, indicating that SFKs is the primary inhibitory
mechanism in these conditions. In contrast, when substance P release was evoked by low
frequency stimulation, the SFK inhibitor PP1 did not reverse the inhibition by MORs. A
possible explanation for this frequency dependence is that high frequency firing of primary
afferents produces a large depolarization of their terminals, which hinders the inhibition of
Ca(V) channels by Gβ γ binding (Raingo et al., 2007). In addition, our results suggest that
the SFK mechanism is turned off during low frequency firing of primary afferents, and that
Gβ γ binding mediates MOR inhibition in these conditions.

SFKs do not mediate the inhibition of substance P release by α2 adrenergic receptors
We show that the α2 agonists guanfacine and medetomidine inhibit NK1R internalization
evoked by dorsal root stimulation in spinal cord slices, although their effect was small and
detected only at low concentrations. Similar low concentrations (1–10 nM) of the α2
receptor agonist clonidine were found to inhibit the release of calcitonin gene-related
peptide (CGRP) from rat spinal cord slices (Overland et al., 2009). Notably, inhibition of
substance P release by guanfacine was only statistically significant when using low
frequency stimulation. This is consistent with the idea that α2 receptors do not inhibit Ca(V)
channels through SFK phosphorylation (Strock & Diverse-Pierluissi, 2004), but only
through the voltage-dependent binding of Gβ γ (Fig. 6) (Dolphin, 2003; Evans & Zamponi,
2006; Dai et al., 2009). Thus, terminal depolarization produced by high frequency
stimulation would prevent Gβ γ binding and therefore inhibition by the α2 receptors. Further
support for this idea comes from the fact that the SFK inhibitor PP1 did not reverse the
inhibition of substance P release by guanfacine.

A previous study in vivo by Nazarian et al. (2008) failed to detect inhibition of the evoked
NK1R internalization by the α2 agonists ST-91 and dexmedetomidine (an enantiomer of
medetomidine). This study used two different noxious stimuli to induce NK1R
internalization: formalin injection and paw compression, and several doses of
dexmedetomidine (0.3–10 μg or 1.3–43 nmol). We attribute the differences from our study
to two possible causes. First, Nazarian et al. anesthetized the rats with pentobarbital, which
may have blocked the effect of the α2 receptors. Second, these intense noxious stimuli
probably induce high frequency firing of primary afferents, which we found hinders the
inhibition by α2 receptors. Nazarian et al. pointed out that α2 receptor inhibition of substance
P release was detected in studies using spinal cord slices (Pang & Vasko, 1986; Ono et al.,
1991b; Takano et al., 1993) but not in vivo. However, the two studies in vivo (Lang et al.,
1994; Zhao et al., 2004) that they cite were conducted in cats, suggesting that there may be
species differences. Another study done in vivo in rabbits (Kuraishi et al., 1985) did report a
noradrenergic inhibition of substance P release. In any case, the results by Nazarian et al.
agree with our observation that the inhibition of substance P release by α2 receptors is much
less robust than the inhibition produced by MORs and GABAB receptors. It is possible that
α2 receptors in primary afferents work primarily in synergy with opioid receptors. Overland
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et al. (2009) recently reported a strong synergy between α2 and δ-opioid receptors to inhibit
CGRP release from primary afferents and to produce analgesia. Another study (Tan et al.,
2009) found that α2A receptors associate with MORs in primary afferents: they co-
internalize and cross-desensitize.

Physiological relevance
An intriguing possibility is that the SFKs activated by MORs and GABAB receptors
phosphorylate proteins other than the Ca(V) channels. Thus, we recently reported that
NMDA receptors in primary afferent terminals require SFK phosphorylation to be activated
(Chen et al., 2010). Although it is not clear whether these SFKs are the same that are
activated by the MORs, this possibility is supported by another recent report (Zhou et al.,
2010) showing that MORs present presynaptically in primary afferent terminals induce long-
term potentiation of these synapses, and that this requires activation of NMDA receptors.

Pathological states like inflammation and neuropathic pain probably induce changes in
MORs, GABAB receptors and α2 receptors, or in their signaling mechanisms, which may be
result in hyperalgesia and altered responses to analgesics. The fact that NK1R antagonists
reverse the hyperalgesia and allodynia produced by nerve injury (Cumberbatch et al., 1998;
Cahill & Coderre, 2002) indicates that substance P does play a role in neuropathic pain.
However, after nerve injury substance P synthesis decreases in C-fibers (Hokfelt et al.,
1994) and occurs de novo in A-fibers (Marchand et al., 1994; Noguchi et al., 1994; Noguchi
et al., 1995; Fukuoka et al., 1998). Therefore, it has been proposed that A-fibers are the
source of substance P in neuropathic pain. Indeed, Malcangio et al. (2000) found that Aβ-
fiber stimulation induced substance P release after spinal nerve lesion. However, other
investigators studying nerve injury models could not detect substance P immunoreactivity in
A-fiber terminals (Noguchi et al., 1995; Hughes et al., 2007) or substance P release induced
by A-fiber stimulation (Allen et al., 1999; Hughes et al., 2007). Instead, Allen et al. (1999)
found that nerve transection resulted in an increase in substance P release induced by C-fiber
stimulation.

Morphine loses its effectiveness in neuropathic pain in humans (Arner & Meyerson, 1988;
Portenoy et al., 1990) and when injected intrathecally in rodent nerve injury models (Mao et
al., 1995; Ossipov et al., 1995b; a; Wegert et al., 1997). This seems to be largely caused by
the downregulation of MORs in primary afferents (Zhang et al., 1998; Kohno et al., 2005).
Ca(V)2.2 channels possessing the 37a exon and susceptible to SFK inhibition are also
downregulated in neuropathic pain (Altier et al., 2007). However, the effect of this loss of
the 37a exon is unclear, in view that GABAB receptors in primary afferents, whose effect is
also mediated by SFKs, do not lose effectiveness in neuropathic pain. Unlike MORs,
GABAB receptors in primary afferents are not downregulated by nerve injury (Engle et al.,
2006). GABAB receptor agonists decrease neuropathic pain in rodents (Chen & Pan, 2003;
Franek et al., 2004; Urban et al., 2005), and in humans are particularly effective to treat
trigeminal neuralgia (Idanpaan-Heikkila & Guilbaud, 1999; Deseure et al., 2003) and in
conjunction with spinal cord electrical stimulation (Lind et al., 2004; Lind et al., 2008).

After nerve injury, spinal application of the α2 adrenergic agonist clonidine produced
antinociception in both rats (Luo et al., 1994; Duflo et al., 2002) and humans (Eisenach et
al., 1995). However, it is not clear whether this effect is mediated by α2 receptors in primary
afferents or in dorsal horn neurons. Primary afferents express α2A receptors, whereas dorsal
horn neurons express α2C receptors (Stone et al., 1998). Since expression of α2A receptors
decreases after nerve injury (Stone et al., 1999; Leiphart et al., 2003), it is possible that
adrenergic effects on primary afferents decrease in neuropathic pain. Alternatively, α2
receptor analgesia may switch from α2A to α2B receptors after nerve injury (Duflo et al.,
2002; Leiphart et al., 2004). In addition, changes in the signaling system used by the α2
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receptors after nerve injury (Bantel et al., 2005) may be important in determining their
analgesic effect.

In conclusion, knowledge of the signaling systems used by MORs, GABAB receptors and α2
adrenergic receptors in primary afferent terminals is important to understand the
mechanisms of action of analgesic drugs and how these mechanisms change during chronic
pain.
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Abbreviations

aCSF artificial cerebrospinal fluid

ANOVA analysis of variance

Ca(V) voltage-gated calcium channel

CGRP calcitonin gene-related peptide

CI confidence interval

DMSO dimethyl-sulfoxide

DAMGO [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin

DRG dorsal root ganglia

Gβ γ G protein β γ subunits

GPCR G protein-coupled receptor

MOR μ-opioid receptor

NA numerical aperture

NK1R neurokinin 1 receptor

PKC protein kinase C

PP1 1-(1,1-Dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3, 4-d]pyrimidin-4-
amine

PP2 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-
amine

PP3 1-Phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-amine

PTP protein tyrosine phosphatase

SFK Src family kinase
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Fig. 1. Confocal images of NK1R neurons in lamina I after noxious stimulation of the hind paw
in vivo
Rats received a noxious stimulus (clamp for 30 sec) in the hind paw to induce substance P
release and were fixed 10 min later for NK1R immunohistochemistry. Images were taken
from sections of the L4–L5 spinal segments. A, B: Rats received an intrathecal injection of
saline 10 min before the stimulus; A and B correspond to the contralateral and ipsilateral
dorsal horns, respectively, of the same histological section. B: Rats received an intrathecal
injection of DAMGO (2 nmol) 10 min before the stimulus; ipsilateral dorsal horn. C: Rats
received intrathecal injections of DAMGO (2 nmol) and PP1 (10 nmol) 10 min before the
stimulus and of PP1 (10 nmol) 70 min before the stimulus; ipsilateral dorsal horn. Main
panels: images taken with a 10x objective, with a voxel size of 830 × 830 × 5983 nm and 2
confocal planes. Insets: images of lamina I neurons taken with a 63x objective, with a voxel
size of 132 × 132 × 383 nm and 3 confocal planes. Neurons with NK1R internalization are
indicated with “*” and neurons without internalization by “o”. Scale bars (in panel D) are
100 μm for the main panels and 10 μm for the insets.
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Fig. 2. NK1R internalization induced by 100 Hz dorsal root stimulation of spinal cord slices:
SFK inhibitors reversed the inhibition by DAMGO and baclofen
Spinal cord slices (n=3–4) were stimulated at the dorsal root at 100 Hz to induce substance P
release. A. Slices were superfused with aCSF (control), 10 μM PP1, 1 μM DAMGO or
DAMGO + PP1. B. Slices were superfused with aCSF, 30 μM baclofen, baclofen + 10 μM
PP1 or baclofen + 10 μM PP2. Treatments with PP1 and PP2 were preceded by 1 hr
preincubation with these drugs at 10 μM. Two-way ANOVA: p<0.0001 for stimulus and
drugs. Bonferroni’s post-hoc test: *, p<0.05, ***, p<0.001 compared to control; †††,
p<0.001 as indicated.
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Fig. 3. NK1R internalization induced by 1 Hz dorsal root stimulation of spinal cord slices: a SFK
inhibitor did not reverse the inhibition by DAMGO
Spinal cord slices were stimulated at the dorsal root at 1 Hz to induce substance P release
while being superfused with the peptidase inhibitors captopril (10 μM) and thiorphan (10
μM) alone (control), with 1 μM DAMGO or with 1 μM DAMGO + 10 μM PP1. Treatment
with PP1 was preceded by 1 hr preincubation with 10 μM PP1. Two-way ANOVA:
p<0.0001 for stimulus, drugs and interaction. Bonferroni’s post-hoc test: ***, p<0.001
compared to control. Number of slices (n) for each data set is given inside the columns.

Zhang et al. Page 20

Eur J Neurosci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4. SFK inhibitors reverse the inhibition by DAMGO and baclofen of NK1R internalization
induced by noxious stimulation in vivo
Rats (n=3) received an i.t. injection of 3 nmol PP1 (PP1*: 10 nmol), 3 nmol PP3, or no
injection. One hour later they received an i.t. injection of DAMGO (2 nmol) or baclofen (50
nmol) with or without PP1 or PP3, as indicated. Noxious stimulation (hindpaw clamp for 30
sec) was delivered 10 min after the second injection, and rats were fixed 10 min later. NK1R
internalization was measured in the L4–L5 spinal segments. Two-way ANOVA: p<0.0001
for ‘drugs’ and ‘stimulus’. Bonferroni’s post-hoc test: ***, p<0.001, **, p<0.01 compared to
control; †††, p<0.001 as indicated.
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Fig. 5. Inhibition of NK1R internalization by α2 adrenergic agonists in spinal cord slices
Spinal cord slices were stimulated at the dorsal root to evoke substance P release. The α2
agonists medetomidine and guanfacine were superfused to the slices at the concentrations
indicated. PP1 (10 μM) was applied in a 1 hr preincubation and then added to guanfacine in
the superfusate. Number of slices (n) for each data set is indicated by numbers inside the
columns. A. 100 Hz stimulation; two-way ANOVA: p<0.0001 for ‘stimulus’, p=0.25 for
‘drugs’, p=0.66 for their interaction. B. 1 Hz stimulation in the presence of peptidase
inhibitors (captopril and thiorphan, 10 μM); two-way ANOVA: p<0.0001 for ‘stimulus’,
p=0.0002 for ‘drugs’, p=0.0002 for their interaction. Bonferroni’s post-hoc tests: **, p<0.01,
***, p<0.001 compared to control.
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Fig. 6. Mechanisms of inhibition of substance P release from primary afferent terminals
Substance P (SP) and glutamate (Glu) are released when Ca2+ enters the terminal through
Ca(V) channels. MORs, GABAB receptors (GABABRs) and α2A receptors inactivate (-)
Ca(V)2.2 through Gβ γ. MORs and GABABRs also inactivate Ca(V)2.2 by Tyr (Y)-
phosphorylation by SFKs. NE: norepinephrine; enk: enkephalin.
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