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Abstract

Evidence of marked variability in response among people exposed to the same environmental risk
implies that individual differences in genetic susceptibility might be at work. The study of such Gene-
by-Environment (GxE) interactions has gained momentum. In this article, the authors review
research about one of the most extensive areas of inquiry: variation in the promoter region of the
serotonin transporter gene (SLC6A4; also known as 5-HTT) and its contribution to stress sensitivity.
Research in this area has both advanced basic science and generated broader lessons for studying
complex diseases and traits. The authors evaluate four lines of evidence about the 5-HTT stress-
sensitivity hypothesis: 1) observational studies about the serotonin transporter linked polymorphic
region (5-HTTLPR), stress sensitivity, and depression in humans; 2) experimental neuroscience
studies about the 5-HTTLPR and biological phenotypes relevant to the human stress response; 3)
studies of 5-HTT variation and stress sensitivity in nonhuman primates; and 4) studies of stress
sensitivity and genetically engineered 5-HTT mutations in rodents. The authors then dispel some
misconceptions and offer recommendations for GXE research. The authors discuss how GXE
interaction hypotheses can be tested with large and small samples, how GxE research can be carried
out before as well as after replicated gene discovery, the uses of GXE research as a tool for gene
discovery, the importance of construct validation in evaluating GxE research, and the contribution
of GXE research to the public understanding of genetic science.

In 1996, it was reported that a repeat length polymorphism in the promoter region of the human
serotonin transporter gene (SLC6A4; also known as 5-HTT) regulates gene expression in vitro.
Furthermore, individuals carrying one or two copies of the relatively low-expressing short (S)
allele of the serotonin transporter linked polymorphic region (5-HTTLPR) exhibit elevated
neuroticism, a personality trait involved in the propensity to depression (1). In 2002, it was
reported that S-carriers exhibit elevated amygdala reactivity to threatening stimuli, as assessed
by functional MRI (2). In 2003, it was reported that S-carriers exhibit elevated depressive
symptoms, diagnosable depression, and suicidality after experiencing stressful life events and
childhood maltreatment (3).
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These three papers have influenced scientific and public discourse in three ways. First, the 5-
HTTLPR has become the most investigated genetic variant in psychiatry, psychology, and
neuroscience. Second, these three papers and those following have generated evidence for
validity of the construct of genetically driven individual differences in stress sensitivity. Third,
the 5-HTTLPR Gene x Environment (GXE) interaction has captured the public imagination
and framed contemporary discussions about how genes and environments shape who we are.
In this article, we review the cumulative evidence base documenting the role of 5-HTT in
sensitivity to stress and vulnerability to psychopathology. Because the evidence base on 5-
HTT and stress sensitivity is currently advanced relative to other GXE investigations, this
hypothesis constitutes a case study with lessons that extend to GXE research in general. The
article begins with a review of studies and ends with lessons.

This article takes an inclusive approach to the literature on 5-HTT and stress sensitivity, as
opposed to an exclusive focus on papers attempting to approximate the methods of the initial
report of a5-HTTLPR GxE interaction (3). An inclusive review is essential once it is understood
that the hypothesis of interest is that variation in 5-HTT influences reactivity to environmental
stress exposure, and thereby brings about risk for depression. Accordingly, in many studies
testing the 5-HTT stress-sensitivity hypothesis, the outcome is not depression per se. Rather,
inferential advantages are gained by studying intermediate phenotypes on the causal pathway
from stress to depression that are considered to index stress sensitivity (e.g., stress hormones,
amygdala reactivity). Likewise, stress is not narrowly construed as a count of stressful life
events. Other stressors are examined in the field and in the laboratory, whenever doing so
augments scientific inference (e.g., hurricane exposure rules out gene-environment correlation
because victims’ genes could not evoke this life event; officially recorded child abuse rules
out recall bias; experimental stress induction allows titration of stress dosage). Because the
outcome is not restricted to human depression, important information comes from studies of
5-HTT and stress sensitivity in animals (e.g., genetically modified mice, rhesus macaques
carrying an orthologous 5-HTTLPR variant).

Evidence for the 5-HTT Stress Sensitivity Hypothesis

It is evident from research conducted with multiple species and from research using both
observational and experimental methods that variation in 5-HTT modifies organisms’ stress
responses to their environments (Figure 1). Complementary experimental and observational
research designs are integral to testing not only the 5-HTT stress-sensitivity hypothesis, but all
GXxE hypotheses (4,5). Experiments with humans, nonhuman primates, and rodents elucidate
biological mechanisms behind the hypothesis and also validate findings from human
observational studies by using designs with stronger internal validity (e.g., by random
assignment to stress conditions). Observational studies use designs with stronger external
validity (e.g., by studying real-world stressors), estimate the effect size of the 5-HTTLPR GxE
interaction in the human population, and allow researchers to study clinical depression as the
outcome.

Human Observational Studies

The initial GxE effect (3) did not have an overwhelmingly impressive p value, but it was robust,
having been 1) discovered in an epidemiologically sound longitudinal cohort study; 2) tested
in a straightforward and transparent analysis; 3) reproduced across two stressors, child
maltreatment and adult stressful life events; and 4) reproduced across four depression
phenotypes. How has this hypothesis fared in observational studies since it was initially tested?

Table 1 and Table 2 list all human observational studies up to summer 2009 that tested the
hypothesis that the 5-HTTLPR moderates the effect of stress on depression phenotypes. Three
observations emerge from the tables. First, multiple studies have reported that S-carriage
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moderates the influence of stress on depression. Whether or not the initial finding can be
replicated has been answered in the affirmative. Second, positive findings have emerged from
a variety of observational research designs used to test the hypothesis, including phenotype
case-only designs, case-control designs, cross-sectional designs, longitudinal designs, and
exposure designs. This suggests the finding is “sturdy,” in the sense that its signal can be
detected despite noise from varying research settings, sample characteristics, and study designs
(6). Third, there have also been quite a few negative findings. The degree to which negative
findings call the original result into question depends on whether differences in study designs
are systematically related to differences in study findings. If failures to replicate are
characterized by systematically different subject populations or systematically weaker
methodologies, their challenge to the original result is greatly diminished.

We considered factors that might covary with positive versus negative findings, including
subjects’ sex, age, and nationality, and features of phenotype measurement, but these did not
covary systematically with findings. However, positive and negative findings did closely track
variation in methodological features related to the quality of environmental exposure
measurement. Concerns have been expressed about standards of stress assessment in tests of
this hypothesis (7,8). We call attention to three issues.

First, almost all nonreplications rely on brief self-report measures of stress, whereas studies
using objective indicators or face-to-face interviews to assess stress exposure yield positive
replications (“Stress Assessment” column in Tables 1 and 2). Face-to-face interviewers can
clarify the meaning of a reported life event and enhance memory for life events by probing and
by using techniques such as life event calendars, as did the initial study (3). In contrast, it is
known that self-report event checklists gather idiosyncratic and inaccurate information (9,
10).

Second, studies of specific stressors consistently yield positive findings. Why are these studies
S0 consistent? One possibility is that their focus on a specific, homogeneous, developmentally
relevant, and clearly operationalized depression-inducing event decreased between-subject
heterogeneity in the exposure and enhanced internal validity of the study design. Table 1 groups
studies of two specific stressors that are established causes of depression: childhood
maltreatment and medical illness. Nine studies report about depression that follows childhood
experiences associated with maltreatment and victimization. Although exposure measurement
is not uniform, the studies are united by focusing on threatening events in which physical,
sexual, or relational harm were carried out or intended. Virtually all of these studies focus on
children, adolescents, and young adults. All of them show that S-carriage moderates the
association between child maltreatment and depression. Another nine studies report about
depression following medical illness. Virtually all focus on middle-aged and elderly
participants. Studies of patients suffering hip fractures, strokes, Parkinson’s disease, heart
disease, and chronic-disease load show that S-carriage moderates the association between
medical illness and depression.

Third, whereas studies of specific stressors consistently generate positive findings, studies of
stressful/adverse life events yield mixed results (Table 2). This inconsistency could result from
the highly variable measurement of stressful life events (7,11). The pool of studies exemplifies
five difficulties in stress measurement: 1) Stress measures are sometimes noncomparable and
fall prey to the fallacy that because measures have the same name they measure the same
construct (12). For example, some studies count death of a spouse as a stressor, whereas others
count being the child of a father in an unskilled job as a stressor. Some studies count stress
events, others model event severity. Some stressors are chronic, others acute. Some studies
define a “stressor” by its level of distress, others do not. Some studies examine events that
happened to the proband, others examine events among the proband’s friends and relatives. 2)
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Some studies assess stress through currently depressed individuals’ self-reports, which are
biased by mood-congruent memory revision and thus overcount events (13). Moreover,
humans seek explanations, a phenomenon termed “effort after meaning,” which leads
respondents who have been depressed to misattribute their iliness to a life event. Some studies
assess events through long-term retrospective reports (sometimes over decades), which are
flawed by forgetting and undercount life events, particularly among respondents who lack
depression. In addition, respondents often overcount trivial and undercount severe events (9).
These cognitive processes (mood-congruent memory revision, effort after meaning, and
retrospective forgetting) working together can artifactually influence a study’s association
between life events and depression. Thus, a correlation between life events and depression does
not indicate validity, contrary to claims (14). 3) Some studies test the connection between stress
and depression contemporaneously, others across years or decades. 4) Some studies are unable
to rule out reverse causation, in which depression precipitates stressful events; for example,
one study measured depression over the respondents’ lifetime, but ascertained life stress during
only the past year (15). 5) Most studies do not consider variation in participants’ depression
history, despite evidence that stress is more relevant for initial than recurrent depression
episodes.

In the first decade of research about the 5-HTTLPR GXxE interaction, scientists have frequently
taken advantage of existing data sets, quickly adding genotype data to studies that had
previously measured depression and life events for other purposes. Not all of these studies’
designs and measures are well-suited to testing the GXE hypothesis. Covariation between poor
measurement quality and negative findings was observed early on (16) and has been confirmed
with the increasing number of published GxE studies (17). Notably, many of the largest studies
in Table 1 and Table 2 were obliged to collect brief retrospective self-reports of stress through
telephone interviews or postal questionnaires in order to contain data collection costs. Thus,
unfortunately, large sample size tends to coincide with poor measurement quality, and meta-
analyses that give larger samples greater weight in estimating an effect across studies further
compound this problem. There is hope that a new generation of cohort studies purpose-built
for testing GXE interactions will improve replicability, but these must correct the problems of
exposure measurement discussed in the previous paragraph, lest they merely repeat the
problems on a far larger scale.

Most observational GXE research on 5-HTT in humans has focused on depression. However,
additional evidence links the 5-HTTLPR to a broader range of stress-reactive phenotypes,
including PTSD (18), posttrauma suicide attempt (19), aggressive reactions to a cold-pressor
test (20), stress-linked alcohol consumption (21,22) and substance use (23,24), stress-related
sleep disturbance (25), and even premature ejaculation (26). Research on quantitative
endophenotypes shows that S-carriers with high levels of childhood maltreatment and adversity
exhibit enhanced anxiety sensitivity (27) and a bias toward perceiving and expecting negative
outcomes (28). Moreover, S-carrying children who are raised by unresponsive or
nonsupportive mothers exhibit poor self-regulation of negative affect (29-32), which predicts
a variety of adult psychiatric disorders (33). Finally, research that monitors affective
experiences on a daily basis shows that S-carriers experience anxious mood on days with more
intense stressors (34) and larger increases in negative affect while trying to quit smoking
(35). To claim that these diverse outcomes are heterotypic manifestations of a unifying genetic
vulnerability to stress reflected in the 5-HTTLPR S allele requires a theory that specifies the
unifying mechanism. The leading theory (1,36) is that the 5-HTTLPR is a genetic substrate for
a latent personality trait, termed negative affectivity or neuroticism. Negative affectivity
prospectively predicts risk for all stress-related psychiatric disorders (37). In theory, 5-
HTTLPR S-carriers are characterized by the stable trait of negative affectivity that is converted
to psychopathology only under conditions of stress, just as glass is always characterized by the
trait of brittleness but shatters only when a stone is thrown. Negative affectivity represents the
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potential for excitability of anxiety and fear neural circuits, and is characterized by an
attentional bias toward negatively valenced information and a cognitive sensitivity to perceive
threat (38). This trait is operationalized in all experimental tests of the 5-HTTLPR GxE
hypothesis, reviewed next.

Experimental Neuroscience Studies

In 2002, a synergy emerged between research in human affective neuroscience and genetic
research into the 5-HTTLPR. Specifically, noninvasive functional MRI (fMRI), which assays
information processing within distinct neuronal circuits, revealed relatively exaggerated threat-
related amygdala reactivity in carriers of the 5-HT-TLPR S allele (2). This initial finding has
since been replicated in independent samples of both healthy volunteers and psychiatric
patients, using a multitude of threatening stimuli and neuroimaging modalities (39-49). This
effect on the magnitude of amygdala reactivity has recently been extended, with S-carriers also
exhibiting a relatively faster response than L-allele homozygotes (50). Consistent with the
heightened sensitivity to environmental threat documented in S-carriers, recent work suggests
that the effects of the S allele on amygdala function may be unique to stimulus-provoked
amygdala reactivity and not elevated baseline levels of activation (51-53).

The bias in threat-related amygdala reactivity associated with the 5-HTTLPR S allele is
positioned to drive the polymorphism’s associations with altered mood and affective disorders,
especially in interaction with exposure to environmental stressors and trauma. Evidence from
animal and human studies demonstrates that the amygdala mediates both physiological (e.qg.,
autonomic reactivity) and behavioral (e.g., reallocation of attentional resources) effects that
allow an individual to respond to environmental and social challenges (54). Neuroimaging
studies have reported positive correlations between indices of anxiety and amygdala reactivity
to affective stimuli (especially threatening stimuli) (55). Such findings demonstrate that
variability in the magnitude of threat-related amygdala reactivity predicts individual
differences in sensitivity to environmental threat and stress.

Human neuroimaging research suggests that relatively increased amygdala reactivity
associated with the 5-HT-TLPR S allele is likely to reflect both the functional and structural
architecture of a distributed network of brain regions. Research suggests that this network
communicates information about the environment to the amygdala and relays signals between
the amygdala and regulatory circuits in the medial prefrontal cortex. This putative mechanism
is further underscored by the significant role serotonin signaling plays in the general
development and function of this extended neural network (56). The S allele has been
associated with altered functional coupling (as indexed by correlated fMRI signal strength)
between the amygdala and regions of the medial prefrontal cortex (40,57). These medial
prefrontal regions integrate amygdala-mediated arousal and down regulate amygdala
reactivity. Medial prefrontal regions are also involved in the extinction of conditioned fear
responses, which are dependent on amygdala circuitry.

The pattern of 5-HTTLPR-associated differences in the functional dynamics of the amygdala
and medial prefrontal cortex is echoed in structural measures within this same network.
Specifically, the S allele has been associated with relatively decreased gray matter volume in
the amygdala and medial prefrontal cortex (42,57). The S allele has also been associated with
alterations in the microstructure of the uncinate fasciculus, the white matter fiber bundle
providing the majority of connections between the amygdala and medial prefrontal cortex
(58). Individual differences in uncinate fasciculus microstructure correlate with trait anxiety
(59). In addition, postmortem tissue analyses have associated the 5-HTTLPR S allele with
relative enlargement of the pulvinar, which relays visual information to subcortical and higher
cortical brain regions (60). Consistent with this, as well as with amygdala-mediated behavioral
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arousal, numerous studies have reported increased cortical activity in response to experimental
provocation in S-carriers (61-66).

In addition, a growing group of studies has begun to document effects of the 5-HTTLPR on
intermediate behavioral and physiological processes that map onto these alterations in brain
structure and function. The S allele is associated with increased acquisition of conditioned fear
responses (67), increased auditory startle response (68,69), and greater sympathetic reactivity
when simply observing another person receiving shock (70). Moreover, the 5-HTTLPR S allele
has been associated with increased HPA axis reactivity to aversive or threatening stimuli in a
number of studies (71-74). The S allele typically has no impact on baseline levels of HPA
function in these studies, underscoring its documented effect on threat-related amygdala
reactivity. In addition, the S allele has been linked with difficulty disengaging from, or
preferential attention toward, threat-related stimuli (75-79), a more negative information-
processing bias (80), emotion-induced retrograde amnesia (81), sensitivity to financial loss
(70,82), and even social blushing (83). Although this literature is not without inconsistencies
(e.g., some reported associations are sex-specific and others have not replicated), it does
suggest that the effects of the 5-HTTLPR S allele on the brain’s neural circuitry for responding
to environmental threat and stress translate to biases in both behavioral and physiological
processes which may, in turn, shape individual risk for depression upon exposure to acute
trauma or chronic stressors (Figure 2). Multiple components of this ongoing research were
highlighted in one report of increases in threat-related amygdala and medial pre-frontal cortical
activation as well as heart rate and startle amplitude in 5-HTTLPR S-carriers who also exhibited
a self-reported sensitivity to perceived danger in the environment (28).

Nonhuman Primate Studies

Rhesus monkeys have an orthologue of the human 5-HTTLPR, making them an excellent model
species for GXE studies. Like the human variant, the rhesus S allele is associated with decreased
transcriptional efficiency in vitro (84). The modulating influence of the polymorphism on early
life stress has been tested by separating infant rhesus monkeys from their mothers and rearing
them with other infants (a long-established model of early life adversity in this species). During
initial episodes of separation, monkeys carrying the rh5-HTTLPR S allele exhibit less “protest”
and self-directed behaviors that are considered active coping responses to this stressor (85).
Instead, separated S-allele monkeys display greater anxiety, agitation, stereotypies, and an
exaggerated HPA axis response (85,86).

The modulating influence of the rh5-HTTLPR on separation in infancy persists into later life,
manifesting, for example, as higher ACTH responses to stress in S-carrier monkeys than LL

homozygotes (87). It is important to underscore that these long-lasting phenotypic effects of

the S allele only occur in monkeys exposed to maternal separation early life stress, echoing the
GXxE interaction observed in relation to human depression.

Another major parallel between the human and monkey data has been the finding that, as in
humans, the stress-related S allele phenotype in monkeys is related to an intermediate neural
phenotype characterized by abnormal corticolimbic structure and function. For example, the
S allele in monkeys also has been mapped onto reduced gray matter volumes in the amygdala,
medial prefrontal and orbitofrontal cortex, and pulvinar (88). Moreover, monkeys with the S
allele exhibit greater metabolic activity than LL homozygotes in the amygdala and its
networked cortical regions, including orbitofrontal cortex, in response to the stress of relocation
(89). Given the importance of the orbitofrontal cortex in social behavior, abnormalities in this
region might also account for the finding that S-carriers engage in less eye gaze with high status
conspecifics and are more risk-averse in their presence (90). An intriguing development is
recent data from S-carrier monkeys (88) and 5-HTT mutant mice (91) demonstrating that
reversal learning, a measure of cognitive flexibility subserved by the orbitofrontal cortex
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(92), is enhanced as a function of relative 5-HTT gene deficiency. This may reflect increased
sensitivity to negative environmental stimuli, although further work will be needed to
substantiate this. Notwithstanding, these data indicate that altered 5-HTT gene function may
influence multiple higher behaviors, as would be predicted if it affects a core corticolimbic
neural circuitry.

Studies Involving Genetically Engineered 5-HTT Mutations in Rodents

Research using rodents allows for experimental control over genetic background and the
environment to a degree that is neither practically nor ethically feasible in human or even
nonhuman primate studies (93). Although there is functional gene variation in the murine 5-
HTT (slc6a4) (94), there is no rodent orthologue of the 5-HTTLPR. As an alternative approach,
mice and rats have been genetically engineered with loss-of-function mutations in the 5-HTT
gene. Studying the consequences of these mutations for behavior and brain function has greatly
complemented the work on the 5-HTTLPR in primates and provided some key insights into
the mechanisms that mediate the influence of 5-HTT on negative affect and stress reactivity
(56,95).

Mice in which the 5-HTT has been functionally excised either by targeted mutation or chemical
mutagenesis exhibit heightened anxiety-like behavior, impaired fear extinction, and
exaggerated HPA-axis responses to acute stress. While it is far less common to engineer mutant
rats than mice, a 5-HTT-null mutant rat has been generated and also shows increased anxiety-
like behavior (96). Furthermore, providing an interesting counterpoint to these “knockout”
mutants, mice with transgenic overexpression of the 5-HTT actually produce decreased
anxiety-like behavior (97). The consistency of these findings across models, laboratories, and
species is rarely seen in the field of rodent behavioral genetics and illustrates the strong
penetrance of the mutation’s effects.

The “depression-related” consequences of rodent 5-HTT knockout mice are, at first blush, less
consistent than the anxiety-related consequences, in that they are seen in some of the standard
rodent assays for this behavior but not others. This variability may, however, be a legitimate
reflection of differences in the level of stress evoked under varying test conditions. In support
of this hypothesis, following repeated exposure to stress (e.g., forced swimming, tail
suspension), 5-HTT knockout mice develop a depression-related “despair-like” phenotype that
is not seen with single exposure (97). The parallels with the primate data showing that the S-
allele influence on depression is contingent upon repeated stress exposure are clear.

Much of our understanding of the functional role of the 5-HTT as a master modulator of the 5-
HT system has been built upon work in rodents (98). As such, researchers have a ready platform
and toolset from which to perform certain neural and molecular analyses in 5-HTT mutant
rodents (e.g., in vivo measurement of brain 5-HT availability) that cannot be employed in
humans. One of the key themes to emerge from this work is that the neural consequences of
5-HTT gene mutation extend well beyond the 5-HTT and its role as a regulator of 5-HT
availability. 5-HTT null mutation leads to alterations throughout the 5-HT system that include
changes in 5-HT receptor binding and 5-HT synthesis (56,95). At the systems level, 5-HTT
knockout mice exhibit an abnormally high density of excitatory dendritic spines on amygdala
neurons and an increase in dendritic arborization of prefrontal cortex neurons (56). The
implication here is that influence of 5-HTT variation may not be limited to effects on 5-HT
availability or even on the 5-HT system. Recently, this implication was confirmed in a rhesus
macaqgue model (88), in which the rh5-HTTLPR S allele affected behavior and brain
morphology but not 5-HTT (99) or 5-HT1 5 concentrations in vivo. Similar complexities in the
likely molecular consequences of the 5-HTTLPR have been documented in humans (100-
105). Collectively, mouse and monkey and human findings suggest that 5-HTTLPR’s
behavioral effects on stress-reactivity may be most consistently rooted in neural development.
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Anintriguing line of enquiry in this context has centered on the hypothesis that 5-HTT variation
may in part modulate the capacity to cope with stress by shaping the early life development of
corticolimbic circuitry (56). In fact, the importance of the 5-HT system in neurodevelopment
has long been recognized, and the 5-HTT is known to be critical for the formation of cortical
systems in particular (106,107). Pharmacological inhibition of the 5-HTT during early life
mimics the anxiety-like phenotype of 5-HTT knockout (108). Moreover, poor maternal care
produces heightened anxiety-like behavior in mice with a partial (heterozygous) 5-HTT null
mutation, which are phenotypically normal under conditions of good maternal care (109).

These findings raise the question of whether the effects of 5-HTT knockout are developmentally
driven. It has been hypothesized that the 5-HTTLPR GXxE interaction observed in relation to
adult stressful life events should selectively affect people already “primed” by childhood
adversity (8). This opens up some very interesting avenues for future animal studies. For
example, would 5-HTT loss restricted to early life development be sufficient to increase anxiety
and impair stress-coping? If so, is there a critical window and what is the corresponding
ontogenic period in humans? Researchers could then elucidate the key neural and molecular
changes underlying these effects. This could, in turn, “square the circle” by nominating
mechanisms to target with novel therapeutic approaches in humans.

Lessons for GXE Research

In the previous section, we reviewed evidence about the 5-HTT stress-sensitivity hypothesis.
Lessons learned in this research apply broadly to all GXE research. In this section, we draw on
these lessons to dispel some misconceptions and offer some constructive recommendations.

GxE Hypotheses Can Be Tested With Large and Small Samples

Statistical power is critical for theory-free, exploratory scans for GXE interactions (110). This
realization has prompted the creation of large case-control consortia and massive biobanks. A
question that puzzles many readers is how to reconcile the obvious benefits of huge samples
with evidence that GxE interactions have been reported in many small-sample studies of 5-
HTT and stress sensitivity, particularly in studies comparing stress-exposed versus matched
nonexposed groups (e.g., abused children) and in experimental studies of humans and animals.
There are statistical reasons for this.

The problem has to do with the approach to testing interactions (111): If the product term (i.e.,
the interaction term in multiple regression) is calculated from two normally distributed
symmetrical variables, it has restricted variance but is uncorrelated with the first-order
predictors (Figure 3, top row). However, a product term of two categorical variables (e.g.,
minor allele frequency [MAF] of 25% and rate of exposure [Pexp] of 25%) is significantly
correlated with the first-order predictors (Figure 3, middle row). Such is the case in practically
all observational GxE studies of psychiatric phenotypes. As a result, the residual variance of
the product term after factoring out first-order predictors—and the corresponding power to
detect interactions—declines rapidly with minor allele frequencies and rates of exposure
departing from 50%. The full power for testing interactions between categorical variables is
only preserved in the optimal case where minor allele frequency and exposure rate equal 50%
(bottom of Figure 3). An implication of this insight is that hypothesis-driven GXE studies that
recruit participants on the basis of their genotype and their environmental exposure (e.g.,
experimental GxE studies with balanced cell sizes) are better powered to test for genetically
moderated exposure effects than are observational field studies, which must make do with
unequal-sized groups since these occur in nature.
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GXE Research Can Be Carried Out Before as Well as After Replicated Gene Discovery

Some researchers claim that GXE studies should only be carried out if there exists a genotype-
to-phenotype main effect, but this claim is statistically unwarranted (112). Such a strategy also
precludes identification of environmentally dependent genetic effects that are small in absolute
size or are contingent on relatively uncommon environmental factors (Figure 4). Moreover,
genotype-phenotype association studies may not replicate if GXE interactions are operating
and research samples differ on environmental risk exposure. Waiting for genomewide
association studies (GWAS) to throw up candidate genes may be ill-advised because GxE
interactions may conceal good candidates from GWAS. Inconsistent genotype-phenotype
associations have inspired successful searches for GXE interactions in different fields of
medicine, from asthma (113) to cardiovascular disease (114). Inconsistent associations
between the 5-HTTLPR S allele and depression (115-117) prompted us to consider a GXE
interaction in our initial studies of the 5-HTTLPR and depression.

The Psychiatric GWAS Consortium (118) recommends conducting GxE studies only after
convincing genotype-phenotype associations have been identified by 1) finding the disease
susceptibility gene by conducting a GWAS, then 2) identifying the functional consequences
of the putative causal variant, and only then 3) testing interactions between the variant and
environmental factors. This strategy is presumed to offer a foolproof approach to detecting
replicable GXE interactions. However, research in obesity illustrates this strategy may not
work. FTO was found to be a susceptibility gene through GWAS (119), and FTO’s functional
consequences were identified (120-123). GXE research then documented that an active
lifestyle mitigates obesity risk from FTO (124-127). However, this GXE interaction has not
universally replicated (128,129), in part because of cross-study differences in the quality of
physical activity measurement. The moral is that a robust genotype-phenotype association
cannot guarantee a robust GxE finding, because the study of GXE interactions requires more
appropriate and high-quality exposure measurement.

GxE Research Is a Helpful Tool for Gene Discovery

Although most GXE research uses candidate genes, environmental exposures can also be used
to discover novel loci. Indeed, one possible reason for the paucity of susceptibility genes in
psychiatry is that gene-discovery studies have been searching for genetic effects on disease
rather than for genetic effects on vulnerability to environmental causes of disease (130).
Whereas in genetic association studies, a candidate gene is a gene suspected of being involved
in a trait or disease—either because its protein product is relevant or because it has been
uncovered in the course of association or linkage analysis of the phenotype—in GXE research
a candidate gene is one plausibly related to the organisms’ reactivity to the environmental risk
or pathogen (131). The idea that genes may moderate the effect of environmental risk has direct
implications for hypothesis-driven selection of novel candidate genes. For example, genes
associated with the physiological response to psychological stress, particularly in the HPA
axis, are natural candidates for GXE research on stress and depression (132). Genes regulated
by hypoxia are candidates for GXE research on obstetric complications and schizophrenia
(133). Genes involved in biosynthesis of fatty acids are candidates for GXE research on
nutrition and brain development (134). Genes involved in lead absorption are relevant for
research on attention deficits and hyperactivity (135). Genes involved in ototoxicity are
relevant for research on learning difficulties (136).

Research on “candidate environmental risks” can be combined with theory-free genetics to
discover novel loci in two ways. One way is to turn GWAS into Gene-Environment-Wide
Interaction Studies (137). Theoretically, the ability to measure GXE interactions should sharpen
measurement of gene-disease associations in subsets of the population and even potentially
increase statistical power to detect such associations (137). This will become increasingly
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possible as researchers seek to integrate genome-wide information with information about
environmental exposures gathered in the context of epidemiological studies. But sample sizes
will become prohibitive when testing gene-environment-wide interactions because 1) more
tests are involved, 2) tests for interactions have less power compared to tests for main effects,
and 3) environmental exposures introduce additional measurement error. If genetic
epidemiologists embrace purely agnostic, theory-free approaches and data-mining tools in
studying GxE interactions, the “fishing expedition” may net little. The new generation of
purpose-built Gene-Environment-Wide Interaction studies may be an improvement over
opportunistic studies published in these early years of GxE research, but even these will fall
short unless they attend to the measurement of environmental exposures. An alternative is to
pursue study designs that use confirmed environmental effects on disease. Such “exposed-only
designs” will test genome-wide associations comparing equally exposed individuals who do
versus do not develop a disease in order to discover novel susceptibility loci. Examples of this
design can be seen in research on infectious disease, whose starting point is pathogen exposure
(138). The environmental risks (i.e., pathogens) for many psychiatric conditions are well
established, if not always well measured. As such, the strong prior probabilities for
environmental risks can be harnessed in psychiatry to design genome-wide studies focused on
identifying genetic differences in responses to well-defined environmental risks. This approach
to gene discovery will involve entirely different designs and sampling frames than currently
used in case-control studies and biobanks.

A second way in which environmental exposures can be used to discover novel loci is to study
gene expression (MRNA levels) as a quantitative phenotype, although attention needs to be
paid to tissue informativeness (139). Gene expression profiling offers a powerful tool to
identifying genomic responses to the environment by investigating responses to specific, well-
operationalized, and reliably measured pathogens and stressors, including exposures to social
adversities (140). By assessing genotype effects on gene expression levels (141),
polymorphisms in environmentally responsive genes may be identified and then used to study
why some people become ill when challenged by the environment and others do not.
Incorporating environmental genomics into psychiatry may facilitate identifying susceptibility
factors in environmentally induced psychiatric conditions.

Construct Validation Is a Useful Way to Evaluate GXE Research

There are two distinct cultures vying to evaluate the worth of the 5-HTTLPR GxE findings: a
purely statistical (theory-free) approach that relies wholly on meta-analysis (142,143) versus
a construct-validity (theory-guided) approach that looks for a nomological network of
convergent evidence (this article). The statistical approach is essential for confirming direct
genotype-phenotype association discoveries. This approach is driven by the imperative to avoid
false positives when evaluating associations sifted from huge amounts of data in theory-free,
genome-wide testing with nil prior probability of gene-disease association (144). Naturally,
the statistical approach prizes exact replication. In the statistical approach, replication attempts’
elements should match the original report’s elements, including sample, phenotype,
polymorphism, genetic model, and direction of effect. Larger samples are given greater weight
in statistical evaluation, because with all other study elements held equal, power is decisive
(145).

It is our contention that the purely statistical approach is not sufficient, or necessary, for
evaluating research into GXE hypotheses involving candidate genes. In such GxE research,
the prior probability of association is far from nil, thus mitigating the risk of false positives.
For example, the 5-HTTLPR stress-sensitivity hypothesis was informed by knowledge about
the serotonin system’s role in depression and the transporter gene’s function (1), by inconsistent
associations between the 5-HTTLPR and depression suggesting environmental moderation
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might be operating (146), by evidence that stress causes depression (147), and by initial reports
that 5-HTT variation influenced stress reactivity (2,148,149). In GXE research, replication
attempts’ elements need not match those of the original report. GXE research involves not only
polymorphism and phenotype, but another element: the environment. Whereas genetic
measurements are standard and unchanging across time and across studies and phenotypic
measurements can also be standardized to a high degree, environmental exposure
measurements vary markedly across studies (150). Two kinds of heterogeneity should be
distinguished: heterogeneity in the types of stress exposure versus heterogeneity in the quality
of exposure measurements. Regarding exposure types, stressful experiences come in many
forms (Table 1 and Table 2) and studies of the 5-HTTLPR GXxE have rightly gone beyond the
original report to incorporate them. This environmental measurement heterogeneity has
implications for matching the genetic model across studies, because the “correct” genetic
model could vary depending on severity of the environmental exposure or other factors such
as developmental stage and course of illness (e.g., first-onset versus recurrent depression). By
insisting that all results must conform to one genetic model, the meta-analysis approach
conceals potentially informative patterns, if they exist. Regarding measurement quality, in GXE
research it is folly to give greater weight to larger samples, because many large samples are
afflicted by poor exposure measurement. Overall, heterogeneity in both the type of stress
exposures and in the quality of exposure measurements renders the studies in Table 1 and Table
2 inappropriate for drawing one simple conclusion about statistical replication (145).

Meta-analysis can be a useful tool for interpreting multiple tests of a GXE hypothesis, when
best practice is followed. Meta-analyses should table the universe of publications testing the
GXxE interaction, explaining in a transparent way why each was analyzed or omitted. The
subsample analyzed should represent the distribution of positive and negative results in the
literature. Metaregression should be undertaken to evaluate methodological sources of
variation among findings. Methodological evaluation should be guided by long-established
cautions. For example, large samples often suffer poor measurement quality, and large
exposure-to-outcome correlations often signal measurement bias, not validity. It should be
appreciated that when the sample of studies is small, a statistical test for heterogeneity is
underpowered and its nonsignificance does not contraindicate metaregression. If
methodological heterogeneity is ruled out, metaregression should investigate substantive
sources of variation among findings (e.g., sex, age, exposure severity), and if these are
uncovered, variation in genetic model should be considered in relation to the substantive
findings. Meta-analyses of the 5-HTTLPR GxE hypothesis have been reported (142,143), but
did not follow best practice (17,151-155).

In any case, whether GXE studies can meet prerequisite standards for statistical meta-analysis
is immaterial, since replicating a theory-free association is not the goal. The goal is to evaluate
the construct validity of a theory-guided hypothesis (156). In contrast to the statistical approach,
the construct validation approach prizes design heterogeneity (although it requires high-quality
samples and measures) (157). Construct validation seeks “sturdy” findings (6), defined as
results that emerge repeatedly despite variation in sample characteristics, phenotype
measurement, and environmental exposure, and that are validated across human epidemiology,
experimental neuroscience, and animal models. We have attempted to show that this is the case
with evidence for the 5-HTT stress-sensitivity hypothesis.

Public Understanding of Genetic Science

One of GXE research’s important contributions is often overlooked by scientists: teaching the
falsehood of genetic (and environmental) determinism (158). For over a century the public has
been fed a diet of determinism, beginning with early 20th-century eugenics policies to correct
all human flaws by culling the breeding stock. Mid-century opinions swung back toward naive
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environmental determinism, exemplified by B.F. Skinner’s 1948 Walden Two. In the late 20th
century, public opinion was compelled toward genetic determinism again when high
heritability estimates were taken to imply that nongenetic factors have little importance for
mental health and behavior. Discoveries of single mutations causing rare disorders
strengthened the public’s belief that knowing one’s genetic makeup is tantamount to knowing
one’s future. Deterministic beliefs, environmental or genetic, are dangerous. Determinism
encourages policies that violate human rights (at worst) and waste resources on ill-conceived
mental health improvement programs (at best). Media coverage of this century’s new findings
of gene-environment interaction (and environmental effects on gene expression) is persuading
the public to embrace a more realistic, nuanced understanding of the causes of behavior, in
which some genes’ effects depend on lifestyle choices that are often under human control. That
understanding will be the best defense against misuse of genetic information. Interdependence
between life stress and the 5-HTTLPR leads this shift in understanding, because stress and
depression touch almost everyone.
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Species 5-HTT Gene Variation

Biological Phenotype

Behavioral Phenotype

Repeat length
polymorphism in the
promoter region

Human
Homo
\ sapiens

Altered neural stress and threat circuitry.
Increased HPA axis response to stress.

Intermediate phenotypes for
depression and anxiety.

Increased depression after
stressful life events.

Repeat length
polymorphism in the
promoter region

F

“ Monkey
Macaca

2 mulatta

Altered neural stress and threat circuitry.
Increased HPA axis response to stress.

Increased anxiety and stress-
reactivity after early life stress.

Rat Chemical mutagenesis
Rattus ‘knockout’
norvegicus

y

Increased 5-HT signalling. Altered 5-HT receptor
expression and function.

Increased anxiety-like behavior.

Mouse

Mus

musculus
-

Genetically engineered
‘knockout’ or
overexpression

Knockout:

Increased 5-HT signalling.

Altered 5-HT receptor expression and function.

Increased amygdala dendritic spine density and
PFC dendritic branching.

Increased HPA axis response to stress.

Overexpression:
Decreased 5-HT signalling.
Altered 5-HT receptors.

Knockout:

Increased anxiety-like behavior.

Impaired fear extinction.

Increased depression-related
behavior after multiple stressors.

Overexpression:
Decreased anxiety-like behavior.

FIGURE 1.

Role of 5-HTT Variation in Stress Sensitivity as Underscored by the Coherence of Findings
From Hypothesis-Driven Studies in Multiple Species Employing Multiple Methodologies
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Pulvinar
(increased volume
in S carriers)

Thalamus

Medial prefrontal cortex®

(altered functional

coupling with amygdala
in S carriers)

Uncinate fasciculus

(reduced Amygdala®
microstructural (increased reactivity
integrity in S carriers) in S carriers)

FIGURE 2. How the 5-HTTLPR Affects Neural Circuitry for Responding to Environmental Threat

and Stress
& Implicated in humans and nonhuman primates.
b Implicated in humans, nonhuman primates, and rodents.
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Increased in S Carriers
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)

ton |

Fear conditioning
Auditory startle
Sympathetic reactivity
HPA axis reactivity
Attentional bias to threat

Emotion-induced
retrograde amnesia

Aversion to financial risk

Social blushing
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1.0
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Residual |
Variance of the 0'6‘
Product Term " ',’;‘.,'-
iyl
0.2)
’ 0.8
0.0
Rate of
5 Exposure
Allele 08
Frequency

FIGURE 3. How the Pow er to Detect GXE Interactions Depends on the Distributions of the
Genotypes and Exposures in the Sample?

aThe two rows of graphs demonstrate a key difference between interactions involving normally
distributed continuous variables (top row) and those involving asymmetrically distributed
categorical ones (middle row). If the product term A*B (i.e., the term that represents interaction
in a multiple regression) is calculated from two normally distributed symmetrical variables A
and B, it has a restricted variance (leptokurtic distribution) but is uncorrelated with the first-
order predictors (i.e., the correlations between A and A*B [ra, a»g] and between B and A*B
[rB, a»g] are zero). However, the product term G*E that represents two categorical variables
(G: genotype with a minor allele frequency [MAF] of 25%; and E: categorical exposure in the
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population [Pexp] of 25%) is strongly correlated with the first-order predictors (i.e., the
correlations between G and G*E [rg, g=g] and between E and G*E [rg, g+g] are substantial).
As aresult, the residual variance of the product term (bottom of figure) after factoring out first-
order predictors, and the power to detect interactions, declines rapidly as the rates of exposure
and minor allele frequency depart from 50%. The full power for testing interactions between
categorical variables is only preserved in the special case of minor allele frequency equal to
50% and exposure rate of 50% (the top segment in red). “Density” reflects the proportion of
individuals falling within each narrow band of values of the variable on the x axis.
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100 Environment B 1.0
90% Exposed

80 0.8
75% Exposed

60

50% Exposed With interaction
-~ E =G

== G*E

Phenotype
Power

40 0.4

25% Exposed . . .
20 Without interaction

10% Exposed
0 Environment A

0.0
A B 0.0 0.2 04 0.6 0.8 1.0
Genotype Frequency of Exposure

FIGURE 4. How the Frequency of an Environmental Exposure in a Sample Influences the Ability
to Detect Genetic Effects and GXE Interactions?

@ pPanel A shows the influence of environmental exposure frequency on the ability to identify
genetic effects, in two genotypes of equal prevalence. Genotype A shows no phenotypic
response to the environmental exposure. Genotype B shows a response to the environmental
exposure. What would happen if the association between genotype and phenotype were studied
without knowledge of the environmental exposure and its frequency (shown from 10% to
90%)? A sample having many exposed subjects will report a genetic effect on the phenotype,
whereas a sample having few exposed subjects will not, and if exposure is not ascertained, the
source of nonreplication will remain a mystery. Panel B shows the influence of the rate of
environmental exposure on statistical power to detect GXE interactions and main effects of
genes. Each point is based on 10,000 simulations of samples of 1000 drawn from a population
with equal distributions of two genotypes, with a continuous outcome generated as a
moderately strong GxE (i.e., the difference in the environment-phenotype correlation between
genetic strata =0.3), and no main effect. In samples with exposure frequency close to 0, there
is no detectable interaction or main effect. For exposure frequency below 50%, there is greater
power to detect a GXE interaction (blue line) than to detect a main effect of genes (red line).
With rates of exposure exceeding 50%, the power of detecting a direct effect of genes (red line)
increases above that of detecting an interaction, even though interaction is the data-generating
mechanism. The probability of detecting a spurious main effect of genes (or environments)
remains at the 2.5% chance level across the range of exposure frequency if the interaction term
is retained in the equation.
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