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Summary
Functional magnetic resonance imaging (fMRI) data sets are large and characterized by complex
dependence structures driven by highly sophisticated neurophysiology and aspects of the
experimental designs. Typical analyses investigating task-related changes in measured brain
activity use a two-stage procedure in which the first stage involves subject-specific models and the
second-stage specifies group (or population) level parameters. Customarily, the first-level
accounts for temporal correlations between the serial scans acquired during one scanning session.
Despite accounting for these correlations, fMRI studies often include multiple sessions and
temporal dependencies may persist between the corresponding estimates of mean neural activity.
Further, spatial correlations between brain activity measurements in different locations are often
unaccounted for in statistical modeling and estimation. We propose a two-stage, spatio-temporal,
autoregressive model which simultaneously accounts for spatial dependencies between voxels
within the same anatomical region and for temporal dependencies between a subject’s estimates
from multiple sessions. We develop an algorithm that leverages the special structure of our
covariance model, enabling relatively fast and efficient estimation. Using our proposed method,
we analyze fMRI data from a study of inhibitory control in cocaine addicts.
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1. Introduction
Functional magnetic resonance imaging (fMRI) studies yield large data sets that contain
temporal correlations from repeated scanning (within and between scanning sessions) and
complex spatial correlations. Ignoring correlations affects the precision of estimates of
model parameters and consequently may lead to inaccurate statistical tests. Spatio-temporal
modeling may mitigate these shortcomings by incorporating more physiologically plausible
assumptions and by borrowing strength across related measures of neural activity. One
session of a typical fMRI neuroactivation study acquires 3-D scans every 2–3 seconds while
the subject performs different experimental tasks. fMRI studies may also involve multiple
sessions (e.g corresponding to pre- and post-treatment periods). Typical analyses
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investigating task-related changes in measured brain activity use a two-stage procedure in
which the first stage involves subject-specific and voxel-specific models relating neural
processing to experimental tasks. The second stage specifies voxel-specific models for
group (or population) level parameters. The stage I analysis accounts for temporal
correlations between serial scans within one session using variants of autoregressive models
(Bullmore et al., 1996; Purdon et al., 2001; Friston et al., 2002). Despite addressing scan-to-
scan correlations within a session, the stage I estimates for multiple sessions may also
exhibit correlations, typically not accounted for at the second stage. Our focus is on
modeling these latter correlations.

Some attempts have been made at modeling the repeated measures correlations and spatial
correlations in fMRI data, though typically not in the same statistical model. Worsley et al.
(2002) introduce a random effects analysis for combining sessions and the method removes
trends in effects over time. Bowman and Kilts (2003) fit repeated measures covariance
structures within a linear model to address between-session correlations in positron emission
tomography (PET) neuroimaging data. Neither of these two approaches addresses the spatial
correlations between localized brain activity measurements, and the method by Bowman and
Kilts (2003) involves long computations for PET data, making it less suitable for higher
dimensional fMRI data. Bowman (2005) presents a two-stage model in which the second
stage accounts for spatial dependencies within brain regions or networks, and Bowman et al.
(2008) give a more flexible Bayesian model to capture correlations both within and between
brain regions. Neither of these approaches, however, accounts for temporal or repeated
measures associations between the multiple experimental effects for a subject. There have
been a few attempts to model both temporal and spatial correlations simultaneously, but
these approaches are generally hampered by long computations. The computations generally
involve inverting large covariance matrices, and separable models (over space and time) are
often considered (Benali et al., 1997; Hartvig, 2002). Gössl et al. (2001) use a Bayesian
approach to fit a semi-parametric spatial and temporal model for fMRI data. Their approach
requires extensive computations, limiting its applicability in practice. Woolrich et al. (2004)
propose a Bayesian framework to model the noise via a non-separable space-time,
simultaneous autoregressive model. This approach is very time consuming for the fMRI
datasets, taking roughly 6 hours for processing a single slice of 3-D fMRI data.

We propose a two-stage model that accounts for both spatial and temporal correlations in
fMRI data, and our model leads to fast parameter estimation. In the second stage, we
construct a simultaneous autoregressive model to capture spatio-temporal correlations
between the multiple (session) effects at a given location and between pairs of voxels within
defined anatomical regions. We use maximum likelihood (ML) methods to estimate
parameters from our spatio-temporal model. We overcome computational challenges
involved with estimation by deriving an algorithm that simplifies the calculations of inverses
and determinants of large matrices, leading to fast estimation of the model parameters. Our
spatio-temporal model provides a unified framework for both voxel-level and region-level
inferences. Using our proposed model, we analyze fMRI data from a study of inhibitory
control in cocaine addicts to evaluate the effects of behavioral therapy on neural processing
related to inhibitory control. To further delineate benefits of our spatio-temporal model, we
conduct two simulation studies: one to validate the accuracy of our estimation methods and
the other to evaluate the relative efficiency of our proposed spatio-temporal model compared
to the general linear model (GLM (not to be confused with generalized linear model)).

2. Experimental Data
To illustrate the use of our proposed model and to give motivation for its development, we
apply it to data from an fMRI study evaluating the impact of cocaine addiction and
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treatment-related abstinence on neural responses to motor inhibition tasks. The sample
included 12 cocaine addicts enrolled in an intensive outpatient behavioral treatment program
and 15 healthy controls, matched by age, sex (all males), race, handedness, education and
early life adversity. All the subjects were scanned while performing an inhibitory control
task used to model a characteristic hallmark of drug addiction: an impairment in the ability
to inhibit behaviors (e.g. drug-seeking behaviors). The cocaine addicts were scanned in two
separate sessions, before and after treatment, and similarly control subjects had baseline and
follow-up scans.

Experimental conditions
The inhibitory control task, referred to as the STOP-signal task, was designed to evaluate the
ability to cancel a prepotent motor response (Aron and Poldrack, 2006). In this task, subjects
are presented with visual GO-stimuli, consisting of uppercase alphabetical letters appearing
on the screen for 0.5 seconds with an inter-stimulus interval of 2.3 seconds. They are
instructed to respond to this signal by pressing a button as quickly as possible. An auditory
STOP-signal (also lasting 0.5 seconds) appears randomly in 16% of the trials. The
occurrence of the STOP-signal following a GO-stimulus is an indicator to refrain from
pushing the button. Hence, a successful performance requires the inhibition of a prepotent
behavior. The aim of our analysis is to identify brain locations where there are inhibitory
control-related increases in brain activity following treatment for cocaine addiction.

3. Methods
We represent a single scan from a subject as a 53×63×46 3-D rectangular lattice consisting
of volume elements (voxels) indexed by a mapping of coordinates (x, y, z) to v = 1, …, V (V
> 150, 000 in our study). From one scanning session, each voxel contains serial measures of
localized brain activity called Blood-Oxygen-Level Dependent (BOLD) fMRI responses.
The number of intracranial voxels is too large to estimate a global spatial correlation matrix
including all voxel pairs. While retaining the ability to address voxel-level inference, we
partition the voxels into mutually exclusive neuroanatomical regions known as Brodmann
areas (BA’s) (Brodmann, 1909), additionally separating BA’s in the left and right
hemispheres. For broader coverage, we add several subcortical regions to the BA map,
obtained from the Automated Anatomical Labeling (AAL) system (Tzourio-Mazoyer et al.,
2002). Building our model based on well-established anatomical parcellations, rather than
data-driven functional clusters aids interpretability.

3.1 Statistical Model
Following the conventional two-stage modeling approach for fMRI data, we fit a GLM at
the first stage for each individual’s vector of serial BOLD responses, separately for each
voxel. The GLM regresses each voxel’s BOLD responses for subject i (i = 1, …, K) on
within-subject design variables (e.g. session or stimulus indicators) and on covariates that
are not of intrinsic interest, such as high-pass filtering variables. The model accounts for
short-range scan-to-scan correlations within a session using a first-order autoregressive
process with white noise (Purdon et al., 2001; Friston et al., 2002). The regression

coefficient, , for voxel v represents a summary measure of an individual’s (mean)
neural activity associated with session or stimulus p. We add a subscript g to denote the
neuroanatomic region to which voxel v belongs (g = 1, …, G), with the region consisting of
Vg voxels in total.

At the second stage, we propose a spatio-temporal (ST) autoregressive model to capture
temporal correlations between the multiple sessions and spatial correlations between pairs of
intra-regional voxels. We express the spatio-temporal model as follows:
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(1)

where xi is a vector of between-subject design variables,  are the group-level

parameters,  (  is the between-subject variation), ρgs is a spatial
dependence parameter, ξgs reflects the temporal dependence between sessions,  is the set
of all voxels within the same neuroanatomic region as v, and s denotes a subject group (e.g.,
patients, controls). When ρgs = ξgs = 0, model (1) resembles a typical stage II GLM from a
random effects analysis of brain imaging data, with constant variances within each region.

3.2 Parametric Covariance Model
Our model involves three parameters defining the variance-covariance structure: the spatial
(ρ) and temporal (ξ) dependence parameters and the variance parameter (φ2). In this section,
we present details about the assumed covariance/correlation model. Let

, where each  contains individualized parameters for all voxels in

region g, and similarly . Model (1) implies that Bigs has the following
multivariate normal distribution Bigs ~ MVN (βgs, Ωgs) (see Appendix), where

, and Ψgs is a qVg × qVg matrix with

(2)

(IVg and JVg denote identity and unity matrices of size Vg). In (2), Wg = [1/(Vg − 1)](JVg −
IVg) specifies the neighborhood structure consisting of all voxels that fall in the same

anatomical region. The blocks along the main diagonal of  allow for spatial correlations
between measures of task-related brain activity for voxels in region g, i.e. between elements

of . The off-diagonal blocks of  capture correlations between the summary measures
of brain activity associated with various scanning sessions. Our model assumes an
exchangeable covariance structure between voxels in the same neuroanatomic region.
Although the complexity of human brain function is likely to render departures from this
assumption, the exchangeable structure provides an improvement over the often used
independence assumption and seems reasonable for statistical modeling purposes based on
descriptive empirical results (not shown here; see Web Appendix A).

Calculating the matrix Ψgs—Calculating Ψgs involves inverting a matrix of size qVg ×
qVg, which can become unwieldy for large regions, and this calculation is performed
iteratively during estimation of the model. We derive an algorithm to facilitate calculations
of inverses and determinants of our large highly structured covariance matrices, thereby
enabling estimation of our model for fMRI applications. By recursive calculation on q, the

number of blocks in , we represent  as follows
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(3)

Hence, Ψgs is determined by four functions: d(ρg, ξg, Vg, q), f (ρgs, ξgs, Vg, q), u(ρgs, ξgs, Vg,
q), and z(ρgs, ξgs, Vg, q). The explicit formulas for d, f, u and z are quite lengthy and are
given in the Web Appendix B. We employ (3) to circumvent issues of long computing times
and excessive memory consumption.

Estimated spatial and temporal parameters are not directly interpretable as spatial and
temporal correlations. The spatial and temporal correlations, denoted ηρ and ηξ, respectively,
require calculation of the covariance matrix Ωgs, i.e. of Ψgs Ψgs. Leveraging the special
structure of Ψgs, we obtain Ψgs Ψgs as a partitioned matrix, with equal diagonal blocks AIVg
+ BJVg, and off-diagonal blocks CIVg + DJVg, where

(4)

The expressions for the spatial correlation, ηρ, and the temporal correlation, ηξ, are then
given by ηρ = B/(A + B) and ηξ = (C + D)/(A + B).

3.3 Estimation
We perform estimation of the second stage spatio-temporal model using ML methods. The
log-likelihood function for model (1) is given by

(5)

where Ks denotes the number of subjects in subgroup s (cocaine addicts and controls). The

ML estimator of the mean parameter vector βgs is given by , g = 1, …, G. β ̂gs
is unbiased (as is β ̂gs from a GLM analysis) and does not depend on the covariance
parameters. Estimation of the covariance parameters, therefore, proceeds using the partially
maximized likelihood function (φ, ρ, ξ, β ̂|B). We use the Fisher scoring algorithm to
estimate the covariance parameters ρs = (ρ1s, …, ρGs)′, ξs = (ξ1s, …, ξGs)′, and φg = (φ1s, …,
φGs)′.

Note on the parameter space—To apply our model, the matrix  must be
nonsingular, or equivalently Ωgs must be positive definite. In the context of our fMRI data,
with Vg > 20, for all g, and q = 2, the resulting explicit parameter constraints are as follows:
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We monitor these boundary constraints during our iterative estimation procedure.

Estimation involves iterative calculations of the determinant and the inverse of a qVg × qVg
matrix (up to roughly 5,800×5,800 in our data application). Employing the simplifications
discussed in Section 3.2 enables fast and efficient computations. Web Appendix C contains
details regarding the score functions necessary for estimation.

3.4 Inferences
Inferences that are commonly sought in functional neuroimaging studies target the
identification of differences in neural processing between experimental tasks, sessions (e.g.
treatment periods), or groups. One may pursue these inferences at an extremely localized
(voxel) level or at a more spatially coarse regional level. In either case, estimation and
inferences in this setting produce maps of distributed brain activity and the corresponding
thresholded maps showing statistically significant (or highly probable, in a Bayesian

context) differences. We seek inferences about linear functions of , where for the
inhibitory control study in cocaine addicts, p = 1 (baseline or pre-treatment) or p = 2
(follow-up or post-treatment) and s = 1 (cocaine addicts) or s = 2 (controls).

Voxel-level inferences—Following estimation using our spatio-temporal model, we
obtain t-statistic images from the voxel-specific contrast estimates, then threshold the t-
statistics to determine voxels exhibiting statistically significant changes (or differences) in
brain activity. To adjust for typical changes observed with repeated scanning sessions in the
inhibitory control study, we identify voxels for which the changes in brain activity following
treatment are larger in cocaine addicts than the corresponding changes between follow-up
and baseline activity in control subjects. Specifically, we estimate and test hypotheses about

, where  and . Each
element of  represents a voxel-specific parameter. We construct Wald-type statistics for

hypothesis testing, with  and df = 2(np + nc − 2), where np is the
number of addicts, and nc is the number of controls. We apply the stringent threshold of α =
0.005, which is one approach that has a strong precedent in the neuroimaging literature, but
other thresholding approaches, such as false discovery rate (Benjamini and Hochberg, 1995)
and random field theory (Friston et al., 1995) are also available.

Region-level inferences—Our spatio-temporal model also enables analyses targeting an
entire anatomical brain region corresponding to the underlying anatomical parcellation. For

inferences in region g, define θg = Cgβg, with , and construct

the t-statistic using  and degrees of freedom dfr = 2Vg(np + nc − 2).

Combining both sessions for subgroups s, i.e., , the variance of β ̂gs is given

by . A notable advantage of modeling spatial correlations using our
model is that the resulting regional level analyses account for spatial dependencies between
intra-regional voxel pairs, rather than implicitly assuming independence.
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Statistical significance of spatial and temporal correlations—It is often
informative to examine the magnitudes of spatial and temporal correlations as discussed in
Section 3.2. Given the complexity of the estimators of these quantities, it is difficult to
derive analytical expressions for the variances of these estimators. If one has inherent
interest in testing hypotheses about these parameters, then standard bootstrapping methods
are applicable. However, this approach may be computationally demanding. Given that
testing hypotheses about correlations was not of chief interest in the inhibitory control study,
we present estimates of correlations mainly for descriptive purposes. We estimate standard
errors of the correlations using 30 bootstrap samples drawn (with replacement) from the
subjects in our data, separately for controls and patients. We apply our model and estimate
the spatial and temporal correlations for each sample, and then calculate the bootstrap
standard errors as the standard deviations of the 30 estimated values for each parameter,
which should provide reasonable estimates of variability (Efron and Tibshirani, 1998).

4. Application to Study of Inhibitory Control in Cocaine Addicts
We used our spatio-temporal model to analyze fMRI data from the inhibitory control study
in cocaine addicts. We estimate separate spatial and temporal parameters for cocaine addicts
and controls. We carry out image pre-processing (slice timing, realigning, normalizing,
smoothing) and first level, single subject analyses in SPM5 (SPM5 is a MATLAB software
package implementing Statistical Parametric Mapping for neuroimaging data available for
download from the Wellcome Trust Centre for Neuroimaging web page
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/). To account for inter-subject
neuroanatomic differences that may persist after spatial normalization, we apply very focal
spatial smoothing (6 mm [2 voxels] full width at half maximum (FWHM) Gaussian kernel)
rather than the more spatially expansive smoothing often applied in practice. Our smoothing
should only have a small effect on subsequent spatial modeling, since most of the Brodmann
areas (within which we model spatial correlations) are quite large, relative to the small size
of the smoothing kernel. Our analysis includes 38 BA’s in each hemisphere, after excluding
those with fewer than 20 voxels, and we supplement the BA’s with six subcortical regions,
resulting in a parcellation consisting of 82 brain regions. We perform exploratory analyses,
computing crude estimates of spatial and temporal correlations (Web Appendix A), which
provide support for the existence of correlations from both sources as well as for the
exchangeability assumption in our covariance model.

4.1 Voxel-level inferences
Figure 1(a) shows voxels that reveal statistically significant increases in inhibitory control-
related brain activity following treatment at α = 0.005. The axial slices correspond to 5 mm,
14 mm, 44 mm, and 65 mm above the anterior-posterior commissural plane. The significant
areas include the right frontopolar cortex (BA 10), left middle temporal gyrus (BA 21), and
retrosubicular area (BA 48) in the 5 mm slice; left and right thalamus and the right inferior
frontal cortex (BA 45) at 14 mm; left visual association cortex V3 (BA 19) and
somatosensory association cortex (BA 7) and the left angular gyrus (BA 39) at 44 mm; and
the right pre-supplementary motor area (pre-SMA, BA 6) at 65 mm. Other regions (not
shown) exhibiting significant treatment-related increases in brain activity include the right
inferior prefrontal gyrus (BA 47), left and right fusiforum gyrus (BA 37), and left primary
auditory cortex (BA 41).

Figure 1(b) shows results from the corresponding GLM–based analysis commonly used in
the neuroimaging literature. Many of the areas showing statistical significance agree with
the results from our approach (e.g. Brodmann areas 6, 7, 10, and 19 emerged in both
analyses), but there are some differences. For example, our method identifies increased
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treatment-related brain activity in BA 48 and BA’s 21 and 22 (5 mm), which do not emerge
from the GLM analysis. Also, both methods identify areas in the thalamus, but our method
detects a large right thalamic activation not revealed by the GLM. Similarly, both methods
identify voxels in BA’s 6 (pre-SMA) and 39, but our model yields more spatially extensive
activations. Overall, our ST model produces more statistically significant voxels than the
GLM. However, neither method produces significant voxels when applying more
conservative family-wise error or false discovery rate multiple testing procedures. The
differences between the two models become more apparent at larger significance levels (e.g.
α = 0.01, not shown), suggesting that with a larger sample size and stronger activation
signal, greater differences are likely to emerge. We provide interpretive remarks about our
results in Section 4.4.

4.2 Region-level inferences
Our region-level analysis of treatment-emergent changes in neural processing, using
methods described in Section 3.4, revealed only one region (left BA 39, angular gyrus)
achieving statistical significance at α = 0.05, uncorrected (see Figure 1(c)). The comparative
region-level GLM analysis (that implicitly assumes spatial and temporal independence) did
not yield any statistically significant differences. Neither method reveals significant
differences at more stringent thresholds such as α = 0.005 (uncorrected).

4.3 Spatial and temporal correlations
Figure 2 shows the model-based estimates of spatial and temporal correlations for both the
cocaine addicts and control subjects in one axial slice of the brain. The color scale indicates
the strength of correlations, with brighter shades indicating correlations of larger magnitude.
For temporal correlations, positive values are shown in one color (top colorbar) and negative
values are shown in a separate color (bottom colorbar). For clearer distinction, we add
stripes to regions with negative correlations. All of the correlations in Figure 2 would have
the value zero in a GLM analysis, signaling the need to account for them in our model.

Table 1 gives the model-based estimates, along with bootstrap standard errors (in
parentheses), of both temporal and spatial correlations for select regions in the inhibitory
control study. The associated spatial (ρ) and temporal (ξ) dependence parameters achieve
statistical significance for all regions at α = 0.01, except for BA 29 (L), which is significant
at α = 0.05. The selected regions in Table 1 are those that have correlations with the largest
magnitude. The temporal correlations for cocaine addicts range from −0.24 to 0.45 and tend
to be larger in control subjects for whom they range from −0.28 to 0.64. The regional spatial
correlations are not consistently higher for either group, ranging from 0.08 to 0.54 among
cocaine addicts and from 0.04 to 0.65 for healthy controls.

The brain regions with highest temporal correlations differ between the two groups. For the
controls, the highest temporal correlations (~ 0.6) are in right BA 42, partially covering the
auditory association cortex, and in left BA 21, left BA 22, and right BA 22, regions in the
temporal lobe which are also revealed by our voxel-level analysis. For the cocaine addicts,
the highest temporal correlations are somewhat smaller (~ 0.4) and appear in left BA 43 and
in right BA 22. Spatial correlations for the control group are highest (≥ 0.6) in left and right
BA 26, a retrosplenial region in the cingulate cortex. For the cocaine addicts, the highest
estimated spatial correlations (~ 0.5) are in left BA 29, also in the retrosplenial region, and
in left BA 43. For both groups, the region with the lowest estimated spatial correlation (≤
0.08) is the right BA 48, which is the second largest region (2,875 voxels). This suggests
that it is the least spatially homogeneous region and that subdividing large BA’s may be
warranted.
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4.4 Implications of Results
The study on inhibitory control in cocaine addicts that is the subject of this novel image
analysis approach is, to the best of our knowledge, the first to examine the changes in brain
activity associated with an intensive addiction behavioral therapy. Inhibiting prepotent or
automatic responses is critical to the organization of successful goal-directed behaviors.
Aron et al. (2007) demonstrated that the ability to stop motor responses depends critically on
a network of structures including the right inferior frontal cortex and the subthalamic
nucleus, both of which are connected to the pre-SMA.

Our results agree, in several aspects, with the findings from these and other previous
neuroimaging studies. Greater activation of the right orbitofrontal cortex is necessary for
behavioral inhibition in impulsive individuals (Horn et al., 2003). Additionally, the right
ventral prefrontal cortex has been selectively implicated in the neuropathophysiology of
drug addiction (Volkow et al., 2005). Voxel-level analysis of our data reveals that an
important effect of treatment is an enabling of the right inferior prefrontal gyrus (BA 47) and
right orbitofrontal cortex (BA 11) responses to a demand for inhibition of habitual motor
responses. Our findings are promising since they suggest a positive effect of the behavioral
therapy on the neural processing deficits associated with cocaine-addiction, though we do
not strictly regard these effects to be causal.

The pre-SMA is identified as a significant treatment-related area in our voxel-level analysis.
The caudal pre-SMA is critical to controlled action selection (Nachev et al., 2007) and is
functionally compromised in cocaine addicts (Kaufman et al., 2003). Enhancing the neural
response of the pre-SMA to a demand for a shift from habitual responses to controlled
response inhibition represents a plausible neural correlate of drug refusal skills acquired in
behavioral therapies targeting relapse prevention. Our region level analysis identifies the
angular gyrus (BA 39), which is important in visuospatial attention (Cattaneo et al., 2009).

In areas exhibiting significant voxel-level post-treatment increases in task-related brain
activity, we observe distinct patterns of intra-regional correlations between patients and
controls. Based on the estimates of the spatial correlations, the controls exhibit higher spatial
coherence in, for example, right BA’s 11 (controls = 0.24(0.11), addicts = 0.14(0.04)) and
47 (controls = 0.28(0.13), addicts = 0.18(0.10)), which are frontal areas involved in
executive functioning, planning and decision making, as well as in both left and right
thalamus (e.g. in right thalamus, controls = 0.32(0.09), addicts = 0.17(0.07)), which play a
central role in the flow of information to the cortex (Sherman and Guillery, 2002). Cocaine
addicts showed more coherent functioning in left BA’s 19 (addicts = 0.16(0.02), controls =
0.09(0.07)) and 39 (addicts = 0.31(0.10), controls = 0.16(0.10)), which are involved in
visual attention. The latter finding is particularly interesting since BA 39 was identified in
our region-level analysis.

5. Simulations
We report results of two simulation studies but defer many of the details to Web Appendix
D. The goal of the first simulation is to evaluate the accuracy of our estimation procedure. In
the second simulation study, we evaluate the relative efficiency of our spatio-temporal
model compared to the GLM, both for voxel-level and region-level estimators of secondary
parameters of interest. Below we briefly summarize the main findings.

In the first simulation study, we find that estimates for both ρgs and ξgs (spatial and temporal

parameters) are quite accurate, while the between subject variability  is slightly
underestimated (roughly 6%), which likely stems from the well-known downward bias of
ML estimates of variance components (Laird and Ware, 1998). Restricted ML estimation
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can be used for our model and would presumably mitigate the observed bias. We favor ML
estimation in our context, however, because it substantially facilitates computations. The
second simulation reveals that the GLM-based voxel-level variance estimates are on average
higher than the corresponding estimates obtained from our spatio-temporal model. At the
region level, our model also gives more precise estimates compared to GLM. The increased
precision of our model estimates stems from the fact that we borrow strength across within
region measures of neural activity, which will tend to yield gains in statistical power.

6. Discussion
We propose a novel spatio-temporal modeling framework for functional neuroimaging data,
overcoming unsupported independence assumptions of standard GLM-based methods. We
use Brodmann area templates to define neuroanatomic regions, but other maps are
applicable. Our approach provides a unified framework for voxel-level and region-level
inferences. An important contribution of our work is that we derive efficient computational
solutions to facilitate implementation.

One limitation of our model is that it does not account for correlations between regions.
Doing so within our current framework would lead to substantially increased, perhaps
prohibitive, computations. Bowman et al. (2008) establish a Bayesian framework that
models between-region correlations, in addition to within-region correlations, but the
number of regions included in the analysis is consequently constrained by the sample size.
An advantage of our proposed model is that the number of regions included is
unconstrained. Our current ML estimation procedure requires close monitoring to ensure
convergence and confinement within the parameter space.

In summary, our proposed spatio-temporal model provides an appealing, computationally
efficient alternative to standard GLM-based methods for analyzing fMRI data. Our model is
based on assumptions that are more neurophysiologically plausible, capturing correlations
between different brain locations and between estimates of neural activity at different
scanning sessions. These correlations lead to interpretive advantages over the GLM, e.g.
revealing information about the degree of coherence in brain activity within defined
neuroanatomic regions. Our simulation studies demonstrate that our model estimates are
quite accurate and that the standard errors associated with estimates of our mean model
parameters are on average smaller than those from a GLM. This increase in efficiency will
often lead to more powerful statistical tests and the detection of more statistically significant
voxels.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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7. Appendix
Our stage-two model (1) can be written in matrix form as follows:

where  and where W* = Iq ⊗ Wg, M* = 1/(q − 1)(Jq ⊗ IVg − Iq ⊗ IVg)
and Wg = 1/(Vg − 1)(JVg − IVg). We can rewrite the above equation as

(6)

Therefore, .
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Figure 1.
Voxel-level and region-level inferences for two models: the proposed spatio-temporal (ST)
model (top) and the GLM (bottom). (a): voxels that achieve statistical significance in the ST
model analysis at α = 0.005 in favor of a one-sided alternative hypothesis of increased
activity following treatment for cocaine addiction. Significant increases occur in the right
frontopolar area (BA 10), left middle and superior temporal gyri (BA’s 21/22), right
retrosubicular area (BA 48), right inferior frontal cortex (BA 45), left and right thalamus
(Thal), left somatosensory and visual association cortices (BA’s 7 and 19), left angular gyrus
(BA 39), and right BA 6 (pre-SMA); (b): voxel-level results from a GLM analysis; (c):
region, left BA 39 (angular gyrus), that achieves significance in our ST model analysis at α
= 0.05; (d): corresponding region-level results from the GLM. Slice labels denote the
distance, in mm, above the anterior-posterior commissural plane.
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Figure 2.
Model-based estimates of the spatial and temporal correlations for the inhibitory control
study (a) addicts: spatial correlations, (b) controls: spatial correlations, (c) addicts: temporal
correlations, (d) controls: temporal correlations. For (a) and (b), the darker to lighter
intensities in the colorbar represent lower to higher correlations. For (c) and (d), the top
colorbar represents positive correlations, again with lighter intensities reflecting higher
correlations, and the bottom colorbar represents negative correlations (stripes added to
maps) with brighter intensities indicating stronger negative correlations. The temporal
correlations for control subjects range from −0.28 to 0.64 and are in general larger than
those for the cocaine addicts, which range from −0.24 to 0.45. The regional spatial
correlations are not consistently higher for either group, ranging from 0.08 to 0.54 among
cocaine addicts and from 0.04 to 0.65 for healthy controls.
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Table 1

Model-based estimates of spatial and temporal correlations and estimated bootstrap standard errors (in
parentheses).

Group Region Temporal correlations (std. err.) Region Spatial correlations (std. err.)

Addicts

BA 43 (L) 0.45 (0.19) BA 43 (L) 0.54 (0.10)

BA 22 (R) 0.39 (0.15) BA 29 (L) 0.50 (0.12)

BA 42 (R) 0.37 (0.18) BA 3 (L) 0.47 (0.10)

BA 3 (L) 0.37 (0.17) caudate (R) 0.47 (0.10)

BA 9 (R) 0.34 (0.28) BA 43 (R) 0.43 (0.07)

BA 35 (R) −0.24 (0.06) BA 48 (R) 0.08 (0.07)

Controls

BA 22 (L) 0.64 (0.07) BA 26 (L) 0.65 (0.05)

BA 42 (R) 0.63 (0.09) BA 26 (R) 0.60 (0.08)

BA 22 (R) 0.60 (0.09) BA 5 (R) 0.50 (0.12)

BA 21 (L) 0.58 (0.10) putamen (L,R) 0.50 (0.08, 0.06)

BA 43 (R) 0.46 (0.10) BA 38 (L) 0.47 (0.10)

BA 26 (R) −0.28 (0.11) BA 48 (R) 0.04 (0.02)
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