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SUMMARY
Genomic instability, such as copy-number losses and gains, occurs in many genetic diseases.
Recent technology developments enable researchers to measure copy numbers at tens of thousands
of markers simultaneously. In this paper, we propose a non-parametric approach for detecting the
locations of copy-number changes and provide a measure of significance for each change point.
The proposed test is based on seeking scale-based changes in the sequence of copy numbers,
which is ordered by the marker locations along the chromosome. The method leads to a natural
way to estimate the null distribution for the test of a change point and adjusted p-values for the
significance of a change point using a step-down maxT permutation algorithm to control the
family-wise error rate. A simulation study investigates the finite sample performance of the
proposed method and compares it with a more standard sequential testing method. The method is
illustrated using two real data sets.
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1. Introduction
The integrity and stability of chromosomes enable the cell to transmit accurately its genetic
information and function properly physiologically. Aberrations in chromosomes such as
rearrangements, deletions, amplifications and other types of copy number changes occur in
many genetic diseases including, for example, Down syndrome which is a well-known
developmental abnormality caused by trisomy (triplication) of the 21st chromosome. Studies
of such aberrations, commonly referred to as genomic instability, can help understand the
underlying mechanism of disease initiation and progression (Pinkel and Albertson, 2005).
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A popular approach for assessing genomic instability is to measure genome-wide copy
number variations using array-based comparative genomic hybridization (array CGH) (e.g.,
Snijders et al., 2001; Hodgson et al., 2001; Pollack et al., 2002). More recently, high-density
single nucleotide polymorphism (SNP) arrays are used to genotype up to one million
markers (e.g. Illumina Human 1M BeadChip). Although the two array technologies are
different, data generated by them share common features. For these arrays, a set of genomic
markers with known locations are chosen, and DNA copy numbers are measured as
fluorescent intensity at each marker, so the data can be viewed as a sequence of copy
number measurements ordered by the marker locations along the chromosome. With proper
normalization (not the focus of this paper), an increase in the magnitude of positive or
negative log ratios of test versus reference samples corresponds to possible copy number
changes such as amplifications or deletions, respectively.

A variety of methods have been developed to segment chromosomes into regions of markers
having the same underlying copy number. Although such a segmentation can also be used
for identifying change points, little work has been done directly on the detection of change
points and the corresponding statistical inference. This is the focus of our presentation.

A review of current approaches for copy number segmentation places them broadly into
three main categories. The first category uses model-selection procedures, penalizing the
number of segments (parameters) to avoid over segmenting an array CGH profile. These
include Gaussian likelihood under a piecewise-constant model with various penalty
parameters (Jong et al., 2003; Picard et al., 2007; Zhang and Siegmund, 2007), unsupervised
Hidden Markov Models using Bayesian information criterion (BIC) or Akaike information
criterion (AIC) (Fridlyand et al., 2004) and penalized least squares regression (Huang et al.,
2005). More recently, Bayesian techniques have also been used in regularizing parameter
estimation (Lai et al., 2008; Guha et al., 2008).

A second category consists of nonparametric function estimation to infer underlying true
copy numbers, including a quantile smoothing method (Eilers and Menezes, 2005), a “fused
lasso” method (Tibshirani and Wang, 2007) and a wavelet-based denoising method (Hsu et
al., 2005). Wavelet methods and other nonparametric techniques are also suited to detect
sharp changes as often observed in array CGH data, but to recover a piecewise constant
function, an additional clustering of adjacent values may be needed.

A third category selects segments by controlling the overall type I error rate. For example,
Olshen et al. (2004) proposed a circular binary segmentation (CBS) method using a
sequential testing procedure. They considered all possible locations and widths of step
functions and calculated the maximum t statistic for all combinations. The genome is then
partitioned according to the maximum t statistic which exceeds the critical value at a pre-
specified significant level. Each segment is then subjected to the same testing procedure.
This procedure continues until no test statistic in each segment is significant. The approach
of Wang et al. (2005) selects “significant” clusters formed along the chromosome by
controlling false discovery rate (FDR). Cheng et al. (2003) proposed to detect copy number
changes in a regression framework by pooling information across multiple samples.

Lacking among these methods are measures of significance for individual change points.
The methods of Olshen et al. (2004) and Wang et al. (2005) provide some control on the
overall type I error rate, although the latter requires an external set of normal samples to
obtain the null distribution, and in the former, the false positive rate increases with the
number of true change points. Both methods require one to pre-specify a level of
significance. When individual change points are of interest, this is relatively inefficient as it
requires one to re-run the segmentation procedures at different significant levels. We
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consider an alternative to this pre-specification of significance by estimating a p-value for
each marker. This allows investigators to examine change points at their own significant
levels without repetitive implementation of the same procedure. The method of Cheng et al.
(2003) provides adjusted p-values by controlling family-wise error rate. However, it relies
on multiple samples to estimate, and make inference about, the average intensity ratio for
each marker. Like most literature in this field, our proposed method is designed to detect
change points for each individual sample (i.e., in one array).

The paper is organized as follows. Section 2 describes the method for detecting change
points which is based on a cross-scale product in a multiscale decomposition of the array
signal. The wavelet transform used to produce this is introduced in 2.1. The test statistic and
multiple comparison adjustment procedure are given in Section 2.2 and 2.3, respectively.
Two real data sets are used to illustrate the proposed method and the results are shown in
Section 3. Section 4 describes the results from a simulation study for examining the
performance of the proposed approach and the method proposed by Olshen et al. (2004).
Some final remarks are given in Section 5.

2. Detecting change points by multiscale products
Let Yi be the observed log-relative intensity ratio for the ith marker location, xi, for i = 1, …,
n. Assuming additive measurement error for the log-relative intensities, the observed data
can be modeled as

(1)

where f is a piecewise constant function reflecting the discreteness in copy number; the εi, i
= 1, …, n, are independent and identically distributed with mean 0 and variance σ2.

Given R change points, there are R + 1 non-overlapping segments (0 ≤ R ≤ n − 1), each
representing a region of amplification, deletion or no change in gene copy numbers. For the
rth segment, let cr denote the index of the end marker in the segment and μr be the
corresponding copy number. Assume c1 < c2 < … < cR and define c0 = 0, cR+1 = n. The
collection {xcr : r = 1, …, R} is the set of change point locations. Rewriting model (1) in
these terms, Yi = μr + εi for cr − 1 < i ≤ cr. For identifiability of the change points, we assume
μr ≠ μr+1. Under the null hypothesis of no change, f(xi) = μ0. Without loss of generality, we
assume μ0 = 0.

2.1 Multiscale wavelet products
We are interested in a test statistic that reflects significant step-like changes in copy number
along the chromosome as modeled by f in (1). One way to focus attention on the step-like
changes is to quantify the difference of adjacent averages in a neighborhood of each location

xi, such as , where B is the number of markers in the neighborhood.
Since the aberration size is unknown, it would be prudent to examine various neighborhood
sizes.

A rigorous and efficient way to calculate these differences is by a wavelet transform of f: let
, and ψ = 0 otherwise. The collection

of all translations and dilations, , forms a family {ψs,x : s ∈ ℝ+, x ∈
ℝ} of functions that define a wavelet transform of f defined as W f(s, x) ≔ ∫ ψs,x(u) f(u)du.
Sampling at every marker location, xi, i = 1, …, n, and at dyadic scales, s = 2j, j = 1, …, J =
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⌊log2(n)⌋ (the greatest integer less than log2(n)), gives coefficients Wj,i ≔ W f(2j, xi) of the
maximal overlap discrete wavelet transform (MODWT). Of particular interest is the fact that

, B = 2j − 1, which quantifies the difference of adjacent
averages in varying sized neighborhoods of xi and reflects precisely-located changes in f that
occur at scale 2j. We use the terminology “level j” interchangeably with “scale 2j”. In
particular, let  denote the level j coefficient function. See Percival
and Walden (2000) regarding details of the MODWT.

We note that our use of a wavelet analysis differs from the more common goal of function
estimation or denoising. In fact, we make no use of the inverse transform or thresholding
techniques. Instead, our proposed test statistic is based on the coefficient functions Wj and
whether, at a given location, they are more extreme than expected under the null (for a given
amount of noise in the data). A useful property of these coefficient functions is that a change
in f at a location xi propagates across scales: the values |Wj,i′|, …, |Wj+k,i′| are increased for
all i′ in some neighborhood of i, where j and k depend on the sharpness of the change and
the width of the feature. We exploit this persistence across scales by considering the
pointwise product Wj,i Wj+1,i of adjacent coefficient functions. This reinforces signal while
canceling noise since coefficients related to high-frequency noise do not persist across scales
and are diminished in the product.

A general multiscale product at the ith location is of the form Πj∈D Wj,i, where D is a subset
of all the possible levels {1, …, J}. If location i is indeed a change point, the wavelet
coefficients at the adjacent levels are most correlated and so we focus attention on the
product of two adjacent levels Wj,i Wj+1,i. We have restricted attention to two levels since
for small aberrations and short segments, coarse levels that include markers not related to
the aberration are less effective in detecting abrupt changes. We create, however, a test that
is adaptive to varying sizes of aberration by considering the maximum of this product across
levels at each location. That is, define Mi ≔ maxj∈{2,…,J0} {Wj,i Wj + 1,i} for some J0 < J.
Then the problem of detecting change points becomes one of testing

for each location i. Note that the test statistic Mi is always positive if location i is indeed a
change point, so a one-sided test is used here.

For a genomic profile with different aberration sizes, the optimal scales used in Mi for
detecting a change in copy number will depend on the properties of the chromosome
aberrations and the density of markers. The choice of J0 loosely depends on n since J0 < J =
⌊log2(n)⌋. However, averaging over long segments induces high spatial correlation among
the Mi making it more difficult to precisely locate a true change point. Hence, when markers
are sufficiently dense, J0 is typically substantially less that J; setting J0 = 6 or 7 generally
provides adequate power for detecting change points.

Regarding the historical use of wavelet products, Bao and Zhang (2003) used two-scale
products in a method for wavelet thresholding in signal recovery. In a work more closely
related to ours, Sadler and Swami (1999) used two- and three-scale products aimed at
detecting discontinuities. Their presentation considered theoretical and empirical
distributions for these products, but failed to control an overall type I error rate and did not
adjust for multiple comparisons. We are not aware of any work aimed at statistical inference
based on multiscale products, one of the focuses of this presentation.
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2.2 Local maximum
Given the two-scale product statistic at each marker, one might simply apply a multiple
testing procedure to all n test statistics in an attempt to control the overall type I error rate.
However, the MODWT coefficients within each level are locally correlated and elevated in
an entire neighborhood surrounding a change point. The width of this neighborhood depends
on the width of the aberration and the levels used in Mi. To circumvent this, we test only
locations at which local maxima occur in M (as a function of i). Then for each local
maximum, its location is designated to be a change point if the adjusted p-value is less than
a pre-specified significance level. The notation i* is used to denote that a local maximum is
detected at the ith location.

Figure 1 illustrates these ideas with a simulated copy number profile, the corresponding W4,
W4W5, M and the associated significance values, − log10(p); each is plotted against i. We are
only interested in the local maxima in M since they correspond to potential change points,
yet as seen in Figure 1 the values of Mi tend to be elevated in an entire neighborhood of a
change point since the Wj’s reflect neighborhood changes in f. It would be easy to obtain
these if the copy number signal (hence M) was smooth, but any discrete noisy function will
exhibit small local maxima that are not relevant since they don’t occur at a scale of interest.
Although one could smooth M (say, with a kernel smoother using a particular bandwidth)
and then seek local maxima, we have chosen to do this in one step through an efficient
procedure based on the following fact: the level j transform of f is the first derivative of f
after it has been smoothed with a kernel of scale 2j (see Mallat, 1999). Therefore, the search
for local maxima in M is achieved simply by performing a MODWT of M, at level j, and
recording its zero crossings.

The locations of these local maxima in M are a small subset, {xi* : i* ∈ K}, of the entire set
of marker locations, where K is a set of indices for local maxima. A focus on only this
subset of markers dramatically reduces the number of tests for change points. As a result,
computing time for the proposed method does not substantially increase even as the number
of markers increases to tens of thousands. We also show that the estimated change points
converge to the true change point locations as the number of markers goes to infinity (see
the Web Appendix).

2.3 Multiple testing
We describe a procedure for obtaining adjusted p-values at local maxima while accounting
for multiple comparisons. We focus on controlling the family wise error rate (FWER) and
note that the same test statistics can be used for obtaining other measures of statistical
significance, such as q-values, using the algorithms described in Ge et al. (2003), which
provides a comprehensive review of this topic.

Since both the marginal and joint distributions of the test statistics Mi* are unknown, we use
resampling methods to estimate both raw and adjusted p-values. It is not obvious how to
estimate a null distribution since the true function f is unknown. We consider two
approaches for generating a null distribution.

The first approach is to permute ε̂i = Yi − f̂i where f̂ s a robust estimator of f using lowess, a
locally weighted regression (Cleveland, 1979). A simple permutation of the observed Yi
without subtracting f̂ would work if non-zero segments are only a small proportion of the
whole region. Unfortunately the empirical distribution of errors is highly dependent on the
estimated f̂. The key parameter in lowess smoothing is the width of the smoothing window;
the larger the window size, the smoother f̂. We assessed the performance of the multiscale
method by simulation using two different window sizes, 0.05 and 0.1, and found that the two
sizes gave comparable results (results not shown). In the following sections, we used a
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window size of 0.1 and present results for window size 0.05 whenever a difference is
observed.

The second approach is to permute the wavelet coefficients W1 at the finest level. Since the
W1,i denotes the scaled difference Yi − Yi−1, this gives a close approximate estimation of the
null distribution as R is relatively small compared to n. This approach, however, may
overestimate R if the true error distribution is heavily tailed. To see this, let ε1 and ε2 be i.i.d.
with mean 0 and variance σ2, and W = ε1 − ε2. In general, W doesn’t have the same
distribution as ε1 and ε2 unless ε1 and ε2 are normally distributed. To see the relationship
between W and ε1 (or ε2), consider the first four moments: mean, variance, skewness and
kurtosis for W and ε1, one can show that the skewness of W is 0 and the kurtosis of W is one
half of the kurtosis of ε1 (or ε2). For distributions with extremely heavy tails, permuting W1
yields more false positives than expected. In this case, the first approach (permuting ε̂) is
more appropriate.

After the null distribution of ε is estimated, the adjusted p-values can be computed using the
step-down maxT permutation algorithm proposed by Westfall and Young (1993).

The following summarizes the proposed algorithm for detecting change points.

1. Compute the coefficient functions Wj for levels j = 1, …, J0 + 1. Estimate the
standard deviation σ using the MAD of W1:  (the divisor

provides asymptotically normal consistency). Standardize each level as .

2. Calculate point-wise products of standardized wavelet coefficients at all adjacent
levels, WjWj+1, j = 2, … J0. The test statistic for location i is Mi = maxj∈{2,…,J0}
{Wj,i Wj + 1,i}.

3. Obtain the local maxima {Mi* : i* ∈ K} in M using level 4 wavelet transform.

4. Estimate the null distribution of Mi* by permuting W1 (or ε̂) and obtain an adjusted
p-value for each Mi* using the step-down maxT algorithm. Estimated change points
are those whose corresponding adjusted p-values are smaller than a pre-specified
threshold.

3. Results from real data
We illustrate the method using two real data sets: Coriel cell lines data (Snijders et al., 2001)
and Illumina Human 1M SNP data (Peiffer et al., 2006). The proposed method is compared
with the CBS method (Olshen et al., 2004). The CBS method is singled out because it
performed consistently well based on a comprehensive comparison study by Lai et al.
(2005). Since the CBS method detects change points by controlling the overall type I error
rate, it makes the comparison with our proposed method more equitable than those based on
model selection for which choosing tuning parameters is often an issue. The CBS method is
used here without the extra preprocessing or pruning step because these steps are not part of
the hypothesis testing and the number of estimated change points is very sensitive to the
pruning parameters, the choice of which is rather subjective.

3.1 Coriel cell lines data
In 2001, Snijders et al. studied the DNA copy number changes for 15 Coriel cell lines using
array CGH technology. Each array contained 2276 mapped BAC clones (markers) spotted in
triplicate. The Coriel cell line data have been analyzed by many methods (e.g., Hsu et al.,
2005; Olshen et al., 2004) and can be freely downloaded at
http://www.nature.com/ng/journal/v29/n3/suppinfo/ng754_S1.html. This data is considered
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here primarily for proof-of-principle since the copy number alterations are known, having
been identified by spectral karyotyping. Of 15 cell lines, six cell lines have whole
chromosome amplifications only and nine cell lines have partial chromosome amplifications
or deletions. We applied the proposed method and the CBS method to all 15 Coriel cell
lines.

We analyzed the whole genome (all 23 chromosomes) simultaneously. The main
consideration is that the total number of markers is 2276 and the density of markers varies
greatly from chromosome to chromosome. For example, chromosomes 19, 21 and 22 have
35, 30 and 15 markers, respectively, and only seven chromosomes have more than 100
markers. The estimation of variance will be more accurate with the whole genome data than
with each individual chromosome. In addition, it allows us to detect whole chromosome
aberrations as the rest of the genome provides a good baseline reference. Finally, a genome-
wide analysis allows us to control type I error rate for the whole genome, instead of at the
chromosome level. A significance level of 0.01 was used.

The noise level of the Coriel data was very low with σ̂ ranging from 0.06 to 0.10 (a median
of 0.07). The data appears approximately normally distributed based on Q-Q plots and
histograms (results not shown), so both permutation procedures (W1 and ε̂) were used to
estimate the adjusted p-values and they gave the exactly same results for all cell lines except
for GM02948, where permuting W1 gave an additional false positive on Chromosome 20 at
65.3Mb. To save space only results from permuting ε̂ will be presented.

The Coriel data had strong signals and low background noise with median of the signal-to-
noise ratio (SNR) 6.83 (first and third quantiles are 5.73 and 8.46, respectively). We
observed that the CBS method detected many small segments for a total of 95 false
positives. The multiscale method had no false positives (Table 1). Both methods missed the
singleton on cell lines GM01535 in which only one altered marker exists on chromosome
12qtel. Note that by our convention in defining a change point in Section 2, the count of
change points for a singleton is two. The adjusted p-values for the two false negatives on
GM01535 are 0.231 and 1.000, respectively.

3.2 Illumina’s Human 1M SNP data
The proposed method was also applied to detect copy number variation (CNV) using
Illumina’s Human 1M SNPs data (http://www.illumina.com).To save space, we refer
interested readers to Peiffer et al. (2006) for the normalization. The key point here is that, as
in array CGH data, an increase in the magnitude of positive or negative log intensity ratios
corresponds to possible insertion or deletion events, respectively. Therefore, segmentation
methods developed for array CGH data would be applicable here.

The data here included 8 HapMap individuals whose high-resolution SNP intensity data,
including normalized log intensity ratios, were freely available from Illumina web site. The
reason we chose to work on these 8 HapMap individuals is that the CNV deletion events
were detected and validated by two independent molecular experiments, fosmid-ESP assay
and complete fosmid sequencing (Kidd et al., 2008). The data of the validated CNV events
were downloaded from the supplementary material by Kidd et al. (2008) and Cooper et al.
(2008).

We focused on deletion events that are covered by 10 or more SNPs to be consistent with
Cooper et al. (2008)’s definition for detectable deletion events on the Illumina 1M array.
This yielded 97 deletion events (i.e. 194 change points) which were twice validated
experimentally and have sufficient probe coverage. We notice that the start and end
locations of the selected 97 events detected by the two experiments were not identical,
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differing by up to 100K base pairs. Therefore, in the analysis we used the change point
locations detected by complete fosmid sequencing as a gold standard and allowed for a 5-
SNP difference on either side. Larger than 5 SNPs would cause ambiguity in the definition
of change points for small-sized deletion events.

We analyzed one chromosome at a time due to the high-density markers. The number of
SNPs per chromosome ranged from 15,408 to 98,752 with an average of 53,042. Two
adjacent SNPs spanned on average 2.6kbp. The noise level of the SNP data was low with σ̂
ranging from 0.08 to 0.13 (a median of 0.09). We analyzed the data using a permutation of ε̂
because the error distribution was heavily tailed and permuting W1 yielded more false
positives (results not shown). We used a significance level 0.05, which differed from that
used in the Coriel cell line data. This is because signals in the Illumina 1M SNP data are
rather weak. A more relaxed significance level than 0.01 would allow us to detect more
change points, and thus better discern the performance of the two approaches.

We observed that the CBS method falsely detected a total of 324 change points while the
multiscale method had 217 false positives. The sensitivities were low for both CBS and
multiscale methods. Of 194 change points which were twice validated by molecular
experiments, the multiscale method detected 25 (12.9%) while CBS 19 (9.8%) (Table 2). All
but two true change points detected by CBS were detected by the multiscale method. The
two change points missed by the multiscale method were on chromosome 16 for NA19129
and had adjusted p-values 0.237 and 0.206 and raw p-values 0.003 and 0.002, respectively
(see Web Figure 1). On the other hand, the CBS method missed eight change points that the
multiscale method was able to detect. Figure 2 gives an example of a profile in which a
deletion event is detected by the multiscale method but not by CBS. This is probably
because the outliers in the data, as well as the large number of markers, increased the critical
value for calling the significance of change points, which consequently reduced the power of
CBS to detect these change points. In contrast, the multiscale method which is based on
multiple scales and local maxima is more robust to outliers and more amenable to a large
number of markers since the number of local maxima increases far less quickly than the
number of markers.

To understand why both methods had such low sensitivity we examined each profile
manually. The reason appears to be that the signals for deletion events are weak for most
profiles. The median SNR was −0.29 with first and third quartiles were −3.66 and 0.049,
respectively; only one third (33) of 97 deletion events had SNR ≤ −1. Among the 64 events
that had SNP > −1, 28 even had positive mean log intensity ratios and the maximum SNR
was 1.24. This implies the measurement error, even though small in absolute value, is still
quite large compared to the signal in the copy number data. For an example of a profile in
which both methods failed see Web Figure 2.

It has been suggested that the use of genotyping information may help in detecting allele-
specific CNV from these data (Dr. Adam Olshen, personal communications). Additional
work along this line is clearly warranted, but is beyond the scope of this paper and not
considered further.

4. A simulation study
This section discusses the finite-sample performance of the proposed method and contrasts it
with the CBS method. Performance was measured by the number of estimated change
points, true positive rate (TPR), false discovery rate (FDR) and number of exact detections.
The TPR is the proportion of true change points rejected at a pre-specified significance
level. The FDR is the proportion of false rejections among the total rejections. The number
of exact detections is the number of simulated data sets in which all change points are
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correctly detected without any false positives and false negatives. Simulations were
performed for both normally and non-normally distributed ε. For each simulation scenario, a
total of 500 datasets were simulated with each dataset having 500 markers. A significance
level 0.01 was used throughout, unless otherwise stated.

4.1 Simulation under normal distribution
Assume ε is normally distributed and consider data simulated according to the model (1).
The performance of the proposed and CBS methods were evaluated under a variety of
underlying mean functions, f, and noise levels, σ. For the complete null case, i.e., f = 0, the
type I error rates were 0.008 and 0.002 for the proposed and CBS method, respectively.
Permuting W1 and ε̂ gave very comparable results.

Next, for the presence of change points, the data sets were generated from a model created
by Olshen et al. (2004) as follows:

where εi are i.i.d. N(0, σ2), n = 500, and the second term is a sinusoid trend component to
make the simulated data set more realistic and challenging. The noise parameter σ was set to
be 0.1 or 0.2, and the trend parameter a was chosen to be 0, 0.01 or 0.025, corresponding to
no trend and local trend with long and short periods, respectively. There were seven
segments along the chromosome. The means of log intensity ratios within segments were
given by:

i 1–130 131–220 221–240 241–300 301–310 311–350 351–500

f(i) −0.40 0.08 1.20 −0.50 0.30 −0.70 −0.20

An example of a simulated data set using the trend model is given in Web Figure 3. We
found that the proposed method using permutation of W1 outperformed the CBS method in
each of the no-trend, long- and short-period trend models (Table 3). The proposed method
was robust to local trend in the sense that FDR, TPR and the number of exact detections did
not appear to change with the trend parameter a. The CBS method tended to overestimate
the number of change points in the presence of a local trend. The FDR increased with a and
the number of exact change points detected decreased with a. However, permuting ε̂ was
less powerful under the trend model because the default window size (0.1) over-corrected
the trend. Therefore, under the normal (or near normal) situation, permuting W1 is
recommended because it is robust to trend and does not require any tuning parameter as for
the approach based on ε̂.

4.2 Simulation under non-normal distribution
In this section we contrast the performance of the proposed method with the CBS method
when ε was not normally distributed. We evaluated both approaches of permuting W1 and ε̂.
We started with the complete null situation to examine the type I error rate and then
followed with a power evaluation under an evenly-spaced change point model.

Under the complete null we generated the errors i.i.d. from t distributions with degrees of
freedom (df) 1, 2, and 3, respectively. Web Table 1 shows the summary of simulation
results. The CBS method performed consistently well and the family-wise type I error rates
were below or close to the pre-specified level. The proposed method had the correct type I
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error rates when the null distribution was estimated by permuting ε̂. The null distribution
estimated by permuting W1 underestimated the tail probabilities and yielded increased type I
error rates as the df for t distribution decreased, i.e., tails get heavier. However, the type I
error rates were already below the pre-specified level when the df > 3 (results not shown).

To investigate the power of our method, we generated chromosome profiles with different
numbers of evenly-spaced change points and aberration width under a t distribution with 3
degrees of freedom. The function f(i) was set to be either 0 or 1 corresponding to no change
or copy number gains. The number of change points (R) varied among 2, 4, and 6. The width
of each aberration region (width) increased from 20, 40 to 80 markers. Both the multiscale
and CBS method were robust to this non-normal distribution and comparable under all but
one setting examined (Table 4). This scenario, in which CBS appears more powerful, has
only one large aberration segment: width = 80 and R = 2. As expected, permuting W1 tended
to overestimate the number of change points compared to permuting ε̂.

We also examined a smaller window size, 0.05, and found that it was slightly more
conservative and thus less powerful in detecting the change points than smoothing with
window size 0.1 (results not shown). Based on the settings we examined here, a window size
0.10 for obtaining ε̂ appears to be a reasonable choice when ε is not normally distributed.

5. Discussion
We have proposed a non-parametric approach for detecting change points in genomic copy
number data by seeking local changes that occur at multiple scales. We provide multiple
comparison adjusted p-values for each potential change point. The p-values provide
flexibility for investigators to call change points at their chosen level of significance. These
p-values can be computed using re-sampling approaches by permuting either W1 or ε̂. Which
approach to use will depend on the error distribution, which, unfortunately, is not usually
known. In practice, we suggest to visually examine the residuals from the lowess smoothing
to determine if the errors are roughly normal or have heavy tails. Under the normal or near
normal situation, permuting W1 is recommended because it is robust to trend and does not
require any tuning parameter as for permuting ε̂. For distributions with extremely heavy
tails, permuting W1 yields more false positives. In this case, permuting ε̂ is more appropriate
than permuting W1 and we recommend to use a smoothing window of width 0.1.

The proposed method performed well in most settings that we examined. It has the correct
type I error rates under the null and is robust to background trend in the data and non-normal
errors. However, because the test statistics are based on local variations the method has low
power in detecting change points when the noise level is very high and the aberration region
is narrow. This weakness may be overcome by improvements in array technologies, DNA
extraction methods and increasing marker density. The CBS method, on the other hand,
performs relatively well when the noise level is high and the aberration region is narrow.
Like the proposed method, the CBS method also performs well when the error distribution is
not normal. However, the CBS method tends to overestimate the number of change points
when there exist multiple change points or when there is a background trend. This
overestimation occurs even when the noise level is low, as shown in the Coriel cell line data
and Illumina 1M SNP data.

All computations were done in R; the code is available from the authors upon request.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustration of the proposed method. (a) A simulated copy number profile with 500 markers
(f in a dotted line) and 6 change points (dotted vertical lines); (b) W4; (c) W4W5; (d) M; (e)
−log10 of adjusted p-values truncated at 4. The horizontal dotted line indicates p = 0:05.
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Figure 2.
Top panel: Scatter plot for NA18555 chromosome 19 (SNR = −3.71). The vertical lines
indicate a small region that surrounds the validated change points. The blank spot is the
centromere. Bottom panel: Zoomed-in scatter plot of the region that surrounds the change
points. The vertical lines indicate the validated change points.
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Table 1

Summary of the number of false positives (FP) and false negatives (FN) on 15 Coriel cell lines using the
multiscale and CBS methods. A significance level 0.01 was used for both methods.

Multiscale CBS

Cell line FP FN FP FN

GM00143 0 0 26 0

GM01524 0 0 11 0

GM01535 0 2 0 2

GM01750 0 0 2 0

GM02948 0 0 7 0

GM03134 0 0 0 0

GM03563 0 0 10 0

GM03576 0 0 1 0

GM04435 0 0 2 0

GM05296 0 0 0 0

GM07081 0 0 0 0

GM07408 0 0 2 0

GM10315 0 0 10 0

GM13031 0 0 0 0

GM13330 0 0 23 0

Total 0 2 95 2
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