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Abstract
Following years of linear gains in the genetic dissection of human disease, we are now in a period
of exponential discovery. This is particularly apparent for complex disease. Genome-wide
association studies have provided myriad associations between common variability and disease, and
shown that common genetic variability is unlikely to explain the entire genetic predisposition to
disease. Here, we detail how one can expand on this success and systematically identify genetic risks
that lead or predispose to disease using next generation sequencing. Geneticists have had for many
years a protocol to identify Mendelian disease. Now we have available a similar set of tools for the
identification of rare moderate risk loci and common low risk variants. While undoubtedly major
challenges remain, particularly with data handling and the functional classification of variants, we
suggest that these will be largely practical and not conceptual.

An enviable position
As geneticists we sit in an enviable position, one with a history of considerable success behind
us, and a future that holds promise for significant gains. The first successful attempts at
identifying genetic mutations in the late 1980’s transformed the human genetics field1–6.
Following this early success, linkage and positional cloning became a mainstay of human
genetics; widespread adoption of this approach manifested in a growing body of established
genetic links to disease. While this work has been critical to understand the etiology of diseases,
improvements to this genetic method have, until recently, been largely evolutionary rather than
revolutionary. The advent of highly parallel genotyping and the development of next generation
sequencing is now changing the landscape and provides a solution to this gap in genetic
technology.

Technological advances in terms of array and DNA sequencing technologies mean that the
route towards the complete examination of genetic risk is now largely clear. For any human
disorder, we can now plot a rational and systematic approach towards the identification of the
underlying genetic factors. This bold statement is not intended to minimize the challenges
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ahead, as there will be many, particularly in the identification of the truly pathogenic changes,
but rather to lay an outline of this route and to identify the obstacles ahead.

Manolio and colleagues7 conveniently graphed out the types of genetic risk (modified in Figure
1) and noted three broad categories of risk likely to be tractable by genetic approaches in the
near future: high risk–rare alleles which lead to Mendelian (such as APP or PS mutations in
Alzheimer’s disease)8–10 or near Mendelian disease (such as LRRK2 mutations in Parkinson’s
disease)11, 12, moderate risk–low frequency alleles for disease (for example GBA mutations in
Parkinson’s disease)13, 14, and low risk–common alleles which have modest effects on
predisposition to disease (such as those in SNCA or MAPT in Parkinson’s disease and CLU,
PICALM and CR1 in Alzheimer’s disease)15–18. Two other categories of allele can be added
to this list: those that are neither necessary nor sufficient to cause disease but modify the
phenotype (such as modifier genes in cystic fibrosis)19 and those that are needed to be present
with the disease allele for the disease to occur (such as in the Bardet-Biedl syndrome)20.

While these categories represent points on a spectrum, they help to outline the genotyping and
sequencing methods required to solve these genetic problems. Here, we discuss how these
categories of pathogenic loci can be systematically dissected and what are the purposes and
expectations of this dissection.

High risk–rare alleles (Mendelian disease)
Nearly all high-risk loci display changes that have clear effects on protein coding genes, such
as missense, nonsense and splice site changes or gene deletions/insertions
(www.ncbi.nlm.nih.gov/Omim/)21. Many loci for simple Mendelian disease have been
identified by positional cloning during the last 20 years1, 2, 4. However this process, while
effective, has traditionally been arduous even after the completion of the human genome project
lead to a near complete annotation of all genes22, 23.

Despite the proven power of positional cloning to identify causative loci, there are many
reasons why linkage might fail. The two main reasons are: (1) a lack of genetically informative
families, particularly in late onset diseases or conditions where high infant mortality or a rapidly
progressing condition hamper the collection of a sufficient number of affected individuals
within a family, and (2) locus heterogeneity, where pathogenic alleles exist in multiple genes.
Furthermore, this approach is expensive, and in the cases of microsatellite linkage and
positional candidate sequencing, extremely slow. The development of viable methods for
whole exome sequencing24 provides a powerful alternative to positional cloning, with some
notable advantages. First, because potentially causal variants are identified, this method can
be applied in families that are too small to provide meaningful information using linkage,
effectively allowing small families and even single probands (an individual affected with a
disorder who is the first subject from its family to come under study) to be analyzed jointly,
irrespective of allelic heterogeneity25. Of course, it should also be recognized that the
identification of disease alleles by exome sequencing requires families showing statistical
evidence for co-segregation or sufficient locus homogeneity and disease frequency for
statistical comparison between cases and controls to be possible. Second, this method can be
incredibly fast, moving from well-defined trait to mutation within weeks rather than years.
Exome sequencing as a method to find mutations has already shown considerable promise,
particularly in very rare autosomal recessive diseases. One might expect that until the
widespread adoption of whole genome sequencing, this will be the pro forma approach to
identify the cause of monogenic diseases and that, coupled with array methods that can rapidly
detect gene deletions26, insertions27, 28, and autozygosity for recessive loci29, gene
identification for monogenic disease will become quite routine.
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Low risk–common alleles
Genome-wide association studies (GWAS) have proven to be an outstanding success in terms
of identifying common low risk variants for complex disease7, 30. Hundreds of replicated
genetic associations have been reported and these are being continually added in the NHGRI
catalog of published GWAS (http://www.genome.gov/26525384)31. The method, capabilities
and limits of GWAS have been well-documented elsewhere 30, 32–34; however, we have briefly
covered these in a text box in order to put the following sections into context (Box 1).

Box 1

Genome-wide association study

GWAS primary aim is to reveal the genomic location of common genetic variants that
impart risk for a trait; this method aims to test the common disease, common variant
hypothesis46. In this scenario several hundred thousand SNPs throughout the genome are
typed in a large series of disease cases and disease-free controls. Allele and genotype
frequencies at each of these SNPs are then compared between the case group and the control
group to detect alleles or genotypes that are over-represented in one group versus the other.
A statistically significant association implies that there is a risk variant close to the
associated SNP (or plausibly that the associated SNP is the risk variant). Because common
variants are tested in GWAS, it is not designed for, and is inefficient at, finding rare genetic
variants that contribute to disease. The explicit testing of the common disease common
variant hypothesis is an important issue. Criticisms often leveled at GWAS include the
notion that this is hypothesis-free research or a fishing expedition, but these experiments
often generate important hypotheses.

The power of GWAS over previous candidate gene association studies is the ability of this
method to assay common genetic variability throughout the genome. This method is
accurate and broad enough that we can use haplotype maps of human populations47 to
predict the genotype of a large number of untyped variants in an individual. This means that
genotyping of a few hundred thousand single nucleotide polymorphisms (SNPs) in a subject
will allow us to predict (impute) with high confidence the genotype at more than a million
additional variants. While many common variants remain untyped and not imputed, linkage
disequilibrium between physically close variants often means that association signals at
variants surrounding the true risk variant are apparent. This raises two other considerations:
First, not all of the genome is covered in a GWAS, most modern arrays capture
approximately 90% of the common genetic variability in one way or another. Second,
GWAS identify loci not genes. A positive signal from a GWAS is therefore not always
within the known functional unit of a gene. Most often the closest gene to an association
signal, or a nearby gene that makes biological sense, is nominated as the functional unit of
the association. It is important, however, that this nomination remains just that, and does
not become dogma fixed in the absence of evidence to support the biologic association.

In relatively few instances do the predisposing loci identified by GWAS have coding changes
at their heart31. Rather it seems that these loci usually exert their effect either directly or
indirectly through modest effects on gene expression. For the sake of clarity in this article,
when we discuss the potential effect of genetic variability on gene expression we consider
expression to include variability in constitutive, induced and spatial expression, in addition to
splicing. Indeed there is a rough relationship between the size effect of a risk locus and the
likelihood that a coding change will underpin it, with very few loci that result in moderate
increases in risk (less than a doubling in risk for a trait) being explained through protein coding
changes. The fact that genetic variability in expression is likely to be the key factor in the
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elucidation of the mechanisms of low risk variability raise the importance of understanding
the effects of genetic variability on gene expression.

What has GWAS missed in complex disease?
While each complex disease has a unique genetic architecture, some authors have expressed
disappointment that GWAS findings often do not explain a large proportion of the heritability
of complex disease. As has been previously discussed there are several possibilities for this
discrepancy7: 1) Heritability calculations are often quite indirect and often involve simplified
models of genetic versus non-genetic contributors to disease35. 2) Additionally, allelic
heterogeneity is a potential confound of this method. Indeed, it as been a priori argued that the
presence of multiple risk haplotypes at any locus would prevent the identification of single risk
alleles through the GWAS approach36. Post hoc, one would now argue that, at any observed
locus, the alleles identified though GWAS might merely reflect a marginal fraction of risk and
that one should think of graded rather than dichotomous risk at each locus. 3) Most GWAS are
underpowered to detect minor disease associations. There is likely to be a large number of
common variants that impart very minor risk for disease outside the limits of what can be
reliably detected in GWAS. Collectively these might contribute a substantial amount of risk
for a complex disease, but would require enormously large cohorts in the range of hundred
thousand to have adequate power for detection. Such large sample sizes might be impractical
for many diseases, although there is evidence that this could be feasible for both schizophrenia
and bipolar disorder37. As we begin to identify minor risk alleles and recognize the presence
of multiple risk alleles at the same locus we will undoubtedly revise upwards our estimates of
the proportion of heritability we have explained. However, this does not preclude that a
substantial proportion of genetic risk in complex disease might result from rare alleles.

Moderate risk–low frequency alleles
Moderate risk and low frequency alleles were previously difficult to identify, both because
they do not have a big enough effect on disease risk to display clear Mendelian pattern of
inheritance in individual families (and thus are not amenable to linkage mapping), and because
individual variants are too rare to be efficiently identified by association strategies (although
multiple variants at the same locus might contribute to disease risk). These loci have been
described as the “dark matter of disease risk”7 and as such deserve a more extensive discussion
because only now are we beginning to identify them in a systematic fashion using exome or
genome sequencing, identification of insertions and deletions on arrays and by imputation
based on 1000 genomes (and similar) data (http://www.1000genomes.org/).

What is the likely composition of the unidentified genetic risk for disease?
We hypothesize that a substantial proportion of this undiscovered fraction will be heterozygous
loss-of-function alleles. Our argument for this is as follows: We now know that many common
low risk variants have modest effects (10%–20%) on gene expression (see below). Loss-of-
function variants effectively lead to a 50% loss of expression and would therefore generally
be predicted to have larger effects on disease risk. We also know that there are many ways of
disrupting gene function: whole or partial gene deletions, missense and splice site changes.
Each individual variant will be rare, though the combined burden of all the rare variants at each
locus could be substantial. Loss-of-function changes will necessarily have low population
frequencies, because homozygotes would suffer from severe, early onset disease consequences,
and so the most likely scenario for such loci is that rare and diverse loss of function alleles will
occur in any population. Perhaps the best example of a moderate risk, low frequency locus is
the occurrence of loss-of-function alleles of glucosecerebrosidase in Parkinson’s disease14.
This was identified through the clinical observation that first and second-degree relatives of
Gaucher’s disease have increased incidence of Parkinson’s disease.
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While in fact, the overall strategy for the systematic identification of moderate risk, low allele
frequency loci does not depend on the nature of the variant which is sought, its ease of
implementation does. Thus while we believe that exome and genome sequencing will be an
effective approach to identify a wide variety of low frequency risk alleles, we predict that
disease loci where the effect is mediated by loss-of-function alleles will be considerably easier
to categorize as disease associated than those mediated by gain-of-function alleles.

Towards the systematic identification of low frequency–moderate risk loci
The primary route for the identification of these loci is likely to be through exome sequencing
of large numbers of disease samples. This approach is likely to be augmented through the
identification of gene deletions and insertions using arrays (which are often run in conjunction
with exome sequencing). Furthermore, as imputation of data from sequencing projects
improves, this will facilitate the identification of deleterious variants through haplotype proxies
(haplotypes that can predict the presence of individual rare variants) in GWAS (see below). If
our hypothesis that many moderate risk loci are likely to be loss-of-function variants is correct,
it will make the identification of the moderate risk loci easier because loss-of-function changes
are easier to categorize both as a functional group within any one gene and from comparison
to mutations and genes known to be associated with recessive forms of disease.

Furthermore, this hypothesis suggests that prospective follow-up of the parents of children
with recessive diseases would provide an insight into how their morbidity and mortality differs
from the general population.

Some exceptions
The three categories of genetic predisposition detailed above appear to cover most categories
of genetic risk. However, some pathogenic loci do not fit within these three categories

High risk–common variants
A few common high-risk variants have been identified: apolipoprotein E and Alzheimer’s
disease38 and complement factor H in macular degeneration39–41. In both cases, a common,
high-risk coding variant has a large effect on disease risk. It is notable that both these diseases
are par excellence late onset diseases. Perhaps it is to be expected that common high-risk
variants which have large effects on disease risk should only be found in diseases which strike
after the childbearing age because otherwise there would be a strong selective pressure against
them. These loci were easily identifiable by GWAS. However, it is notable that at both loci
there is additional risk not accounted for by the major allelic variant42. This fact points to the
importance of sequencing all loci identified by all approaches to look for graded risk at each
locus.

De novo mutations
De novo mutations have always posed a problem for the systematic analysis of disease because
they are not inherited from parents and are difficult to find except in genes already associated
with disease. Array technologies now offer a rapid and comprehensive way to look for
insertions and deletions across the genome and these have proved fruitful especially in those
conditions, such as autism, in which there is strong selection against reproductive fitness43.
Whole exome sequencing will augment this systematic identification of loci in conditions in
which there is no family history.

Low risk–low frequency variants
We predict that higher risk variants are likely to alter the coding sequence of genes whereas
lower risk variants are likely to exert their effects through mild or moderate effects on gene
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expression or splicing. One might therefore expect that parts of the unidentified genetic risk
for disease are rare, non-coding alleles that alter risk for disease by a small amount. Of all the
genetic risk categories described here, this is probably the one for which it will be most difficult
to discern risk, protective, and null alleles. Likely most of these alleles will resist identification
by GWAS and by exome sequencing and full genome sequencing will be required. We believe
that whole genome sequencing should clearly be the aim because when the method becomes
both cheap and efficient it will be, in our opinion, the best way to identify all major risk allele
categories, replacing GWAS, positional cloning and exome sequencing. Individually low risk
rare variant alleles will be too infrequent and impart too little risk to associate with disease.
Thus the main difficulty in using genome sequencing as a method to identify risk alleles might
lie in the categorization of alleles at a single locus into risk, protective and benign groups, a
necessary intermediate step toward identifying biologic association. It is difficult to estimate
how difficult a problem this might be without being able to predict the immediate functional
consequences of DNA sequence changes (for e.g. on DNA structure, or dynamics of binding
to regulatory proteins). One might suggest that such a barrier will only be overcome by a
combination of large numbers of cases and controls, computational prediction of effects of
non-coding alleles, and functional assays of sufficient sensitivity to allow determination of
variant effects under many different conditions.

Goals of the genetic analysis
The genetic analysis detailed above has two essential goals: first, to get better at genetic
prediction of who is at risk for disease and second, to detail the biochemical pathways to
pathogenesis. While both are worthy aims, the first has perhaps been overstated. Identification
of pathways to disease is therefore a major goal of genetic analysis of disease because through
the identification of these pathways we hope to identify targets to intervene in these pathways.
This approach is already paying dividends. For example, autophagy has been identified in the
analysis of Crohn’s disease44 and the innate immune system in the analysis of Alzheimer’s
disease16, 17. Not only does the analysis of risk yield potential insights into the biochemical
pathways underlying a disease, they also lead to predictions as to what other genes might harbor
genetic risk for disease. Over time, as the jigsaw puzzle of disease risk gets pieced together,
the positioning of each subsequent piece should get easier.

Concluding remarks
Here, we have detailed how disease risk can now be systematically analyzed for all categories
of genetic risk. This would seem to imply that all what is now required is that the right samples
are collected and that funds are available to ensure the correct analysis. Clearly many practical
challenges remain for the promise of systematic analysis to be realized. Perhaps a greater
challenge, however, will be to integrate systematic genetic information with largely
unsystematic information on the environment. While we can now see how full genetic
information can be gathered, it is much more difficult to see how unstructured environmental
information can be understood. Hopefully, however, as we identify pathways to disease, this
will give us clues as to the crucial environmental exposures we need to consider for each
disease45.

Glossary

Common disease,
common variant
hypothesis

the idea that genetic risk for common diseases is driven in part by an
individual’s load of common risk variants. Individually such variants
alter risk by a minor amount, but collectively they might increase risk
substantially
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Exome
sequencing

also known as targeted exome capture, this method is an efficient
strategy to selectively sequence the coding regions and flanking intronic
sections of the human genome to identify novel genes associated with
rare and common disorders. An exome accounts for about 180 000
exons and for around 1% of the human genome which translates to about
30 megabases (Mb) in length. It is estimated that the protein-coding
regions of the human genome constitute about 85% of the disease-
causing mutations

Gain-of-function
alleles

classically associated with dominant forms of monogenic disease, gain-
of-function alleles are those variants that lead to a new function for the
gene product

Genome-wide
association
studies

also known as whole genome association studies (WGA), it is the
examination of genetic variation across a given genome using many
hundreds of thousands of single nucleotide polymorphisms (SNPs) on
DNA arrays. They are designed to identify genetic associations with
observable traits and require large numbers of cases to identify the
associated regions

Heritability the proportion of phenotypic variation in a population that is attributable
to genetic variation among individuals as opposed to environmental
factors

Imputation the prediction of missing genotype data based on genotype at physically
proximal tested SNPs

Linkage
disequilibrium

the non-random association of alleles at two or more loci, not
necessarily on the same chromosome. It is not the same as genetic
linkage, which describes the tendency of certain loci or alleles to be
inherited together. Genetic loci on the same chromosome are physically
close to one another and tend to stay together during meiosis, and are
thus genetically linked

Loss-of-function
alleles

sometimes also called null alleles and most classically associated with
recessive forms of disease, loss-of-function alleles are those alleles that
result in the gene product having less and sometimes no function.
Perhaps the most easily recognized loss-of-function alleles are those
that clearly disrupt the production of a protein product, for example
protein truncating mutations caused by frameshift or premature stop
mutations
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Figure 1.
Schematic of the genetic architecture landscape in disease and the applicability of current
methods to finding risk and causative alleles. Modified from the concept presented by Manolio
and colleagues7.
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