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Abstract

Heparin inhibits the migration and proliferation of arterial
smooth muscle cells and modifies the extracellular matrix.
These effects may be the result of heparin's effects on protein-
ases that degrade the matrix. We have previously reported that
heparin inhibits the induction of tissue-type plasminogen acti-
vator and interstitial collagenase mRNA. We have investigated
the possibility that heparin affects other members ofthe matrix
metalloproteinase family. Phorbol ester increased the levels of
mRNA of collagenase, 92-kD gelatinase and stromelysin as

well as the synthesis ofthese proteins. These effects were inhib-
ited by heparin, but not by other glycosaminoglycans, in a dose-
dependent manner. The induction of these matrix metallopro-
teinases was also inhibited by staurosporine and pretreatment
with phorbol ester indicating the involvement of the protein
kinase C pathway. In contrast, the 72-kD gelatinase was ex-

pressed constitutively and was not affected by phorbol ester or

heparin. Tissue inhibitor of metalloproteinases-1 was ex-

pressed constitutively and was slightly increased by phorbol
ester. It was not affected by heparin. Thus, heparin inhibits the
production of four proteinases (tissue plasminogen activator,
collagenase, stromelysin and 92-kD gelatinase) that form an

interdependent system capable of degrading all the major com-
ponents of the extracellular matrix. (J. Clin. Invest. 1994.
93:1987-1993.) Key words: arteriosclerosis * extracellular ma-
trix * gene expression regulation * glycosaminoglycans * protein
kinase C

Introduction

Heparin inhibits the proliferation and migration of arterial
smooth muscle cells (SMG)1 in vivo and in vitro (1-4) and
alters the amount and type ofextracellular matrix (5, 6). These
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1. Abbreviations used in this paper: APMA, p-aminophenyl-mercuric
acetate; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PMA,
phorbol myristate acetate; SMC, smooth muscle cells; TIMP-1, tissue
inhibitor of metalloproteinases-1; TRE, phorbol ester response ele-
ment.

effects may in part be accounted for by altered growth factor
binding (7) or inhibition ofgrowth factor receptor (8) or tran-
scription factor (9, 10) expression. Other possible mechanisms
include the release ofthe inhibitory factor transforming growth
factor /3 (TGFI3) from binding proteins ( 1) and the release
and removal from the cell layer of fibroblast growth factor and
the progression factor thrombospondin ( 12-14).

We have been investigating the hypothesis that heparin in-
terferes with the expression or action of extracellular protein-
ases. We have previously reported that heparin prevents the
increased expression of tissue-type plasminogen activator
(tPA; 15) and interstitial collagenase (16) mRNA caused by
treatment of arterial SMC with phorbol esters or serum. Hepa-
rin also inhibits tPA expression induced in vivo in SMC by
arterial injury ( 17). These effects ofheparin are specific for this
glycosaminoglycan, and expression of other genes such as uro-
kinase and platelet-derived growth factor A and B chains is not
affected by heparin.

In this study, we explored the possibility that heparin regu-
lates other members of the matrix metalloproteinase family
and determined that stromelysin (MMP3) and the 92-kD gela-
tinase (MMP9) are inhibited, while the 72-kD gelatinase
(MMP2) is not. In addition, tissue inhibitor ofmetalloprotein-
ases- 1 (TIMP- 1) is not affected by heparin.

Methods

Materials. Cell culture medium and additives were purchased from
Sigma Chemical Co. (St. Louis, MO) unless indicated otherwise. Elec-
trophoresis supplies were obtained from Bio Rad Laboratories (Rich-
mond, CA) and National Diagnostics, Inc. (Mannville, NJ). Fetal bo-
vine serum was purchased from either GIBCO BRL (Gaithersburg,
MD) or Hyclone Laboratories (Logan, UT). Phorbol myristate acetate
(PMA) and heparin (porcine type II) were from Sigma Chemical Co.
Dermatan sulfate, chondroitin 6-sulfate and chondroitin 4-sulfate were
from ICN (Costa Mesa, CA). Antisera to 92-kD gelatinase ( 18), stro-
melysin ( 19), collagenase (20), and tissue inhibitor of metalloprotein-
ases- 1 (21 ) were prepared and characterized as described previously. A
monoclonal antibody to 72-kD gelatinase raised against a polypeptide
of the proenzyme region was obtained from Molecular Oncology, Inc.
(Gaithersburg, MD).

Cell culture. Explants were made from the media ofthoracic aortas
ofmale baboons (Papio cynocephalus) about three years old and SMC
allowed to grow out in Dulbecco-Vogt medium with 10% fetal bovine
serum (22). After passage the cells were routinely maintained in 5%
calf serum and Mito+(Collaborative Research, Inc., Bedford, MA).
Cell lines were used between passages 4 and 13. For experiments, cells
were seeded at 20,000/cm2 in Dulbecco's Modified Eagle's/Ham's
F12 ( 1:1 ) with 6 Ag insulin/ml, 5 Ag transferrin/ml, and 1 mg ovalbu-
min/ml essentially as described (23) onto dishes precoated with 2%
calf serum (1 h at 37°C followed by a wash). After 3 d in this growth-
arrest medium, the medium was changed to fresh serum-free medium
with insulin and transferrin and additions as indicated. For PMA pre-
treatment experiments, 100 ng PMA/ml was added to the SMC 24 h
before the end ofthe 3-d growth-arrest period. To terminate an experi-
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ment the medium was removed, centrifuged at 1,500 rpm for 10 min
and aliquots of supernatant were frozen at -70'C. The cell layer was
washed once with phosphate buffered saline and the cells were scraped
into extraction buffer (0.1 M Tris, 0.2% Triton X-100, 200 U apro-
tinin/ml, 10 mM EDTA, 5 mM iodoacetamide, pH 8.1). Aliquots
were frozen at -70'C. Protein was measured (Bio Rad Laboratories)
with bovine serum albumin as a standard.

Electrophoresisl Western blotting/zymography. Electrophoresis
was performed as described by Laemmli (24) using 10% polyacryl-
amide gels. For zymography either casein or gelatin was incorporated
into the gels at 1 mg/ml. The gels were washed for 30 min with 2.5%
Triton X-100, incubated in 50mM Tris, 10mM CaCl2, pH 7.8 at 370C
for 18 h and stained with Coomassie blue R (25). Western transfers to
nitrocellulose were performed at 70 V for 3 h in 20% methanol, 25 mM
Tris, and 192 mM Glycine at room temperature. Blots were incubated
with appropriate antisera to collagenase, stromelysin, TIMP-1 (each at
1:2,500), or 92-kD gelatinase (1:500). A monoclonal antibody was
used against 72-kD gelatinase (1 ,ug/ml). To detect 92-kD gelatinase
the medium was concentrated 10-fold by a combination ofusing Aqua-
cide I on the medium in dialysis bags (Calbiochem-Novabiochem
Corp., LaJolla, CA) followed by centrifugal concentration (Centricon
10; Amicon Corp., Beverly, MA).

Northern analysis. Total RNA was isolated (26) and transferred to
nylon membranes (15) for analysis as described previously. Specific
cDNA probes for collagenase (2.05 kb; 27), 92 gelatinase (0.56 kb;
28), stromelysin (1.5 kb; 29), 72 gelatinase (2.18 kb; 30), TIMP-1 (0.7
kb; 31), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH;
32) were labeled by nick translation with 32P. Blots were quantitated
using Phosphorlmager analysis (Molecular Dynamics, Inc., Sunny-
vale, CA) with standardization against GAPDH.

Radioimmunoprecipitation. For metabolic labeling experiments
medium on growth arrested SMC was changed to the same medium
with insulin and transferrin but lacking methionine. [35S]methionine
(50 ,Ci/ml; Amersham, Arlington Heights, IL) was added with other
factors as indicated such as 10% dialyzed fetal bovine serum (dialyzed
24 h against 500 vol of 0.05 M Tris, 0.15 M NaCl, pH 7.5 to remove
unlabeled methionine).

Collagenase ELISA. ELISA for interstitial collagenase was per-
formed on 16-h conditioned medium as described previously (33).
This assay recognizes both free collagenase and collagenase bound to
tissue inhibitor of metalloproteinases (TIMP).

Statistical analysis. t-tests were performed using SPSS/PC+
(SPSS, Inc., Chicago, IL). All values are the mean±SEM of the indi-
cated number of experiments.

Results

Western and zymographic analysis ofthe effect ofheparin on
the production of matrix metalloproteinases. To determine
whether heparin regulates the production of matrix metallo-
proteinases, we performed Western and zymographic analysis.
Collagenase, stromelysin, and 92-kD gelatinase were undetect-
able in the medium of control cells. Treatment with PMA dra-
matically increased these enzymes as documented by gelatin
zymography for collagenase and 92-kD gelatinase (Fig. 1 A)
and by casein zymography for stromelysin (Fig. 1 B). Positive
identification ofcollagenase and 92-kD gelatinase or ofstrome-
lysin by gelatin or casein zymography, respectively, was made
by specific immunoprecipitation of each enzyme by their re-
spective antisera. In addition, all gelatinase and caseinase activi-
ties were inhibited by 10 mM EDTA (data not shown). The
apparent molecular weights of collagenase, 92-kD gelatinase,
and stromelysin suggest that each enzyme is in the inactive
proform. Treatment with 1 mM p-aminophenylmercuric ace-
tate (APMA) converted the 96-kD zymogen to the 85-kD ac-
tive form (Fig. 2).
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Figure 1. Effect of PMA and heparin on production of metallopro-
teinases. Growth-arrested SMC were treated with control medium
(lane 1), 5 ng PMA/ml (lane 2), or with 5 ng PMA/ml + 50 ,g/ml
heparin (lane 3). After 16 h medium was collected and subjected to
electrophoresis in gelatin (A) or casein (B) containing gels. After in-
cubation at 370C for 18 h the gels were stained. Note the induction
by PMA and inhibition by heparin of 92-kD gelatinase (96 kD) and
collagenase (50 kD) in A and of stromelysin (55 kD) in B. These
results are representative of 7-16 experiments.

Simultaneous treatment ofSMC with heparin inhibited the
PMA-mediated induction of collagenase, stromelysin, and 92-
kD gelatinase production (Fig. 1). In addition, the measure-
ment of collagenase protein in conditioned medium by ELISA
for SMC treated for 16 h with PMA or PMA and heparin gave
values of 641±92 and 137±42 ng/mg cellular protein, respec-
tively, (mean±SEM of three experiments, P < 0.01 PMA vs
PMA+heparin) compared to control values of 137±10. These
results for collagenase were confirmed by Western analysis.
92-kD gelatinase and stromelysin protein were also decreased
by heparin (Fig. 3). Control experiments showed that addition
of 100 ,g heparin/ml to medium from PMA-treated SMC be-
fore electrophoresis had no effect on the activity or protein
detected by zymography or Western blotting.

In contrast with the other metalloproteinases the 72-kD
gelatinase was expressed constitutively in the conditioned me-
dium and was not reproducibly affected by PMA or heparin
(Fig. 1 A). Heparin treatment of control cells had no effect on
the constitutive expression of 72-kD gelatinase, nor did it in-
duce the expression ofcollagenase, stromelysin and 92-kD gela-
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Figure 2. Effect ofAPMA on
processing of metalloproteinases.
Conditioned medium from
PMA (5 ng/ml) treated SMC
was collected after 16 h and in-
cubated with (lane 2) or without
(lane 1) 1mMAPMA at 37C
for 1 h. Samples were then ana-
lyzed by gelatin zymography.
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A B C kD Figure 3. Effects of PMA and
-96 heparin on 92-kD gelatinase,

stromelysin, and collagenase
_;1 _55 protein analyzed by Western.

50 Medium from SMC treated for
16 h with control medium
(lane 1), 5 ng PMA/ml (lane

1 2 3 1 2 3 1 2 3 2), orwith 5 ng PMA/ml + 50
Mg heparin/ml (lane 3) was

subjected to electrophoresis, transferred to nitrocellulose membranes,
and stained by antiserum to stromelysin (A), collagenase (B), or 92-
kD gelatinase (C). These results are representative of2-8 experiments.

tinase (data not presented). By zymography major and minor
bands of activity were present at 66 and 60 kD, respectively
(non-reducing conditions). After APMA activation of me-
dium from either control (not shown) or PMA-treated SMC
(Fig. 2) a 62-kD form appeared, as observed with human fibro-
blasts (34). The antibody against a peptide ofthe pro-region of
the 72-kD gelatinase stained only the 66-kD form (Fig. 4) and
specifically immunoprecipitated the 66-kD form observed by
gelatin zymography (data not presented). This suggests the 66-
kD form represents the same pro-72-kD gelatinase seen in hu-
man fibroblasts (34, 35). The 60-kD form probably represents
endogenously activated gelatinase as suggested by Overall et al.
(34) and Brown et al. (36). The 72-kD gelatinase was also
found in the cell layer, while collagenase, stromelysin, and the
92-kD gelatinase were not (data not shown).

Heparin inhibits the synthesis ofcollagenase, 92-kD gelatin-
ase, and stromelysin. To determine whether heparin inhibits
the biosynthesis ofcollagenase, stromelysin and 92-kD gelatin-
ase, we metabolically labeled SMC with [35S] methionine. The
products were immunoprecipitated with specific antisera for
the enzymes and analyzed by gel electrophoresis. Collagenase,
92-kD gelatinase, and stromelysin synthesis could not be de-
tected in growth-arrested SMC; these observations confirm the
results from Western and zymographic analysis. Serum and, to
a much greater extent, PMA increased synthesis of stromelysin
(Fig. 5 A) and collagenase (Fig. 5 B), the latter showing a
characteristic doublet of glycosylated and nonglycosylated
forms previously observed (20). Detection ofthe 92-kD gelatin-
ase required concentrating the medium ofPMA treated SMC
(Fig. 5 C). Concomitant treatment with heparin largely pre-
vented the PMA-induced biosynthesis of all three metallopro-
teinases (Fig. 5, A-C). Cell layers did not contain detectable
levels ofany ofthese enzymes (data not presented). Total TCA
precipitable 35S-labeled protein in the medium was not de-

kD
Figure 4. Effects ofPMA and heparin on
72-kD gelatinase protein. Medium from
SMC treated for 16 h with either control
medium (lane 1), 5 ng PMA/ml (lane
2), or with 5 ng PMA/ml + 50 Ag hepa-
rin/ml (lane 3) was analyzed by Western
blotting. Membranes were stained with a
monoclonal antibody to a peptide of the
pro-region of the 72-kD gelatinase. This
result is representative of three experi-

1 2 3 ments.

A kD FigureS. Effects of PMA, FBS,
and heparin on biosynthesis

- NW.t5>__t 55 of stromelysin, collagenase and
B 92-kD gelatinase. Growth-

m _.. arrested SMC were treated with
either control medium lacking

C methionine (lane 1), 10% FBS
-96 (lane 2), 10% FBS + 50 ug

heparin/ml (lane 3), 5 ng
1 2 3 4 5 PMA/ml (lane 4), or 5 ng

PMA/ml + 50 ug heparin/ml
(lane 5) in the presence of 50 gCi [35S]methionine/ml. After 16 h
medium was immunoprecipitated using antisera to stromelysin (A),
collagenase (B), or 92-kD gelatinase (C). These results are represen-
tative of at least two experiments.

creased by heparin (113±2% and 96±14% of serum and PMA
alone, respectively; mean±SEM of 3-5 experiments; P
> 0.05).

Since in these experiments SMC were metabolically labeled
for 16 h, the decrease in proteinase expression could have been
due to decreased synthesis, increased degradation, or both. To
determine if significant degradation of enzymes occurred dur-
ing this time, medium of [35S] methionine labeled, PMA-
treated SMC was removed after 16 h and another 5 ng PMA/
ml was added. The conditioned medium was then added to
fresh SMC with or without added heparin. There was no con-
sistent loss of collagenase or stromelysin from the medium for
up to 24 h whether or not heparin was present (data not pre-
sented). These findings support the conclusion that heparin
inhibited the synthesis but not the degradation of these pro-
teins. In addition, the lack of a change in molecular weight of
the proteinases indicates there was no activation of the proen-
zymes under these conditions.

Stimulation ofstromelysin and 92-kD gelatinase mRNA by
PMA and inhibition by heparin. Having shown that PMA in-
creases collagenase, 92-kD gelatinase, and stromelysin biosyn-
thesis, we next investigated whether these effects were the result
ofincreased mRNA as has been observed for collagenase ( 16).
As shown in Fig. 6, 92-kD gelatinase and stromelysin mRNA
was increased from undetectable levels by PMA. Treatment
with heparin inhibited the induction by PMA of stromelysin
(by 84 and 78%; n = 2) and 92-kD gelatinase mRNA (by 62
and 71%; n = 2).

Effects ofheparin: specificity and dose-response. As previ-
ously observed for collagenase and tPA ( 15, 16) the inhibition
of stromelysin and 92-kD gelatinase (Fig. 7) was specific for
heparin and was not seen with chondroitin sulfate. The effect
of heparin was also dose dependent and was maximal at 50-
100 jg/ml (data not presented).

The effects ofserum and PMA on stromelysin and 92-kD
gelatinaseproduction are mediated in part byprotein kinase C.
The induction of collagenase by serum and PMA in SMC is
mediated at least in part by protein kinase C ( 16) as in other
cell types ( 18). Therefore, we investigated the effects ofstauro-
sporine and pretreatment with PMA to determine whether pro-
tein kinase C was involved in the stimulation of stromelysin
and 92-kD gelatinase. Levels of the 92-kD gelatinase and stro-
melysin were decreased by staurosporine and by pretreatment
of cells with 100 ng/ml PMA for 24 h, which is consistent with
a role for protein kinase C (Fig. 8).
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A B C Figure 6. Effect of hep-
28S- arin on induction of

stromelysin, 92-kD gel-
"iBSE atinase and 72-kD gela-

GAPDH- 5 _tinase mRNA. SMCW|WW treated with either con-
1 2 3 1 2 3 1 2 3 trolmedium(lane 1),

5 ng PMA/ml (lane 2),
or with 5 ng PMA/ml + 100 gg heparin/ml (lane 3) were harvested
at 16 h for total RNA extraction. 20 ,g RNA per lane was loaded and
blots were hybridized for 92-kD gelatinase (A; 2.8 kb), stromelysin
(B; 1.9 kb), or 72-kD gelatinase (C; 3.4 kb). Levels ofGAPDH are
shown as controls for loading. These results are representative of two
experiments.
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Figure 8. Effects of protein kinase C inhibition on the induction of
stromelysin and 92-kD gelatinase. Growth arrested SMC were treated
with either control medium (lane 1), 5 ng PMA/ml (lanes 2 and 5),
5 ng PMA/ml + 14 nM staurosporine (lane 3), 5 ng PMA/ml + 35
nM staurosporine (lane 4) or 5 ng PMA/ml + 100 ,g heparin/ml
(lane 6). Some SMC were pretreated for 24 h with 100 ng PMA/ml
(lane 5). Medium was harvested at 16 h and analyzed by gelatin (A)
or casein (B) zymography. A second experiment gave the same results.

The effects ofPMA and heparin on TIMP-J protein and
synthesis. Having demonstrated that heparin inhibits the pro-
duction of several metalloproteinases, we investigated the ef-
fects of heparin on a major inhibitor of these proteinases-
TIMP- 1. TIMP-1 mRNA (0.9 kb) and protein (24,26 kD) was
expressed constitutively by the growth-arrested cells (Fig. 9,
A-C, lane 1). PMA increased TIMP- 1 mRNA, protein, and
synthesis about twofold (Fig. 9, A-C), and addition ofheparin
had no effect.

Discussion

We have shown that baboon arterial SMC, like other arterial
SMC (37-41), express the matrix metalloproteinases collage-
nase, stromelysin, and the 72- and 92-kD gelatinases, as well as
the inhibitor TIMP- 1. SMC also express the plasminogen acti-
vators, urokinase and tPA (15, 42,43). The substrates for these
enzymes comprise the major components of the extracellular
matrix ofSMC, including collagens I through V, elastin, proteo-
glycans, and various glycoproteins. SMC have been shown to
degrade the extracellular matrix by plasmin-dependent and -in-
dependent mechanisms (44). There is an intricate relationship
between these enzymes with regard to the regulation ofactivity.
For example, plasmin activates collagenase, 92-kD gelatinase,
and stromelysin (45-47) and stromelysin activates collagenase
(48, 49) and 92-kD gelatinase (50). Urokinase may also acti-
vate 72-kD gelatinase (51, 52). In addition, collagenase is able
to degrade various serpins (53) and several serine proteinases
can degrade TIMP- 1 (54) illustrating possible regulation ofthe
inhibitory side of proteinase systems.

It is of great significance that heparin has inhibitory effects
on the production offour of these six enzymes, namely collage-

B kD
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Figure 7. Specificity of heparin's
inhibition of stromelysin and 92-
kD gelatinase production. Growth
arrested SMC were treated with
control medium alone (lane 1), 5
ng PMA/ml (lane 2), PMA and
100 Ag/ml heparin (lane 3), PMA
and 100 Asg/ml chondroitin-4-sul-
fate (lane 4), or PMA and 100
gg/ml chondroitin-6-sulfate (lane
5). After 16 h medium was har-
vested for gelatin (A) or casein (B)
zymography. A second experiment
gave the same results.

nase, stromelysin, 92-kD gelatinase, and tPA. Heparin also in-
hibits the production ofa molecule immunologically similar to
major excreted protein (MEP)/cathepsin L (55), which is a
thiol proteinase able to degrade collagen at acid pH. The inhibi-
tory effects of heparin on the synthesis and secretion of these
enzymes might explain why extracellular matrix accumulates
to a greater extent in the intima of injured carotid arteries of
rats treated with heparin compared with control (6). Heparin
may also have direct effects on these enzymes. It can displace
bound urokinase (56). Heparin may alter the activity of the
metalloproteinases (57) as it does the plasminogen activators
(58). Finally, heparin probably does not function by increasing
the concentration of proteinase inhibitors since heparin does
not alter production ofTIMP- 1 or plasminogen activator inhib-
itor- I in baboon SMC (15).

The requirement of proteinases for the migration of cells
through extracellular matrices has been demonstrated for
various tumor cells (59), monocytes (60), embryonic cells
(61), and endothelial cells (62). A role for matrix metallopro-
teinases in proliferation is less clear, although stromelysin has
also been shown to play a role in dermal papilla cell prolifera-
tion in vitro (63). Inhibition of metalloproteinases with syn-
thetic inhibitors inhibits SMC proliferation and SMC migra-
tion from medial explants of rabbit aorta in vitro (38). We
have also found matrix metalloproteinase inhibitors inhibit
SMC migration from primate aortic explants (64). In these
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-24
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Figure 9. Effects of PMA and hep-
arin on TIMP- 1. Growth-arrested
SMC were treated with control
medium (lane 1), 5 ng PMA/ml
(lane 2), or with 5 ng PMA/ml
+ 100 ,ug heparin/ml (lane 3). To
measure TIMP synthesis basal
medium without methionine and
containing 50,uCi [35S]-
methionine/ml was used. After 16
h total RNA was extracted from
the cell layer for Northern analysis
(A). Northern blots were probed
with TIMP-1 cDNA followed by
probing with GAPDH as a control
for loading. Medium was har-
vested for Western blotting (B) or
for radioimmunoprecipitation and
autoradiography (C). These re-
sults are representative of two ex-
periments each.
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explant systems where metalloproteinases play a role in migra-
tion, heparin increases the lag time before SMC migrate from
the tissue (64, 65), consistent with the hypothesis that heparin
decreases SMC migration by inhibiting these enzymes. Treat-
ment of aortic explants with elastase (65) or bacterial collage-
nase/elastase (R. D. Kenagy and A. W. Clowes, unpublished
data) decreases the lag time before SMC migrate from explants
further suggesting a role for matrix degrading enzymes in mi-
gration.

Heparin inhibits collagenase and tPA production at the
transcriptional level (15, 16). Heparin appears to act on these
proteinases via the protein kinase C pathway and the AP-1
family oftranscription factors. Whether the changes in mRNA
ofstromelysin and 92-kDgelatinase reflect transcriptional regu-
lation remains to be determined. Heparin may also regulate
SMC proliferation and other genes by interfering with this
pathway (9, 66-68) at a point distal to protein kinase C itself
(9, 67), though this is not certain (69). Angel et al. (27) have
described a phorbol ester response element (TRE) which can
mediate PMA induction of collagenase. The TRE binds the
trans-acting factor AP- 1, which is a dimer of members of the
fos and jun families of transcription factors (70). Stromelysin
(71), 92-kD gelatinase (72), and tPA (73) also have TRE or
TRE-like sequences in their 5' regulatory regions and the ef-
fects ofPMA and serum on collagenase (16), tPA (15), stro-
melysin, and 92-kD gelatinase (see Fig. 9) are inhibited by
protein kinase C inhibitors such as staurosporine and chronic
treatment with high levels of PMA. The lack of a TRE site in
the 5' region of72-kD gelatinase (74) is consistent with the lack
of induction of this gene by PMA and confirms results with
human fibroblasts (18). Heparin has been shown to inhibit
transcription from a multiple TRE construct in transient trans-
fection studies (16). However, the regulation of collagenase
and tPA also involves complex cooperation between the TRE
and other sites such as AP-2 and PEA-3 (73, 75, 76). Thus, it is
not surprising that heparin does not indiscriminately inhibit
genes containing a TRE. For example, TIMP- I has a TRE-like
element (77) and is not affected by heparin. In addition, other
regulatory sites may be involved. For example, collagenase
(78), 92-kD gelatinase (72), stromelysin (78), and tPA (79)
have TGFB inhibitory elements in their 5' regulatory regions,
while the 72-kD gelatinase does not (80). Because heparin can
inhibit SMC proliferation by releasing TGF,# from inhibitory
binding proteins (11) and latent TGFB is activated by plasmin
(81), TGFB may play a role in the inhibition of these protein-
ases by heparin. More recently, stimulation ofthe AP-l factor
JUN-B by PMA has also been found to be inhibited by hepa-
rin (82).

Whether heparin is acting outside or inside the cell has not
been determined. SMC bind and internalize heparin (83).
Also, it is of interest to note that endothelial and SMC heparan
sulfate possess inhibitory activity for SMC growth (84, 85).
This observation raises the possibility that heparin-like mole-
cules may play a role in pathophysiological growth control per-
haps through uptake and nuclear translocation of the mole-
cule. This possibility is further reinforced by studies of a nu-
clear heparan sulfate demonstrating an inverse correlation of
concentration with hepatocyte proliferation (86).

In summary, heparin suppresses the stimulation of four
different extracellular matrix degrading proteinases-intersti-
tial collagenase, stromelysin, 92-kD gelatinase, and tPA-
while having no effect on TIMP-1. This is of significance for

matrix metabolism and probably for migration of SMC
through matrix. Exploring the similarities in the 5' regulatory
regions of these genes compared with differences from other
PMA inducible, heparin insensitive genes may lead to a better
understanding of the molecular mechanism of heparin's ac-
tions.
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