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Abstract
Inversion recovery sequences that vary the inversion time (ti) have been employed to determine T1
and, more recently, quantitative magnetization transfer (qMT) parameters. Specifically, in
previous work, the inversion recovery pulse sequences varied ti only, while maintaining a constant
delay (td) between repetitions. T1 values were determined by fitting to an exponential function,
and qMT parameters were then determined by fitting to a bi-exponential function with an
approximate solution. In the current study, new protocols are employed, which vary both ti and td
and fit the data with minimal approximations. Cramer-Rao lower bounds (CRLB) are calculated to
search for acquisition schemes that will maximize the precision efficiencies of T1 and qMT
parameters. This approach is supported by Monte Carlo simulations. Measurements on MnCl2
samples verified the optimal T1 schemes. The optimal qMT schemes are confirmed by
measurements on a series of cross linked bovine serum albumin (BSA) phantoms of varying
concentrations. The effects of varying the number of sampling data points are also explored, and a
rapid acquisition scheme is demonstrated in vivo. These new optimized quantitative imaging
methods provide an improved means for determining T1 and MT parameter values compared to
previous inversion recovery based methods.
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Introduction
Magnetization Transfer (MT), or spin exchange between protons in different tissue pools,
can serve as a contrast mechanism in biological systems. MT between free water and a
broad, immobile pool of protons on macromolecules, was first demonstrated by Wolff and
Balaban (1), who measured the equilibrium magnetization (Ms) of water protons after
applying continuous irradiation. Subsequently, Henkelman et al. (2) developed a two-pool
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model and performed measurements on agar gels. By varying the RF offset frequency and
amplitude; they determined the relaxation and exchange rates of the two proton pools. This
determination of the underlying sample parameters is referred to as quantitative
magnetization transfer (qMT).

Several qMT imaging methods have been developed. Sled and Pike (3,4) extended the
technique of Henkelman et al. to pulsed-MT, in which off-resonance saturation pulses are
interleaved with on-resonance excitation pulses. Ramani et al. (5) combined the method of
Sled and Pike with an analysis similar to Henkelman et al. Gloor et al. (6) developed a qMT
imaging method based on balanced steady state free precession (SSFP), while Ropele et al.
(7) developed a method based on stimulated echoes. Gochberg et al. (8-10) developed a
selective-inversion-recovery (SIR) technique, a qMT imaging method based on measuring
the transient response to an RF pulse that selectively inverts the free water protons. MT
induces bi-exponential recovery of longitudinal magnetization in most tissue types,
including in vitro collagen (11,12), muscle (11), cartilage (13) and lung (14), and in vivo
white matter (WM), grey matter (GM) and muscle (10). Prantner et al. (15) examined and
dismissed non-MT explanations for this bi-exponential in brain matter. In the most recent
version of the SIR method (10), a fast-spin-echo (FSE) readout is applied, which leaves both
the liquid and solid proton pools saturated and therefore facilitates determination of qMT
parameters using shorter repetition times.

The precision and accuracy of the estimates of the qMT parameters depend on several
experimental factors, such as the MT pulse power (ω1) and offset frequency (Δ) for pulsed-
MT, and the inversion recovery time (ti) and pre-delay time (td) values for SIR-FSE. In most
published MT protocols, the set of sampling points is selected empirically. Cramer-Rao
lower bounds (CRLB) (16) provide a general approach to assess this dependence on
acquisition parameters, by setting a lower limit on the variance of any parameter estimate
based on model fitting. This method has been used to optimize acquisition schemes for T1
measurements with constrained scan time (17), T2 measurements (18), diffusion coefficients
(19), and echo spacing for multi-echo imaging (20). In Sled and Pike’s pulsed-MT work (4),
they used only two values of ω1, each with a range of Δ. Based on Ramani’s model (5), the
pulsed-MT technique was optimized by Cercignani et al. (21) by calculating the CRLB to
obtain optimal acquisition protocols.

For the SIR-FSE technique (10), Gochberg et al. used a constant td and varied ti only. The
experimental data were then fitted to a bi-exponential equation to determine first-order
approximations of the qMT parameters. The current paper focuses on the optimization of
this technique (10), introduces a new data analysis method as part of this optimization, and
employs a new protocol that varies both ti and td and fits the data with minimal
approximations. CRLB are calculated to search for the variations in both ti and td that will
maximize the precision efficiency. The optimal schemes are supported by Monte Carlo
simulations, and confirmed by measurements on BSA phantoms. It is further demonstrated
that, in practice, only five sampling points are required to determine qMT parameters and is
confirmed with in vivo rat brain measurements.

SIR-FSE is essentially an inversion recovery (IR) method with the assumption of bi-
exponential recovery due to MT. Independently varying ti and td also improves the precision
efficiency of simple T1 measurements, when assuming a single exponential recovery. While
this method is often replaced by the more rapid single shot (22,23) and variable-flip-angle
(VFA) methods (24-26), we include a variable ti and td analysis of T1 here for its inherent
interest and as an introduction to the more complex qMT case.
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Theory and Methods
IR Imaging Sequence

Conventionally, T1 is determined by using an IR sequence (similar to Figure 1) with td ≥ 5
T1, during which the magnetization returns to its equilibrium state before the next sequence
repetition. Previous work has optimized T1 measurement efficiency using constant td or
constant repetition time (TR) (17). Here we will take a more general approach, by varying
both ti and td independently without constraint. For an IR with a spin-echo (SE) or fast-spin-
echo (FSE) readout, the measured signal is:

[1]

where M0 is the magnetization of the equilibrium state, and Sf (≈ −1) quantifies the effect of
the inversion pulse.

SIR-FSE qMT Imaging Sequence
The SIR-FSE pulse sequence (10) is illustrated in Figure 1. In order to model the signal
when TR is short, an essential insight is that at the end of each repetition, both the
macromolecular and free water pools have zero z-magnetization. The assumption has been
discussed numerically and verified previously (10).

The qMT data analysis is based on a two-pool model. The coupling between the pools is
modeled by adding coupling terms to the Bloch equations, as given in (9,10):

[2]

The subscripts f and m refer to the free and macromolecular proton pools. Mf(t) and Mm(t)
are the longitudinal magnetizations at time t, whose equilibrium values are Mf∞ and Mm∞.
R1f and R1m are the longitudinal relaxation rates of the free and macromolecular pools when
there is no MT between them, and kfm and kmf are the rates of magnetization transfer
between them. The pool size ratio (pm/pf) is defined by kfm/kmf. The recovery of the
magnetization of the free pool is described by a bi-exponential decay function when there
are no RF pulses:

[3]

where

[4]
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where  and  are the fast and slow recovery rates, respectively. The magnetization of the
macromolecular pool is described by a bi-exponential equation as well, by exchanging f and
m subscripts in Eqs. [3] and [4].

Applying Eqs. [3] and [4] to each free evolution period gives the signal as function of the
qMT parameters, allowing us to investigate the problem and fit the qMT parameters without
taking the first-order approximations utilized previously (8-10). Specifically, both pools
have zero z-magnetization at the end of the FSE train, their magnetization at the end of td is
written as

[5]

The effect of the inversion pulse is,

[6]

where Sf and Sm are the inversion coefficients of the free and macromolecular pools, and 
and  are the time just before and after the inversion pulse, respectively.

The model discussed above contains seven parameters: R1f, R1m, pm/pf, kmf (kfm is equal to
kmf × pm/pf), Sf, Sm, and Mf∞. Among these parameters, the signal dependencies on Sm and
R1m are weak, as shown below. The weak dependence on R1m is also the case in the pulsed
saturation sequence (3-5,21). In this work, R1m is set to be equal to R1f for data analysis.
Previous results (10) calculated an Sm of 0.83 ± 0.07 from numerical simulations, for a 1-ms
hard inversion pulse on a solid pool with a Gaussian lineshape and a T2 between 10 μs and
20 μs. There are then five remaining qMT parameters to fit: R1f, pm/pf, kmf, Sf and Mf∞. Sf is
expected to be −1, but due to B0 and B1 inhomogeneities, it has to be fit from experimental
data. Finally, combining Eqns. [3-6] for each time period gives a signal function, which we
use to fit the qMT parameters directly without first-order approximations.

CRLB Theory
The optimization technique presented in this work is similar to that of Cercignani et al. (21),
but is applied to a different pulse sequence and includes acquisition time effects when
calculating parameter precisions. For a set of particular qMT parameters, the CRLB derived
objective function is:

[7]

where Q is the number of fitted parameters, and pj is the jth parameter. Tcost(scheme) is
given by:

[8]
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where N is the number of sampling points, tfse is the length of the FSE train, and ti,n and td,n
are the nth ti and td values. The Fisher information matrix J is defined by its jkth element

[9]

where pj is the jth parameter, x are the (ti, td) sampling points, and S are the signal function.
The standard deviation (SD) of noise, σ is assumed to be independent of x. As pointed out in

(21), the essence of the term  in Eq. [7] is  where  is the variance
of the parameter pj. By including the time cost term in Eq. [7], the objective function
becomes essentially the inverse of precision efficiency (precision-per-unit-time (27)). The
optimization process yields the maximum precision efficiency, by searching for the
minimum value of the objective function.

For optimization of heterogeneous samples, CRLB objective functions are constructed in a
similar form as in (21):

[10]

Where l indexes parameter sets that characterize different tissues. Minimizing Vmax by
varying the sample points x would maximize the precision efficiency for the worst
combination of parameters.

Optimization Technique
The optimization process searches for the optimal acquisition schemes, x1, …, xN that
minimize V and Vmax defined in Eqs. [7] and [10]. A simulated annealing algorithm (28)
was implemented in Matlab 2008b (The Mathworks, Natick, MA, USA) to search for the
optimal acquisition schemes. It evaluates 500 objective functions at each temperature T by
randomly varying x1, …, xN, i.e., all ti and td values. The objective function is randomly
perturbed by using a Metropolis algorithm (29), which allows uphill transitions and
increases the possibility of reaching a global minimum. The temperature decreases
according to the annealing schedule

[11]

where 0 < ε << 1, until it reaches the final temperature. The initial and final temperatures are
set as 100 and 0.001. To reduce the effects of local minima, the optimization is repeated
from several random starting points. The scheme with a minimum objective function value
is selected. The simulated annealing does not guarantee a global minimum, but we do not
expect dramatic improvement in the objective function values.

By utilizing this technique, a series of optimization processes were performed. We
optimized T1 precision efficiency (using Eqs. [1, 7-10]) by varying all ti and a single td
values, and by varying all ti and td values. A set of typical parameters values are: Mf = 1, T1
= 1, and Sf = −1. The optimization of parameter ranges are: M0 ∈ [0.5, 1.5], T1 ∈ [0.5, 1.5],
and Sf ∈ [−0.85, −1].
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For qMT precision efficiency optimization, we searched for optimal acquisition schemes
that have approximately the same total acquisition time as the original scheme given in (10),
by repeating the optimization process while varying the number of sampling points and then
selecting the scheme that most closely matches the total acquisition time of the original. A
set of typical qMT parameters (roughly those of WM) are: R1f = 0.5 Hz, pm/pf = 0.10, kmf =
30 Hz, Sf = −0.95, and Mf∞ = 1.0, with R1m = 0.5 Hz and Sm = 0.83. R1f and R1m values are
smaller than the values presented in (9) because the measurements in this work are
performed at higher magnetic field strengths. Mf∞ is simply set to 1.0 since it is only a
scaling factor. The optimization of parameter ranges are: R1f ∈ [0.4, 1.0], pm/pf ∈ [0.05,
0.20], kmf ∈ [20, 40], Sf ∈ [−1.0, −0.9], and Mf∞ ∈ [0.6, 1.5]. This process takes more time
because it has to calculate 33 parameter combination sets (25 = 32 combinations of the listed
parameter values plus one set of midpoint values). The lower limit of ti and td are set as 4 ms
and 10 ms, respectively. These parameter ranges encompass those of the (WM) and GM
(10), so the optimal schemes are directly applicable to in vivo brain measurements.

Imaging methods
In the SIR-FSE sequence diagrammed in Figure 1, we applied 16 refocusing pulses with 10-
ms spacing. We acquired data only during the first eight echoes, applying an additional eight
pulses in order to ensure zero z-magnetization in both the free water and macromolecular
pools at the end of the echo train. The initial inversion pulse is a 1-ms 180° hard pulse. The
90° and 180° refocusing pulses are 1-ms 5-lobe sinc pulses, with time bandwidth product
(TBW) of 5.92 and 4.44, respectively. For each measurement, two dummy scans were
applied and four or eight acquisitions were averaged, with phase cycling of the 90° and
acquisition, but no cycling of the initial inversion pulse (in order to destroy residual
transverse magnetization). Gradient spoilers were also applied after the inversion pulse.

T1 measurements were made on a 9.4 T Varian system with a 38-mm litz coil. MnCl2
samples of 0.058 mM and 0.116 mM were prepared. Images were acquired with a FOV of
28 × 28 mm2, slice thickness of 2 mm, and data matrix of 32 × 32. A conventional scheme,
with a long td of 6 s, and ten logarithmic-spaced ti values varied between 1 and 6 s, was
applied, with four acquisitions averaged. In addition, eight optimized schemes were
developed and applied. Four of the schemes were optimized for M0 = 1, T1 = 1 s, and Sf =
−1, and four for the parameter ranges M0 ∈ [0.5, 1.5], T1 ∈ [0.5, 1.5], and Sf ∈ [−0.85, −1].
Each set of four consisted of one optimization of ti values with a single td of 1 s, and three
optimizations where both ti and td were allowed to vary amongst 10, 5, or 3 values. For ten-
point optimal schemes, four acquisitions were averaged, while for five- and three-point
schemes, eight acquisitions were averaged, to achieve roughly similar SNRs for a
comparison.

A series of bovine serum albumin (BSA) samples served as test phantoms for the qMT
measurements. The BSA samples have percent weights of 10, 15, 20, and 25, with
corresponding BSA to water ratios of 0.11, 0.18, 0.25, and 0.33. An additional sample of
15% BSA with 0.05 mM MnCl2 was measured as well in order to separate MT from
relaxation effects. All samples were cross-linked using 25% glutaraldehyde. Measurements
on these BSA samples were performed on a 4.7 T Varian system with a 63-mm quad coil.
Images were acquired with FOV of 40 × 40 mm2, slice thickness of 2 mm, and data matrix
of 64 × 64. Two sets of experiments were performed on the BSA phantom: 1) a comparison
of a previous method (10) with two optimized methods with the same acquisition time (~1
hour), and 2) a comparison of two optimized methods with 5 and 10 sampling points (and
eight or four averages) with the same 16 minute acquisition time. All schemes were
optimized for sample parameters that roughly match white matter, but are also a fairly good
match for BSA. A measurement of R2 was performed as well, by using a multiple spin echo
imaging sequence (TR/TE = 15000/12 ms, 15 echoes, and 4 averages).
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To demonstrate that the optimized schemes are applicable to brain tissues, in vivo rat brain
measurements were acquired using a five-point scheme optimized for parameter ranges. The
measurement was performed on a 7.0 T Varian animal system, with a 38-mm litz coil. The
FOV was 38 × 38 mm2, with a slice thickness of 1 mm and matrix of 128 × 128. To increase
SNR, eight acquisitions were averaged, giving a total time of around 32 minutes.

Results
Optimal Schemes for determining T1

For a typical parameter set of M0 = 1, Sf = −1, and T1 = 1, and a conventional acquisition
scheme, which consists of a constant td of 6 s and a ten-point logarithmic spacing of ti
between 4 ms and td of 6 s. The objective function value of this scheme, calculated from
Eqs. [1] and [7], is 286.1 s. A ten-point scheme, which optimizes for ti and a single td (1s),
has an objective function value of 62.4 s. The 1-s td value was found to be the optimal one
by comparing objective function values of optimal schemes with different td values. Finally,
for an optimal scheme with ten independently varied ti and td values, the objective function
value is 44.0 s. There is little variation in the objective function when there are 10 (44.0 s) or
3 (49.8 s) ti and td values, we plot below a similar lack of dependence on sampling point
numbers in the qMT optimization case, shown in Figure 2. Note that we have found that the
minimum number of sampling points is three for T1 determinations, with a total acquisition
time of about 11s for one shot.

Optimal schemes for determining qMT parameters
Table 1 lists three different schemes that have roughly equal acquisition times: the original
scheme (Column 1), the optimal scheme for typical qMT parameters (Column 2) and the
optimal scheme for qMT parameter ranges (Column 3). For scheme (1), its objective
function values are V = 3.14 × 104 s and Vmax= 7.82 × 105 s. For scheme (2), its objective
function values are V = 1.39 × 104 s and Vmax = 3.35 × 105 s. For scheme (3), its objective
function values are V = 1.51 × 104 s and Vmax = 3.25 × 105 s. Note that for scheme (2), the
sampling points fall into seven groups, effectively making it a seven-point sequence with
variation in the SNR of each point. As for the original scheme, the objective function does
not reflect the additional errors that come from the first-order approximations previously
employed (9,10).

Investigation of number of sampling points for qMT measurements
As illustrated in scheme (2) in Table 1, we can determine qMT parameters with a much
smaller number of sampling points. The optimization program was repeated while varying
the number of sampling points, N. It is found that, for different N, the optimization
processes yield similar objective function values, and only five sampling points are required
to fit for five qMT parameters. In Figure 2, plots of calculated relative precision efficiencies
vs. number of sampling points are shown, optimized for parameter ranges and the “typical”
parameter set, respectively. Note that the precision efficiency is defined by the square root
of the inverse of the CRLB objective function value, which is . The precision
efficiency decreases only slightly (2% drop for the parameter ranges and 4% drop for the
typical parameter set) at small N, meaning that there is little penalty in the fitted parameter
precision efficiencies when minimizing the acquisition time by decreasing the number of
acquired images, assuming one employs the optimum ti and td values at each N.

Monte Carlo Simulations
Monte Carlo simulations were performed at different noise levels to measure the
uncertainties of fitted parameters for the optimal schemes. At each noise level, 10000 data
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sets were generated. Gaussian noise was introduced at each SNR level. Each data set was
then fitted. The mean and standard deviation of the fits define the schemes’ systematic errors
and uncertainties, respectively.

For T1 simulations, the selected parameters are M0 = 1, Sf = −1, and T1 = 1. Figure 3 shows
a comparison between a conventional scheme, with ten-point logarithmic spacing of ti
between 4 ms and 6 s, and td of 6 s, and a three-point optimal scheme, with both ti and td
varied. Only T1 results are shown. The optimal scheme yields much less uncertainties in T1
values than the conventional one, with uncertainties normalized to same total acquisition
time.

For qMT simulations, the selected parameters used to generate the data are R1f = 0.5, pm/pf =
0.1, kmf = 30, Sf = −0.95, and Mf∞ = 1. The comparison of scheme (1) and (2) is shown in
Figure 4. Scheme (3) has similar performances as scheme (2), as reflected in their objective
function values, and its simulation result is not shown. Mf∞ is not shown either because both
schemes produce similar results. The simulation data of the original scheme (1) were
processed both with and without first-order approximations. It is obvious that for the
original scheme, this approximation causes systematic errors in the fitted pm/pf, kmf and Sf
values, and that for kmf and pm/pf, these errors have a fractional size on the order of the pool
size ratio. Scheme (1) and (2) without approximations avoid these systematic errors. Scheme
(2) also produces more precise values of pm/pf, kmf than scheme (1), especially at low SNR.
Additional simulations not shown here indicate that for the worst combination of parameter
set, scheme (3) yield the least uncertainties, as reflected in its Vmax value.

Measurements
The measured T1 values of MnCl2 samples by using different acquisition schemes are
plotted in Figure 5. The determined values and uncertainties are calculated from mean and
standard deviation from pixels in the region of interest.

Figure 6 shows corresponding plots of R1f, pm/pf, kmf, Sf and Mf∞. To show the effect of the
new data processing technique, first-order approximations were employed to analyze the
data acquired using scheme (1). The data from each pixel was fitted and qMT parameter
values and uncertainties were set to the mean and standard deviation of the pixels in the
regions of interest. The SNR of these measurements was around 270.

The comparison of measurement results using the five-point and ten-point optimal schemes
is shown in Figure 7. It shows that both schemes produce similar qMT parameters within
error ranges. Similar results are obtained for the five-point and ten-point schemes optimized
for parameter ranges as well.

The in vivo measurement results with the five-point scheme are show in Figure 8.The
determined qMT parameters of WM and GM are listed in Table 2.

Discussion
In this paper, we have shown how to optimize the SIR-FSE sequences for T1 and qMT
imaging using CRLB methods. The original qMT technique, presented in (9,10), used fixed
td and varied ti only and employed first-order approximations for data fitting. According to
Monte Carlo simulations, as shown in Figure 4, first-order approximations will introduce
systematic errors to pm/pf, kmf and Sf. The pm/pf values, determined by the original technique
will be lower than the true value, while kmf will be larger. In the new method presented here,
we varied both td and ti and fitted the qMT parameters with minimal approximations. Both
the precision and accuracy increase, as shown in simulations and experimental results.
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T1 measurement has also been optimized using the same approach. By varying ti and td
independently, global optimal acquisition schemes were obtained with precision efficiencies,
which are much greater than previous inversion recovery methods. This optimization is
confirmed by Monte Carlo simulations, as shown in Figure 3, by comparing a ten-point
conventional scheme with a three-point optimal scheme with same total acquisition time.
Figure 5 shows a comparison of measured T1 values between the conventional scheme and a
series of optimal schemes. It is shown that the optimal schemes yield consistent T1 values
across schemes, which validates the optimization technique. It is also verified that only three
sampling points are required to determine T1 value, as shown in schemes (h) and (i) in
Figure 5. The three-point scheme optimized for parameter ranges of M0 ∈ [0.5, 1.5], T1 ∈
[0.5, 1.5], and Sf ∈ [−0.85, −1], is given in Table 3, which requires about 11s per
acquisition, so, depending on SNR requirements, an 8 shot clinical scan would take 11s/shot
× 8 shots × 2 averages = 3 minutes (Two averages allow phase cycling that destroys any
transverse magnetization remaining after the gradient spoiling; Using a single average and
fewer shots will proportionally lower the acquisition time).

The qMT optimization results were confirmed by the experimental measurements of BSA
samples, as shown in Figure 6. The optimal schemes have less uncertainty in the measured
qMT parameters, most notably in kmf, which, due to its greater fractional uncertainty tends
to dominate the calculation in Eq. [7]. The performances of schemes (2) and (3) are similar,
which is not surprising, given their similar V values in Table 1. Therefore, the optimal
scheme for the set of typical parameters is applicable to a range of qMT parameters for BSA
samples of different percent weights. In other words, if the qMT parameters do not cover a
very wide range, we will be able to optimize for a single parameter inside this range and
apply the optimized scheme for all measurements. In addition, as in (9), the R1f, pm/pf values
increase linearly with the BSA-to-water ratios. Note that the results from two 15% BSA
samples are plotted, both with and without MnCl2. The MnCl2 changes R1f and R2 while
having little effect on the fitted MT parameters, confirming that SIR-FSE is a true qMT
sequence, and not just a function of the relaxation rates.

To further confirm the optimization technique, experimental precision efficiencies were
calculated. Examples are given for qMT schemes (1), (2) and (3), as listed in Table 1. The
CRLB theory predicts precision efficiency ratios of 1: 1.5: 1.45, from their V values. Monte
Carlo simulations lead to precision efficiency ratios of 1: 1.56: 1.50, by extracting the
simulation data at an SNR of 200. The experimental precision efficiency ratios of the qMT
parameters of the 15% BSA are 1: 1.69: 1.35. These roughly similar ratios illustrate the
advantage of the optimization technique. Consistent precision efficiency ratios were
obtained for MnCl2 samples T1 measurements as well. A detailed comparison of relative
precision efficiencies, derived from CRLB, Monte Carlo simulations and experimental
results of T1 and qMT results is given in Figure 9. The experimental precision efficiencies
were calculated from the 0.058 mM MnCl2 and 15% BSA samples, respectively. By varying
ti and td simultaneously, the precision efficiencies of T1 and qMT measurements has
increased roughly 150% and 50%, respectively, comparing with the conventional scheme
and original technique.

Figure 2 shows that the precision efficiency has only a weak dependence on the number of
acquisitions, N. This indicates that we can take as few as five sampling points to determine
the qMT parameters. This conclusion is confirmed by measurement of the BSA samples
with five-point and ten-point schemes, as shown in Figure 7. It is further confirmed by in
vivo measurements using the five-point scheme, as shown in Figure 8. The extracted qMT
parameters of WM and GM are shown in Table 2. As shown in Monte Carlo simulations, the
fitting process with first-order approximations leads to slightly larger kmf but lower pm/pf

Li et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



values. This prediction is consistent with the differences between the qMT parameter values
for WM in Table 2 and those in (10).

With the verification that only a five-point scheme is required to determine the five qMT
parameters, this work provides more insight in rapid qMT acquisitions. For example, a five-
point optimal scheme requires about 15s/acquisition, so, depending on SNR requirements,
an 8 shot clinical scan would take 15s/shot × 8 shots × 2 averages = 4 minutes, making
clinical application a possibility. A five-point scheme, proposed in this work for clinical
applications, is shown in Table 4, which is optimized for above-mentioned parameter
ranges.

A related issue for clinical application is the robustness of the standard FSE implementation
on a given imaging system. Any ghosting or T2 blurring will cause correlating effects in the
SIR-FSE qMT imaging sequence. Also, given the significant MT effects from the off-
resonance excitation and refocusing pulses (30,31), multi-slice acquisitions do not make
sense for SIR-FSE. However, 3D acquisitions are viable, at least in a research setting, e.g. a
128×128×32 3D volume could be acquired in 2 averages x 15s / excitation × 128 × 32 phase
encodes / 64 echoes = 32 minutes, not including benefits from partial k-space and parallel
imaging effects. This acquisition time is comparable to pulsed saturation methods (32), but
without the need for separate B1, B0, and T1 maps. Pulsed saturation has, however, been
more extensively tested in vivo.

In this work, we have given equal weights to all fitted parameter uncertainties in Eqs. [7]
and [10]. Among the five qMT parameters, the pool size ratio (pm/pf) is often of most
interest. An alternative would be to optimize for pm/pf only. Optimization results, which are
not shown, indicate an increase in pm/pf precision about 30% from such optimization, but at
the cost of large systematic errors in the other qMT parameters, making it an unappealing
alternative.

Fitting qMT parameters necessitates assumption about R1m and Sm. We performed Monte
Carlo simulations to investigate the variances of fitted qMT parameters vs. different
underlying R1m and Sm values. We found that the fitted R1f, kmf, Sf, and Mf∞ values are
almost independent of R1m and Sm. The pool size ratios, pm/pf, has little dependence on R1m
but a relatively large dependence on Sm. The simulated data were generated with R1f = 0.5,
pm/pf = 0.1, kmf = 30, Sf = −0.95, and Mf∞ = 1, by using scheme (2) in Table 1 at SNR of
100. For Sm = 0.76 and 0.9, the fitted pm/pf values are 0.104 ± 0.005 and 0.096 ± 0.005,
respectively. With these variations, the maximum uncertainty of pm/pf is about 10%, which
indicates that this technique is fairly robust to assumptions of R1m and Sm.

Conclusion
In conclusion, we have shown how to optimize the SIR-FSE sequences by maximizing E the
precision efficiency using an objective function, which includes CRLB and time cost. By
varying both ti and td, the precision efficiencies of both T1 and qMT measurements are
increased. Monte Carlo simulations support this approach by showing reduction in the
uncertainties of fitted parameters. The optimization results are confirmed by measurements
on MnCl2 samples, BSA samples, and in vivo rat brain. Specifically, for qMT
determinations, minimal approximations were applied to get rid of the systematic errors
from first-order approximations in previous work (8-10). From the investigation of number
of sampling data points, it is shown that five data points are enough to determine qMT
parameters, and three data points are enough to determine T1 parameters. This opens up the
possibility of applying the SIR-FSE sequences to clinical 2D and preclinical 3D
applications.
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Figure 1.
The SIR-FSE pulse sequence. The quantity td is the pre-delay time and ti is the inversion
recovery time. In this work, the first eight echoes are taken for data acquisition, and the next
eight echoes were taken as dummy echoes to ensure the assumption of zero Mz
magnetization of both pools after the last 180° pulse. A simulation of this sequence is
presented in Ref. (10).
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Figure 2.
Plots of relative precision efficiencies vs. sampling numbers after optimizing the acquisition
parameters ti and td. a) Optimizing for parameter ranges of : R1f ∈ [0.4, 1.0] Hz, pm/pf ∈
[0.05, 0.20], kmf ∈ [20, 40] Hz, Sf ∈ [−1.0, −0.9], and Mf∞ ∈ [0.6, 1.5], with precision
efficiency defined by . b) Optimizing for a single typical parameter set: R1f = 0.5
Hz, pm/pf = 0.10, kmf = 30 Hz, Sf = −0.95, and Mf∞ = 1.0, with precision efficiency defined
by . The efficiencies are normalized to the last data point in the two curves,
respectively.
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Figure 3.
Monte Carlo simulation of T1 fitting results vs. SNR using schemes: (a) a ten-point
conventional scheme (black) with ti logarithmically varied between 4 ms and 6 s, and td of 6
s; (b) a three-point scheme (red) optimized for parameter values of M0 = 1, T1 =1 s, and Sf =
−1. Data points are slightly shifted to allow a clear comparison. The uncertainties are
normalized for same total acquisition time.
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Figure 4.
Monte Carlo Simulation of qMT fitting results vs. SNR: (a) scheme (1) (black) with first-
order approximations, (b) scheme (1) (red) with direct fitting, and (c) scheme (2) (blue) with
direct fitting. True values are indicated by dot lines. Data points are slightly shifted to allow
a clear comparison. Note that the previously employed first-order approximations in scheme
(1) lead to systematic deviations from the input value, and that scheme (2) has significantly
smaller kmf uncertainties than scheme (1), even when no first-order approximations are
made.
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Figure 5.
Measured T1 values of MnCl2 samples of 0.058 mM and 0.116 mM by using several
different acquisition schemes. (a) a ten-point conventional scheme with ti logarithmically
varied between 4 ms and 6 s, and td of 6 s. Schemes (b) and (c) are optimized by varying ti
values with a constant optimal td of 1s. Scheme (b) is optimized for parameter values of M0
= 1, T1 =1, and Sf = −1. Scheme (c) is optimized for parameter range values of M0 ∈ [0.5,
1.5], T1 ∈ [0.5, 1.5], and Sf ∈ [−0.85, −1]. Schemes (d – i) are optimized by varying both ti
and td values. Schemes (d) (f) (h) are optimized for a single parameter set, as in (b), with
numbers of sampling points of 10, 5, and 3, respectively. Schemes (e) (h) (i) are optimized
for parameter range values as in (c), with numbers of sampling points of 10, 5, and 3,
respectively. The determined values and uncertainties are calculated from the mean and
standard deviation of the pixels in the region of interest.
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Figure 6.
Measured R1f, pm/pf, kmf, Sf, Mf∞ and R2 as a function of BSA weight vs. water weight
ratio using acquisition schemes (1) (black), (2) (red) and (3) (blue), where Mf∞ is plotted in
arbitrary units. Data points are shifted for a clear comparison. For scheme (1), first-order
approximations were employed to process data. Note that the results from two 15% BSA
samples are plotted, both with and without MnCl2. The MnCl2 changes R1f and R2 while
having little effect on the fitted MT parameters, confirming that SIR-FSE is a true qMT
sequence, and not just a function of the relaxation rates.
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Figure 7.
A comparison of results measuring the BSA samples by employing a five-point scheme
(black) and a ten-point scheme (red) with roughly the same acquisition time. Data points are
shifted for a clear comparison. While the 10 point scheme has slightly smaller parameter
uncertainties, as expected from Figure 2, there are no systematic differences in the results
using the two schemes, except that the five-point scheme yielded higher Mf values due to
more averages (not shown).
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Figure 8.
Measured qMT parameter maps of a live rat with a five-point scheme, optimized for qMT
parameter ranges. Images were acquired with a FOV of 38 × 38 mm2 and slice thickness of
1 mm. Eight acquisitions were taken for data fitting. Note the elevated pool size ratio values
due to myelin in the corpus callosum, as expected.
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Figure 9.
Plot of relative precision efficiencies of T1 schemes and qMT schemes for the typical
parameter values listed in Figure 2 and Figure 3. Schemes a-i are T1 schemes, as given in
Figure 5. Schemes aa, bb, and cc are schemes (1)-(3) in Table 1. Schemes dd and ee are the
ten- and five-point schemes in Figure 7. As shown in these plots, we have obtained: (1) an
increase in the T1 precision efficiencies when optimizing both ti and td of roughly 250%
over logarithmic spacing and 25% over optimizing ti and only a single td; 2) an increase in
the qMT precision efficiency when optimizing both ti and td of roughly 50% over the
previous logarithmic spacing; 3) only a small decrease in the precision efficiency when
lowering the number of sampling points.
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Table 1

Original and optimal schemes with roughly the same total acquisition time

1) Original Scheme(10):
V = 3.14 × 104 s,

Vmax = 7.82 × 105 s,
Time cost= 105.54 s.

2) Optimized for
a typical parameter set:

V = 1.39 × 104 s,
Vmax = 3.35 ×

105 s,
Time cost =

105.55 s.

3) Optimized for
parameter ranges:

V = 1.51 × 104 s,
Vmax = 3.25 × 105

s,
Time cost=

103.25s.

ti (s) td (s) ti (s) td (s) ti (s) td (s)

0.004 3.5 0.004 1.669 0.004 2.465

0.005 3.5 0.004 1.692 0.004 2.654

0.006 3.5 0.004 1.694 0.004 2.981

0.007 3.5 0.004 1.727 0.004 4.665

0.008 3.5 0.004 1.745 0.004 4.676

0.009 3.5 0.004 4.797 0.004 4.862

0.011 3.5 0.004 4.888 0.029 4.713

0.013 3.5 0.004 4.894 0.032 3.699

0.016 3.5 0.031 4.368 0.032 4.550

0.019 3.5 0.032 2.102 0.033 4.881

0.023 3.5 0.032 4.130 0.034 5.087

0.028 3.5 0.032 4.160 0.035 3.171

0.033 3.5 0.032 4.175 0.035 3.771

0.040 3.5 0.032 4.188 0.035 3.800

0.049 3.5 0.032 4.251 0.035 3.803

0.059 3.5 0.033 2.147 0.039 2.401

0.072 3.5 0.033 2.150 0.040 1.775

0.085 3.5 0.033 2.164 0.077 1.030

0.103 3.5 0.033 2.240 0.213 2.503

0.124 3.5 0.033 2.258 0.227 2.772

0.150 3.5 0.034 2.148 0.231 2.931

0.300 3.5 0.189 2.396 0.234 3.102

1.000 3.5 0.190 2.381 0.236 2.943

2.000 3.5 0.190 2.384 0.240 3.133

10.000 3.5 0.190 2.392 0.240 3.212

0.190 2.428 0.240 3.292

0.191 2.362 0.252 3.271

0.191 2.388 1.514 0.010

0.191 2.410 2.489 0.010

0.191 2.443

0.192 2.436

0.193 2.437

0.194 2.383

1.635 0.010
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1) Original Scheme(10):
V = 3.14 × 104 s,

Vmax = 7.82 × 105 s,
Time cost= 105.54 s.

2) Optimized for
a typical parameter set:

V = 1.39 × 104 s,
Vmax = 3.35 ×

105 s,
Time cost =

105.55 s.

3) Optimized for
parameter ranges:

V = 1.51 × 104 s,
Vmax = 3.25 × 105

s,
Time cost=

103.25s.

ti (s) td (s) ti (s) td (s) ti (s) td (s)

3.296 0.011
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Table 2

Measured qMT parameters of WM and GM in a live rat brain

R1f (Hz) pm/pf kmf (Hz)

WM 0.677 ± 0.076 0.173 ± 0.023 13.1 ± 2.9

GM 0.550 ± 0.046 0.080 ± 0.008 20.8 ± 6.5
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Table 3

An optimized three-point scheme for parameter ranges of M0 ∈ [0.5, 1.5], T1 ∈ [0.5, 1.5] s, and Sf ∈
[−0.85, −1]

ti (s) 0.004 0.898 4.781

td (s) 1.480 3.454 0.010
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