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Abstract
We consider detection of a nodule signal profile in noisy images meant to roughly simulate the
statistical properties of tomographic image reconstructions in nuclear medicine. The images have
two sources of variability arising from quantum noise from the imaging process and anatomical
variability in the ensemble of objects being imaged. Both of these sources of variability are simulated
by a stationary Gaussian random process. Sample images from this process are generated by filtering
white-noise images. Human-observer performance in several signal-known-exactly detection tasks
is evaluated through psychophysical studies by using the two-alternative forced-choice method. The
tasks considered investigate parameters of the images that influence both the signal profile and pixel-
to-pixel correlations in the images. The effect of low-pass filtering is investigated as an approximation
to regularization implemented by image-reconstruction algorithms. The relative magnitudes of the
quantum and the anatomical variability are investigated as an approximation to the effects of exposure
time. Finally, we study the effect of the anatomical correlations in the form of an anatomical slope
as an approximation to the effects of different tissue types. Human-observer performance is compared
with the performance of a number of model observers computed directly from the ensemble statistics
of the images used in the experiments for the purpose of finding predictive models. The model
observers investigated include a number of nonprewhitening observers, the Hotelling observer
(which is equivalent to the ideal observer for these studies), and six implementations of channelized-
Hotelling observers. The human observers demonstrate large effects across the experimental
parameters investigated. In the regularization study, performance exhibits a mild peak at intermediate
levels of regularization before degrading at higher levels. The exposure-time study shows that human
observers are able to detect ever more subtle lesions at increased exposure times. The anatomical
slope study shows that human-observer performance degrades as anatomical variability extends into
higher spatial frequencies. Of the observers tested, the channelized-Hotelling observers best capture
the features of the human data.

1. INTRODUCTION
Computer-generated simulation images play an important role in the study of medical image
perception. Even though the images generated by such procedures can be demonstrably
different from clinically acquired images, the computer-generated simulations have a number
of practical advantages. Simulation procedures yield an unlimited supply of images, and since
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simulated lesions and other sorts of targets are added by the investigator, ground truth about
the images is known, avoiding difficulties with a “gold standard.” Furthermore, simulation
images can often be well characterized statistically, and for many tasks, performance of the
ideal observer can be computed. Hence experiments with simulation images are a good place
for building models of perceptual effects observed in a clinical environment. The models can
then be tested on clinical data to see if they generalize to these more complex images.

Better understanding of the detection strategies employed by human observers would help
determine good predictors of human detection performance. These predictors could then be
used to optimize image-reconstruction algorithms (and other forms of image processing) for
performance in medically relevant tasks.1–3 Currently, such an optimization process would
require many lengthy and expensive human-observer performance studies. A mathematical
model observer would allow for the exploration of a much broader range of free parameters in
the imaging chain.

The goal of this work is to evaluate human-observer performance and compare it with the
performance of model observers in detection tasks with simulated images meant to roughly
approximate tomographic image reconstructions. The levels of noise present in our images as
well as the image sizes make the simulations most closely correspond to emission modalities
in nuclear medicine such as single-photon emission computed tomography (SPECT) or
positron emission tomography (PET). Image reconstruction in general is an interesting subject
for perceptual studies because the reconstruction process induces a strong correlation structure
to the noise in the resulting images. Under idealized circumstances, the noise-power spectrum
(NPS) of reconstructed images that are due to quantum noise in the image data assumes a ramp
profile in the spatial-frequency domain.4–6 Reconstructed medical images contain an
additional correlation structure that is due to variability in the population of objects that are
imaged. In the context of medical imaging, this source of background variability is a
consequence of anatomical variability in patients. Anatomical variability can often be
described in terms of anatomical structures at multiple scales, leading to a power-law form for
the NPS over a range of spatial frequencies.7–12 The correlation structure of reconstructed
images is a combination of both sources of variability modulated by some form of
regularization implemented during the reconstruction process. These three components
(quantum noise, anatomical variability, and regularization) are explicitly modeled in the
simulation process used for this work.

The method for generating the simulation images is guided by two main considerations. The
first is to include factors affecting real clinical images as described above. The second
consideration is to have a generating process for which ensemble (population) statistical
properties can be computed with reasonable effort. A Gaussian random process with a number
of adjustable parameters is used to generate images for two-alternative forced-choice (2AFC)
detection experiments. The target signal in the experiments is a nodule profile similar to that
used by Burgess et al.13 For all the experiments, the parameters of the Gaussian process are
adjusted so that the NPS of the resulting images maintains the form of a modulated combination
of a ramp and a power law.

A total of 17 separate 2AFC experiments are grouped into three studies. The studies investigate
the effects of parameters related to regularization, exposure time, and tissue type. Model
observers investigated include the Hotelling observer (equivalent to the ideal observer in these
experiments), a number of nonprewhitening observers that do not make any accommodation
of noise correlations, and three versions of a channelized-Hotelling observer that process the
image data through frequency-selective channels.
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2. GENERATION OF IMAGES
A. Procedure for Generating Images

The images used in this work are generated by filtering white noise, adding a mean background
level and possibly a signal profile (if the image is in the signal-present class), and then extracting
a subregion to remove any wraparound effects of the filtering operation. The filtering operation
introduces pixel-to-pixel correlations into the resulting noise field that are meant to be an
idealized approximation of the correlations found in tomographic reconstructions. The form
of the correlating filter and the signal profile are described in Subsection 2.B and 2.C,
respectively.

The procedure for generating an image is described by the following seven steps:

1. Generate a 128 × 128-pixel white-noise image by using a pseudo-random-number
generator. Each element of this image is presumed to be an independent Gaussian-
distributed random variable with a mean of zero and variance of unity.

2. Compute the two-dimensional discrete Fourier transform (2D-DFT). This step is
implemented through a fast Fourier transform algorithm.

3. Compute a pointwise multiplication of the Fourier coefficients by the filter
coefficients. The functional form of these coefficients is given in Subsection 2.B.

4. Take the inverse DFT of the product.

5. Add a mean background level so that the images will be in the middle of the gray-
level range of the display monitor.

6. Add a signal profile to the images designated as signal-present.

7. Extract a 64 × 64-pixel subregion centered at the signal location as the final image.

Figure 1 shows four of the steps in this list graphically. The image in Fig. 1(a) is the white-
noise image at the end of step 1. Figure 1(b) is the filtered-noise field with mean background
added in step 5. Figure 1(c) has a signal profile added, and Fig. 1(d) is the extracted 64 × 64-
pixel subregion. We note that correlation lengths of the filtered-noise fields used in this work
are short enough that extraction of this subregion effectively removes wraparound correlations
introduced by the DFT filtering operation.

We will make extensive use of statistical properties of the images generated by the process just
described—in particular, the image mean and covariance. For the purposes of specifying these
quantities, it is convenient to describe an image as a one-dimensional column vector, indexed
lexicographically by m = 0,…, M − 1. For an Mrow × Mcol image, M = Mrow Mcol. The image-
generation procedure can then be defined as an affine transformation of the white-noise vector
u (indexed as a 16,384-element column vector) to the final image f ̂ (indexed as a 4,096-element
column vector). The transformation is given by

(1)

where F is the matrix associated with the 2D-DFT, the diagonal matrix Λ implements the
pointwise multiplication by the filter coefficients, the vector b is a mean background vector
with all elements set to a constant value, and the vector s is the signal vector. The switch δSP
is set to unity if the image is to be a signal-present image or zero if the image is to be a signal-
absent image. The subregion extraction operation can be thought of as matrix multiplication
with W, a rectangular matrix with 4,096 rows and 16,384 columns. Each row of W has a single
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nonzero element set to 1.0. The location of the nonzero element corresponds to the image pixel
being extracted. The matrix transpose of W, indicated by Wt, can be thought of as the operation
of padding as it embeds a subregion in a larger image.

The 2D-DFT matrix has an important orthogonality property that will be used often in this
work. A unitary implementation of the 2D-DFT obeys the rule that14

(2)

where the superscript † indicates the adjoint (transpose and complex conjugate) of the matrix.
Nonunitary implementations of the 2D-DFT obey F−1 = cF† for some scaling constant c. For
simplicity in the formulas that follow, we will assume that a unitary 2D-DFT is used.

B. Noise Correlation Structure
The components that influence the correlation structure of the images are implemented in the
diagonal matrix Λ of Eq. (1). It is convenient to decompose Λ into three distinct components
that represent the effects of quantum variability, anatomical variability, and regularization
implemented during image reconstruction. These three components combine to define Λ as

(3)

where Nq and Na can be thought of as the NPS of the quantum noise and the anatomical
variability, respectively, and B represents the effects of regularization. Each of the three terms
on the right-hand side of Eq. (3) is itself a diagonal matrix. The exponent of 1/2 acting on Nq
+ Na is interpreted in the usual sense for diagonal matrices as taking the positive square root
of each diagonal element of the sum. As can be seen below, the diagonal elements of Nq and
Na are nonnegative, leading to real elements after the square root.

The diagonal elements of Nq, Na, and B are specified in terms of the frequencies of the 2D-
DFT. Each point of the 2D-DFT is associated with a lattice point in the 2D spatial-frequency
domain. These lattice points form a square grid that is bounded by the Nyquist limit in each
dimension. We will index points in the frequency domain by another lexicographic index k.
The 2D frequency vector associated with element k is denoted by ρk. Since we will use radially
symmetric (isotropic) functions in all of the studies reported here, it is most convenient to use
the radial frequency ρk = ||ρk||..

Figure 2(a) plots the three components that make up Λ in terms of radial frequency. In the
absence of any regularization and finite sampling effects,15 it is well established that quantum
noise in tomographic reconstructions acquires a correlation structure well described by a ramp-
like NPS.5,6 Hence we model the diagonal elements of the quantum NPS by

(4)

where ρq is set to the constant value 0.0078 pixel−1 for all experiments and the magnitude
Wq is varied in different experiments. The effect of this setting of ρq is to keep the dc component
(ρk = 0) from going to zero. The resulting form of Nq is a ramp in radial frequency except very
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near the dc component, where the profile flattens. The value of the elements of Nq as a function
of radial frequency are plotted (as the thin solid line) in Fig. 2(a). The change in the ramp
spectrum near the origin is just visible at the lower left corner of the plot. Note that Nq should
be thought of as a somewhat idealized quantity, since the actual contribution of the quantum
noise to reconstructed images is influenced by a number of factors such as image system
geometry, imperfect collimation, scattered radiation, and any regularization in the image
reconstruction process.

Object—or patient-to-patient—variability results in another form of variability in
reconstructed images. Like many natural images, anatomical variability often contains
structures at varying scales with a resulting power spectrum that is approximated by an inverse-
power law over a range of spatial frequencies.16,17 In this work, object variability is modeled
in terms of an anatomical NPS similar to that done in prior work by Rolland and Barrett18 and
by Burgess.19 Diagonal elements of the anatomical NPS are given by

(5)

where ρa is a constant set to 0.0156 that determines the frequencies where the inverse-power
law holds. For values of ρk that are large relative to ρa, the anatomical NPS is very nearly

proportional to . For small values of ρk, the anatomical NPS departs from a power-law form
and remains bounded. The setting of ρa used here results in spatial correlations that follow the
inverse-power-law NPS until correlation lengths are on the order of 64 pixels. The exponent
β controls the rate of falloff of the power spectrum. This parameter has been used to quantify
the complexity of anatomical variability, with values of 3.0–4.0 reported in mammography,
9–12 3.4 in coronary angiography,11 and 3.7–3.9 in single-photon emission computed
tomography liver scans.7 Values of β used in the psychophysical studies vary from β = 2.0 to
β = 4.0. For the component of the anatomical NPS in Fig. 2(a), β = 4.0. The parameter Wa
controls the magnitude of the anatomical fluctuations in the images. Like the quantum NPS,
the actual contribution of anatomical variability to the reconstructed images is influenced by
regularization. However, the effect of regularization is less severe on the model of anatomical
variability used here, since the areas of highest variability in Na occur at low spatial frequencies,
where there is little regularization.

Regularization is an integral part of most image-reconstruction algorithms, since unregularized
reconstructions demonstrate considerable noise amplification. There are a number of ways to
implement regularization for image reconstruction in the form of constraints, prior
distributions, sieves, iterative stopping criteria, and smoothing filters. Smoothing filters are
particularly well suited to the present work because the filter can be directly implemented in
the image-generation process as part of Λ in Eq. (3). The frequency profile of the regularizing
filter used here is in the form of a Butterworth filter:

(6)

The cutoff point of the filter, denoted by the parameter ρc, is the radial frequency at which the
value of the filter is 1/2. The parameter ν is on the order of the Butter-worth filter. This
component determines how fast the filter falls off near the cutoff point. For all experiments,
the order of the Butterworth filter is fixed at a value of ν = 4.
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C. Signal Profile
The signal profile in reconstructed images includes the effects of regularization in the
reconstruction algorithm; the signal-present profile can be thought of as an unregularized
profile s0 that is filtered with a transfer function of the regularizing filter implemented by the
matrix B found in Eq. (3). Each element of the unregularized signal vector, denoted by s0, is
defined in the spatial domain by

(7)

where ||rm − rc|| is the distance between the location of the mth image pixel (rm) and the signal
center (rc). The signal contrast is controlled by As, the signal amplitude is in gray levels, and
R is the signal radius in pixel units. The exponent n determines the rate at which the signal
profile goes to zero near the edge. For all the experiments, R is set to 4.0, and n is set to 1.5.
This functional form has been used by Burgess et al.20 to fit the profile of nodule data collected
by Samei et al.21

Applying the regularizing filter to s0 yields the filtered signal profile

(8)

The spectrum of the signal before and after regularization by B is plotted as a function of radial
frequency in Fig. 2(b). The amplitude of the spectra in this figure is plotted on a logarithmic
scale so that the small peak in the spectrum near 0.25 pixel−1 is clearly visible. This scaling
also shows the relatively small effects of the regularizing filter on the signal for this particular
cutoff point (ρc = 0.3). Significant differences in the spectrum are not apparent until the
amplitude has fallen off by nearly 3 orders of magnitude.

D. Image Statistics
The statistical properties of interest for this work are the image mean and the image covariance
of signal-absent and signal-present images generated by the process described in Subsection
2.A. These quantities can be determined directly from the image-generating process given in
Eq. (1) provided that we know the mean and the covariance of the white-noise vector u and
the effect of an affine transformation on these quantities.

The mean of a random vector x is another vector μx = 〈x〉, where the angle brackets indicate
the mathematical expectation of the random quantity inside. The covariance matrix for x is
defined by the matrix-valued expectation Kx = 〈(x − μx)(x − μx)+〉. For an affine transformation
of x, given by

(9)

where the matrix A and the vector c are assumed to be nonrandom quantities, the mean and
the covariance are defined by
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respectively.22

The starting point for the image-generation procedure is the white-noise vector u. Since each
element of u is independent, has zero mean, and has unit variance, the mean of u is μu = 0 and
the covariance matrix is the identity matrix Ku = I. For the transformation from u to f ̂ in Eq.
(1), we see that the components of Eq. (9) are given by A = WF†ΛF and c = W(b + δSPs).
Hence the mean vector is given by

and the covariance matrix is given by

(10)

The covariance does not depend on the value of the signal switch δSP. Hence the covariance
matrices associated with signal-present and signal-absent classes of images are both equivalent
to Kf ̂. The mean image μf ̂ is dependent on the value of δSP, and hence the mean signal-present
image μf ̂|sp is different from the mean signal-absent image μf ̂|sa. We will denote the mean
difference between signal-present and signal-absent images by Δμf ̂, defined as

(11)

If we replace s and Λ by their definitions in Eqs. (8) and (3), respectively, we obtain formulas
for the statistical properties of interest in this work in terms of the modeled components of the
imaging chain described in the previous section. For the mean image difference, we have

(12)

and for the image covariance we have

(13)

3. EVALUATION OF DETECTION PERFORMANCE
Section 2 described a method for generating images and derived some relevant statistical
properties of those images. The motivation for deriving these quantities is to understand how
they influence the performance of detection tasks. In this section, we describe how the images
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and the statistical properties are used to assess performance in the context of two-alternative
forced-choice (2AFC) detection.

A. Image Response Variables
In each trial of a 2AFC detection task, two images are presented to the observer. One image
contains a signal [in the context of this work, generated by Eq. (1) with δSP = 1], and the other
does not contain a signal [generated by Eq. (1) with δSP = 0]. The observer performs the task
by identifying the image that to a greater degree appears to contain the signal in each trial. This
process is repeated over many trials. This section describes a general model of how an observer
arrives at a decision when presented with two images in a 2AFC trial.

Throughout this work, we will utilize models of the detection process that act directly on an
image vector f ̂ rather than on the intensity of the displayed image. The rationale behind this
simplification is that the parameters of the images, not the display device, are the subject of
interest. However, the human observer can access reconstructed images only after display.
Hence the validity of this simplifying step in attempts to model the human observer requires
that display of the images not significantly affect task performance. This seems to be a valid
assumption in noise-limited tasks of the sort considered here, where the absence of image noise
would render the signal visually obvious to the observer. For example, Judy and
Swensson23,24 and Judy et al.25 have found little dependence over a broad range of display
parameters for detection in computed tomography images. Image display is likely to have a
much greater impact on task performance when the signal contrast is near the threshold for
visual detection.

We begin with the generation of a response variable by an observer that acts on f ̂. This process
yields an observer-response variable λ, defined by

(14)

The function w(f ̂) is the response to the image data, while ε represents the internal noise in the
observer response that results in a noisy—or randomized—decision maker. Internal noise is
an important component for describing human-observer performance, since it is demonstrably
present in decisions made by human observers.26–28 We assume that ε is a zero-mean random
variable. Furthermore, the observer internal noise is generally assumed to be uncorrelated with
the image.

The model for the process by which an observer makes a decision in a 2AFC trial is as follows.
Let us denote the outcome of the ith trial as the random variable oi. When a correct decision
is made, oi = 1, and when an incorrect decision is made, oi = 0. The model of detection
performance assumes that the observer forms a response to both images according to Eq. (14)
and chooses the image with the larger response. We denote the response in the ith trial to the
signal-present image as  and the response to the signal-absent image as ; then the decision
can be described by

(15)

We are assuming continuous probability densities on  and , and hence the probability of
observing an equivocal decision ( ) is zero.
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The concept of a model observer is often used in this work and in the literature.29,30 The term
is used to describe a decision strategy based on an observer response generated by a
mathematical model. In other words, if we specify a particular functional form for w(f ̂) in Eq.
(14) and a probability distribution on ε, then we have defined a model observer.

B. Measures of Performance
A measure of detection performance is a formal way to quantify how well a given detection
strategy performs a task. The most fundamental measure of performance in a forced-choice
task is the proportion correct, defined as the expected value of oi in Eq. (15) and denoted by
PC. For a 2AFC experiment PC can be interpreted either as the probability of reaching a correct
decision in each trial of a forced-choice experiment or as the probability that  is greater than

. This latter interpretation can be used to show that PC is equivalent to the area under the
receiver operating characteristic curve.31 Thus PC has an interpretation beyond the forced-
choice detection task.

A second measure of performance, the observer signal-to-noise ratio (SNR), is given in terms
of the mean and the variance of the  and  variables.32,33 It is defined as

(16)

where μλ+ and  are the mean and the variance of  and μλ− and  are the mean and the
variance of . The subscript on the observer SNR is included to emphasize the dependence
of this quantity on w, the observer response function in Eq. (14).

A third measure of performance, which we refer to as the detectability and denote by dA,
provides the link between PC and the observer SNR. The detectability is defined simply as the
transformation of PC given by

(17)

where Φ−1 is the inverse cumulative normal distribution. It has been shown (see, for example,
Barrett et al.33) that if  and  are independent and Gaussian distributed, then SNRw = dA.
In this case, the observer SNR is equivalent to the observer detectability.

C. Liner Model Observers
A linear model observer is defined as a special case of Eq. (14) in which the response function
w is linear in its argument. In this case, the observer response can be specified in terms of an
inner product with a vector of weights w that has the same dimension as that of the image
vector. The vector of weights is often referred to as the observer template. The resulting form
of Eq. (14) is given by

(18)

As mentioned above, we must specify a distribution on the internal-noise component to fully
identify a model observer. We will take ε to be a Gaussian random variable, independent of
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f ̂, with a mean value of zero and variance . Various choices for the internal-noise variance
are used, including , which results in a noiseless (non-randomized) decision maker. It
should be noted that the use of a single internal-noise variable—ε in this case—does not
necessarily imply a single source of internal noise. The ε term should be thought of as a
composite of internal noise from various sources.

The combination of a linear observer response function and Gaussian-distributed internal noise
allows us to write the mean and the variance of  and  in terms of the statistical properties
of f ̂ and ε. Using the rules of linear transformation of Gaussian random variables, it is
straightforward to derive that

where Δμf ̂ is the mean difference in signal-present and signal-absent images given in Eq. (11)
and Kf ̂ is the common image covariance given in Eq. (10). With these two relations, we can
write the observer SNR in terms of the model observer and the statistical properties of the
images as

(19)

For multivariate Gaussian-distributed images and a Gaussian-distributed internal-noise
component, the resulting observer-response variable will also be a Gaussian. Hence the
observer SNR given in Eq. (19) is equivalent to the observer detectability defined in Eq. (17).

D. Psychophysical Experiments
The results of this work are centered on human-observer performance as measured from
psychophysical studies. For human observers in a 2AFC task, we do not have access to the
observer response variables  and . The only observable outcome of a given trial is oi, the
binary variable indicating a correct or incorrect decision.

While the lack of access to the observer-response variables precludes direct calculation of an
observer SNR, it does not stop us from estimating other measures of performance. In particular,
the proportion correct can be estimated by taking the sample average of the oi variables.31 If
Ntrial is the total number of trials in an experiment, then the estimate of PC is given by

(20)

From the estimate of proportion correct, we can obtain an estimate of the observer detectability
by applying the transform in Eq. (17) to get

(21)
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Most of the results reported in this work contain comparisons of human-observer detectability,
estimated by Eq. (21), with the observer SNR for a variety of model observers computed from
Eq. (19). We emphasize that this is a fair comparison (under the assumption that image display
is not a significant factor), since the observer SNR for linear observers is equivalent to
detectability for the images considered. The main difference between the two measures of
performance is that the human-observer detectability is an estimate, while model-observer SNR
is computed analytically from the mean and the covariance of the image-generation process.

There are a number of practical considerations in design and environment of psychophysical
experiments. We postpone discussion of these issues until Section 5.

4. MODEL OBSERVERS
This section describes a number of different linear model observers in terms of their observer
templates, as defined in Eq. (18). We begin with three nonprewhitening observers that are
generally easy to implement. We refer to these observers as nonprewhitening because they
make no attempt to decorrelate, or “whiten,” the noise in the images. Practically, this restriction
means that the observer template is independent of the image covariance matrix. The next
observer considered is the Hotelling observer. Because of the Gaussian process for generating
the data (with equal covariances in both signal-present and signal-absent images), the Hotelling
observer is also the optimal detection strategy and hence the ideal observer for this task. Finally,
we describe a family of model observers, called channelized-Hotelling observers. Proposed by
Myers34 and Myers and Barrett,35 these observers combine elements of the human visual
system (i.e., channels) with a Hotelling-type decision strategy to perform the detection task.

A. Nonprewhitening Observers
The simplest of the nonprewhitening observers is a region-of-interest (ROI) observer. As the
name implies, this observer is specified by the spatial extent of a ROI. The ROI upon which
the observer is based is defined as a collection of adjacent pixels in the image. In this case, the
ROI-observer template is given by

(22)

where rm is the spatial location of the mth pixel. For this work, the ROI is defined to be the
spatial extent of the signal, a circle of radius 4.0 pixels about the middle pixel. In the case of
white noise and a signal profile that attains a single value within the region of interest, this
observer profile is optimal and forms the basis for the Rose model.36

In more realistic imaging situations, the ROI observer is markedly suboptimal and has a very
limited capacity to adapt to the image characteristics. The observer is unaffected by the image
covariance and utilizes only rudimentary information about the signal profile. Any two signal
profiles with the same spatial extent result in the same observer template.

The nonprewhitening-matched-filter (NPW) observer is defined as the output of a matched
filter that is tuned (or adapted) to the signal profile. The observer template associated with this
model observer is given by

(23)
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Unlike the ROI observer, the NPW observer makes full use of the signal profile, and hence the
observer can be thought of as fully adaptable to the signal. This observer was considered a
good candidate as a model of human observers in a number of early works that considered
white noise and noise with a high-pass correlation structure.23,24,34,37–42 In a later study with
low-pass correlated noise, Rolland and Barrett18 found that humans significantly outperformed
the NPW observer.

Burgess19 has proposed a modification to the NPW observer by composing it with a
convolution filter representing the effects of contrast sensitivity in the human visual system.
This convolution filter is commonly referred to as the eye filter. The eye filter is specified in
the spatial-frequency domain by a radially symmetric transfer function with profile given by
Barten.43 The functional form of the eye filter transfer function is

(24)

where the parameter c was set so that the maximum value of E(ρ) occurs at the peak of the
human contrast-sensitivity function at approximately 4.0 cycles per degree visual angle.
Burgess found that η = 1.3 best fit human-observer data.

We will follow Burgess’s notation and denote the eye-filtered NPW observer by the acronym
NPWE. The observer template associated with this observer is given by

(25)

where the matrix E implements the effects of the eye filter. For a discrete image vector, E is
defined by

where F is the DFT matrix and Λeye is a diagonal matrix with the diagonal elements given by

(26)

Note that the eye filter appears twice in Eq. (25) because the observer is implemented by
computing a scalar product between the eye-filtered image Ef̂ and the eye-filtered difference-
signal profile EΔμf ̂. The resulting scalar product is

B. Hotelling Observer
Unlike the NPW observers, the Hotelling observer utilizes information about spatial
correlations in its observer template. The observer template is given by44
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(27)

The inverse-covariance matrix serves both to decorrelate—or whiten—the noise in the image
and to match the mean signal profile to one that has passed through the whitening process.
When the covariance matrix is stationary, the Hotelling-observer template is the equivalent of
a prewhitening matched filter. This observer template is optimal in the sense that it maximizes
the linear observer SNR in Eq. (19) in the absence of internal noise. In this case, the maximal
observer SNR is given by

(28)

For images with a multivariate Gaussian distribution and the same correlation structure in both
signal-absent and signal-present images, the Hotelling observer is equivalent to the ideal
observer.33

Note that the observer template given in Eq. (27) is sensitive to both the mean signal and the
image covariance. If either of these components changes, then the resulting strategy for
performing the task is altered. Therefore the Hotelling observer can be thought of as adapting
to both the signal profile and the image covariance. This point is of interest because there has
been a considerable effort to understand the degree to which human observers are able to adapt
to the statistical properties of images.13,18,29 The Hotelling observer relates optimal adaptation
to the ability to invert the image covariance matrix, which is in turn related to the notion of
decorrelating, or prewhitening, the noise.

Practical implementation of the Hotelling observer can be difficult because of problems
inverting Kf ̂. Computation of the inverse covariance by numerical inversion can be extremely
time consuming because of the large size of the matrix as well as subject to severe numerical
error if the covariance matrix is ill conditioned. The problem of ill conditioning will also
confound iterative methods for computing inverse-covariance products with slow convergence.

For the results reported in this work, the Hotelling-observer performance is evaluated ignoring
the image extraction step described in Subsection 2.A. This allows us to work with a filtered-
noise field that is decorrelated by the DFT. As a result, the inverse covariance is easily
computed from the NPS. With the use of this approximation, the SNR of the Hotelling observer
is given by

(29)

Note that the effects of the Butterworth filter are absent from the Hotelling-observer SNR.
Because the filter is present in both the mean signal profile and the noise covariance, it cancels
out of Eq. (29).

C. Channelized-Hotelling Observers
The notion of channels in the human visual system has been studied intensively in vision
science for many years.45–47 The application of channelized observers to medical image-
quality assessment began with the work of Myers34 and Myers and Barrett,35 who introduced
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the channelized Hotelling observer. A detailed development of this observer can be found in
that work or more recently in work by Abbey48 and Abbey and Bochud.49 For the purposes of
this paper, we provide an abbreviated description.

A channelized Hotelling observer performs a detection task after first reducing the image to a
smaller (usually much smaller) set of channel response variables. The channel response
variables are defined by the transformation

(30)

where the column vectors of the matrix T each represent the spatial profile of a channel and
the vector ε contains the internal noise in each channel. The internal noise in the channels is
presumed to be zero mean, and it has a covariance matrix denoted by Kε. If we postulate that
the channel responses are transformed into a scalar observer-response variable by a Hotelling
strategy, then the observer template (in the image domain) is given by

(31)

The variance of the internal noise in the observer response is given by

(32)

If we substitute in, according to Eqs. (31) and (32), the formula for observer SNR given in Eq.
(19), we obtain

(33)

The channel filters also provide a mechanism for partial adaptation to the signal profile and
the noise structure. The channelized Hotelling observer can adapt to the signal profile and the
image covariance only after they have passed through T. Hence this observer will adapt to a
different covariance only if it causes a change in TtKf ̂T. By the same argument, this observer
is sensitive only to changes in the signal profile that cause a change in TtΔμf ̂. For sparse channel
models with just a few channels, a significant loss of information may occur in the formation
of the channel responses. This loss of information combined with any internal noise in the
channel responses translates into suboptimal performance.

A useful practical point is that the channelized-Hotelling observer can avoid some
computational difficulties in evaluating the Hotelling observer. Because of the transformation
by T, the dimension of the necessary inverse is generally reduced to the dimension of the
relatively small number of channel responses. This reduction in dimension is usually
substantial enough that the inverse of the channel covariance matrix TtKf ̂T + Kε can be
obtained directly by numerical inversion. Note also that TtKf ̂T + Kε is guaranteed to be
invertible if Kε is nonsingular, regardless of the rank of Kf ̂. Hence the combination of channels
and the internal noise associated with them can actually make evaluation of the observer easier
and more stable from a computational point of view.50
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We now describe three channel models used to evaluate the channelized-Hotelling observer
for the experiments described in Section 5.

D. Channel Profiles
Equation (30) casts the formation of each channel response as an inner product between the
image vector and a column of the filter bank T. Most of the literature describes visual channels
in terms of the Fourier transform of a retinal image. If we define the jth channel profile in the
coordinate system of the displayed image, we obtain a channel profile Cj(ρ), which is a function
of the two-dimensional spatial-frequency variable ρ. The spatial sensitivity function associated
with this channel profile is tj(r), the inverse Fourier transform of Cj(ρ). We implement the
channels in the discrete image domain by using the inverse DFT to define the jth column of
T by

where

The first implementations of the channelized-Hotelling observer34,35 utilized radially
symmetric channel filters with a square bandpass profile in radial frequency. The justification
for the radial symmetry was that the signal profile and the noise covariance for these
experiments were also radially symmetric. Therefore radially symmetric channels resulted in
a large economy in the number of channels needed to cover a range of spatial frequencies.
These justifications apply equally well to the present work. Both the signal profile and the
covariance structure of the noise are defined in terms of radially symmetric functions. Hence
we use radially symmetric channel profiles in this work as well.

In the radial frequency domain, the square filters used by Myers are defined by a starting
frequency ρ0. This frequency serves as the starting point of the first channel. The upper
frequency of this channel is defined to be ρ1 = αρ0 with α > 1. The starting frequency of the
second channel is set to the upper frequency of the first. The upper frequency of the second
channel is then given by ρ2 = αρ1. This system for defining the channel filters is continued for
the remaining channels. The radial frequency profile of the jth channel is given by

(34)

The square-channel model used in Section 5 (denoted SQR) has a total of four channels, a
starting frequency of ρ0 = 0.015, and α set to 2.0. The profiles for this channel model are plotted
in Fig. 3A.

A second radially symmetric model has been utilized more recently51,52 that incorporates
overlapping difference-of-Gaussians (DOG) functions for the channel sensitivity functions.
DOG functions are one of several bandpass profiles that have long been used to model spatial-
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frequency selectivity in the human visual system.53,54 With this model, the radial frequency
profile of the jth channel is given by

(35)

The standard deviation of each channel, σj, is chosen in an analogous fashion to the frequencies
of the square-channel model. From an initial σ0, each of the σj values in Eq. (35) is defined by
σj = σ0αj. The multiplicative factor Q > 1 defines the bandwidth of the channel. Two DOG
channel models are used in this work. The first is a sparse model (denoted by S-DOG) that
uses three channels. The channel parameters for this model are σ0 = 0.015, α = 2.0, and Q =
2.0. The channel profiles of the S-DOG model are given in Fig. 3B. A second dense set of
DOG channels (denoted by D-DOG) is investigated as well. This channel model uses ten
channels with channel parameters of σ0 = 0.005, α = 1.4, and Q = 1.67. The channel profiles
of the D-DOG model are plotted in Fig. 3C.

More involved channel models that use channel profiles tuned to specific angular orientations
and phase factors have been proposed by Watson55 and Daly.56 Eckstein and Whiting57 have
been successful in predicting human performance in patient-structured noise by using an
implementation of the Watson model. Burgess et al.13 have reported results by using channels
defined from Daly’s model. Practical implementations of these models typically involve many
more channel responses.

5. RESULTS
In this section, we report the results of a number of psychophysical studies using images
generated by the procedure described in Section 2. Human-observer performance, reported in
terms of the detectability defined in Eq. (21), is compared with ensemble calculations of model-
observer SNR obtained from Eq. (19) by using the statistical properties of the images described
in Section 2.

A. Rationale and Description of Experiments
The large number of parameters in the definitions of the signal profile and the NPS leave many
possibilities for variables to study. Of these, we have considered three specific effects here for
their relevance to topics in imaging.

1. Regularization Study—The regularization study is most germane to the subject of image-
reconstruction algorithms, since most algorithms have one or more parameters that allow the
user to control the level of regularization implemented in the final reconstructed image. The
regularization generally results in suppression of higher spatial frequencies in much the same
way that the Butterworth filter in Subsection 2.A modulates the signal and noise spectra. The
study presented in this section quantifies the effect of the frequency cutoff of the Butterworth
filter, ρc, on detection performance. Values of this parameter range from 0.450 to 0.060 cycle/
pixel.

The parameter of interest in the seven experiments that constitute this study is ρc, the cutoff
frequency of the Butterworth filter given in Eq. (6). The value of ρc ranges from a value of
ρc = 0.06, which produced very smooth, highly regularized images, to a value of ρc = 0.45,
which produced images with little regularization at all. Table 1 lists the relevant parameters of
each experiment in the study. The images in each experiment were scaled so that the pixel
standard deviation was approximately 20.0 gray levels across all experiments, and hence As,
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Wa, and Wq vary relative to each other in the different experiments. The exponent β of the
anatomical NPS was fixed at 3.0 for all experiments in this first study.

Table 1 summarizes the relevant parameters of each experiment in this study. The amplitudes
of the quantum NPS and the anatomical NPS are proportional to each other and scaled so that
the noise amplitude (the pixel standard deviation) remains constant across all conditions. The
signal amplitude has been set in proportion to the square root of the NPS amplitudes. With
these settings, ideal-observer SNR is constant across experimental conditions. A sample image
from experiments 1, 4, and 7 is shown in Fig. 4.

2. Exposure-Time Study—The parameter of interest in the exposure-time study is the ratio
of Wa, the magnitude of the anatomical NPS in Eq. (5), to Wq, the magnitude of the quantum
noise NPS in Eq. (4). In the context of emission imaging, Rolland and Barrett18 explicitly
derive the exposure-time dependence of both the anatomical and quantum NPS’s of
unreconstructed data. The quantum NPS of the unreconstructed data is due to counting statistics
and hence grows linearly with exposure time. The anatomical NPS of the unreconstructed data
grows proportionally to the square of the exposure time. For linear reconstruction algorithms,
these exposure-time dependencies apply directly to the magnitude of the noise in the
reconstructed images. For convenience, we will simply define the units of exposure time so
that

(36)

The five experiments of this study investigate the effect of the exposure time—as defined in
Eq. (36)—on detection performance. The relevant experiment parameters are given in Table
2. The exposure time varies over more than 3 orders of magnitude within the experiments. The
signal amplitude was held constant across all experiments. In theory, the signal amplitude
increases at a rate proportional to , but this leads to an unreasonably large range of signal
amplitudes. The constant-amplitude experiments that we use can be interpreted as evaluating
weaker signals at higher exposure times. The exponent β of the anatomical NPS was fixed for
all experiments at 3.0, and the cutoff point of the Butterworth filter was fixed at ρc = 0.20. An
example image from experiments 1, 3, and 5 is shown in Fig. 5.

3. Anatomical-Slope Study—The anatomical-slope study consists of five experiments that
analyze how the exponent β of the anatomical NPS influences detection performance. The
reason for referring to this parameter in terms of a slope has to do with the fact that the
anatomical NPS given in Eq. (5) is well approximated by the power law

(37)

for ρk larger than ρa and power-law exponent β > 1. Taking the logarithm of both sides of
relation (37) yields a linear equation in ln(ρk) with a slope of −β. This sort of slope is often
associated with different tissue types as described in Subsection 2.B. The parameter settings
for the five experiments in this study are given in Table 3.

The β parameter controls the rate at which the anatomical NPS falls off to zero. When β is
large, the anatomical NPS falls off rapidly, and hence the fluctuations in the images that are
due to anatomical variation are highly concentrated in the low-frequency range. Conversely,
when β is small, the anatomical NPS falls off much more slowly, indicating the presence of
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anatomical variability at higher spatial frequencies. The slopes investigated in the study range
from −4.0 to −2.0 (hence β = 4.0 to 2.0). Across the studies, Wa has been held constant to fix
the contribution of quantum noise to the images. The signal amplitude As was fixed as well.
The magnitude of the anatomical NPS has been adjusted so that the strength of the noise
(measured as the pixel standard deviation) in the images is approximately constant across the
experiments. To better capture the effects at slopes near −2.0, where the NPS falls off somewhat
more slowly, the cutoff of the Butterworth filter has been set to ρc = 0.30 across all five
experiments. An example image from experiments 1, 3, and 5 is shown in Fig. 6.

B. Psychophysical Procedure
The monitor on which the psychophysical experiments are conducted is a 17-in. standard DEC
Alpha workstation color monitor with a measured screen gamma of 2.8. The images for each
experiment were generated by the procedure described in Subsection 2.A with the parameter
sets described above. The parameters of the simulations were set so that the images would have
a mean (signal-absent) background level of 100 gray levels and a pixel standard deviation less
than 30 gray levels. Any pixels that fell outside the gray-level range of the monitor were
truncated. Subjects adjusted the room lights and the monitor brightness and contrast to
predetermined settings for the experiments. The measured size of a single pixel on the monitor
is 0.27 mm; however, the images were magnified by a factor of 4 for display, yielding an
effective pixel size of 1.08 mm/pixel. The software for the display of images and the
accumulation of observer responses is written entirely in the IDL programming language.

Four observers participated in the psychophysical studies. Two of the observers were paid
subjects, naive to the purpose of the research. The other two observers consisted of an author
(CKA) and a volunteer from his institution who was also familiar with the research goals. None
of the observers had received any formal medical training. Since the tasks investigated here
do not require any specific physiological or radiological expertise, we would not expect medical
training to have altered the results.

All the observers in these studies received considerable task-specific training before
performing the experiments. This training included numerous 2AFC detection experiments in
white noise, where the observer performance was compared with that reported in the literature.
58 Subjects could not proceed to the studies reported here until they consistently achieved
performance levels comparable with the published data (40% efficiency with respect to the
ideal observer). The fact that observers were able to achieve these predetermined levels of
performance indicated reasonable levels of competence among the observers and the adequacy
of the monitor for image display in these tasks. In addition, all observers participated in a series
of experiments investigating the observer psychometric functions before participating in the
experiments reported below (the results of these experiments can be found in related work by
Abbey48). Finally, before each experiment, a short training session with 50 pairs of trial images
was conducted on an independent sample of images generated with the same parameters as
those used in the experiment.

Observer performance was assessed in 400 2AFC trials per experimental condition, with each
experiment broken into two independent 200-trial sessions to avoid observer fatigue. The
observers participated in all the experiments for a given study in the first session before
proceeding on to the second session. The different conditions were viewed in random order in
each pass through the first and second sittings.

C. Human-Observer Results
The first column of plots in Fig. 7 summarizes human-observer performance in the three studies
described above. In these plots, each observer’s detectability [computed from Eq. (21)] is
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identified by a particular symbol used consistently across the three plots. The dotted curve
indicates the average detectability of the four observers. This curve is used (along with error
bars) for comparison with the various model observers in the plots to the right of the human-
observer data. There is generally good agreement among the observers, with an average
coefficient of variation across experiments of 9%.

The results of the regularization study are given in the uppermost plot of the first column of
Fig. 7. The plot shows the detectability as a function of the filter cutoff frequency ρc, defined
in Subsection 2.B. Moving from right to left, the performance is relatively flat with a small
observed peak at ρc = 0.17 followed by a rapid degradation. The peak shows a 13% increase
from the lowest level of regularization (ρc = 0.45). The shape of the human-performance plot
can be interpreted by appealing to the signal and noise spectra of Fig. 2 as follows. The
relatively flat performance for ρc = 0.45 to ρc = 0.23 suggests that the regularizing filter is
modulating spectral elements at these high frequencies that have little or no effect on
performance. For ρc in this range, the attenuated spectral components are almost entirely due
to the quantum NPS and hence of little use for performing the task. Since these elements are
not being used, modulating them with the Butterworth filter has little effect. As the cutoff of
the regularizing filter gets nearer the edge of the signal spectrum, it begins to attenuate noisy
spectral components that are influencing the human decision process. The attenuated spectral
components are still largely just noise, and hence performance improves as the magnitudes of
these components are reduced. At the frequency of the observed peak in human performance
(ρc = 0.17), the signal spectrum has fallen off by an order of magnitude from its maximum at
ρ = 0. So the filter still has only a small effect on the signal, with a larger degree of noise
reduction. At higher levels of regularization, performance drops quickly, since the filter begins
to attenuate important signal components.

The middle plot in the first column of Fig. 7 gives the human-observer performance in the
exposure-time study. The left side of the plot (corresponding to low exposure time) exhibits
almost no change in performance, with a slight decrease in performance as the exposure time
increases to the right side of the plot. The analogy to exposure time would normally lead us to
expect increasing performance. However, recall from Subsection 5.A.2 that the signal
amplitude has been fixed throughout the study and does not increase as the magnitude of the
anatomical NPS goes up. Hence the task measures the ability to detect a lower-amplitude signal
as the exposure time increases. Performance remains approximately constant, even though the
signal strength relative to the anatomical background decreases by over 85% between the two
ends of the plot.

The human-observer results of the anatomical slope study are plotted on the bottom of the first
column of Fig. 7. Observer performance uniformly decreases as the slopes range from −4.0 to
−2.0. This decrease in performance may be understood as the effect of the anatomical noise
moving into higher spatial frequencies. The NPS values for spatial frequencies in the range of
0.04–0.15 pixels−1 increase on average by a factor of 3.0 as the slope goes from −4 to −2. NPS
values for lower spatial frequencies in the range 0.0–0.03 decrease on average by a factor of
3.2. If the observer were heavily weighting the lowest frequencies, we would have expected
to see performance improve.

The anatomical-slope study also reinforces the problems associated with performance
predictions based on the pixel variance or on other measures that do not take into account pixel-
to-pixel correlations. The pixel variance decreases by 19% as the slope goes from −4 to −2,
while the signal amplitude stays constant. Therefore a contrast-to-noise ratio based on the signal
amplitude and the pixel standard deviation would predict an 11% increase in performance.
Instead, we observe a decrease of 44% in average human performance throughout this range.
This sort of contraindication has been found previously.34
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D. Model-Observer Results
The second column of plots in Fig. 7 gives model-observer performance for the Hotelling
observer, the region-of-interest (ROI) observer, the nonprewhitening (NPW) observer, and the
eye-filtered nonprewhitening (NPW-Eye) observer. Hotelling-observer performance is
computed from Eq. (29), which neglects the effects of image truncation from 128 × 128 to 64
× 64 pixels for display. Since the Hotelling observer is equivalent to the ideal observer in these
studies, the performance on 128 × 128-pixel images acts as an upper bound for performance
on the truncated images. Hence there is the possibility that performance computed from Eq.
(29) overestimates performance on the truncated images. However, we shall see shortly that
these effects are small, since the Hotelling-observer performance is nearly equaled by one of
the channelized-Hotelling observers that has been computed with image truncation effects.

The Hotelling observer generally matches the trends of the human-observer data, particularly
in the exposure-time and anatomical-slope studies. The greatest divergence from the human
data is found at the low end of the regularization study. The Hotelling observer does not account
for the observed peak in human performance at ρc = 0.17 nor for the sharp decrease in
performance at lower cutoff frequencies.

The performance of the three NPW models are computed from Eq. (19) with the internal-noise
component set to zero ( ). This choice for the internal-noise component has been made
on the basis of absolute performance. Adding internal noise to these models causes them to
drop below (in many cases further below) the performance levels of the human observers. A
deterministic model observer (one with no internal noise) that is outperformed by human
observers has sources of inefficiency not present in the human observers. Hence the predictive
value of such models is inherently suspect. By this criterion, the ROI and NPW observers can
be rejected because they are consistently outperformed by the human observers. Adding
internal noise simply makes them worse.

The NPW-eye model generally outperforms the human observers, except at the low end of the
regularization study, where the model approximately equals average human performance.
Adding internal noise to the NPW-eye model would cause model-observer performance in this
area to drop below the level of human performance. At the high end of the regularization study,
the model is nearly equivalent to the ideal observer. In the exposure-time study, the model
predicts a substantial peak in performance near an exposure time of 30, which is not present
in the human observer data.

Results for a total of six channelized-Hotelling observers are presented in the three remaining
columns of Fig. 7. There are two implementations of each of the three channel models—square
channels (SQR), sparse difference of Gaussians (S-DOG), and dense difference of Gaussians
(D-DOG)—described in Subsection 4.D. Each channel model is implemented with and without
internal noise. The observer performance is computed from Eq. (33). The internal noise is
presumed to be independent in each channel with variance proportional to the variance of the
image noise in the channel. The resulting internal-noise channel covariance matrix is given by

where cε is a constant of proportionality and diag (TtKf ̂T) indicates a diagonal matrix with
diagonal elements given by the diagonal elements of TtKf ̂T. For the SQR and S-DOG channel
models, cε is set to 1.0 in all experiments, which gives good agreement in absolute performance
with the human-observer data. Because of the greater number and overlap of the channels, the
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D-DOG channel model required more internal noise to match human-observer performance.
For this model, cε is set to 2.5.

The channelized-Hotelling observers give a generally high degree of agreement with the
human-observer data. The observer-performance plots show good absolute agreement with
human observers when the internal noise is added, and even without internal noise, the
observers generally follow the trend of the human-observer data. The largest divergence from
the human-observer performance comes from the D-DOG model without internal noise in the
regularization study. The observer performance in this case is nearly constant across the cutoff
frequency. The addition of internal noise causes this observer to assume the characteristics of
the human-observer data.

The D-DOG observer without internal noise gives insight to the effect of image truncation in
the implementation of the Hotelling observer. The channel profiles of the D-DOG observer are
defined by the size of the truncated images (64 × 64 pixels), and hence they represent an
achievable level of performance on the truncated images. Therefore the performance of the D-
DOG channelized-Hotelling observer acts as a lower bound on performance for the Hotelling
observer for the truncated images. As described above, the performance of the Hotelling
observer given in the second row of the plots acts as an upper bound for performance on
truncated images. Since the two observers give nearly identical results, we can conclude that
truncation effects do not greatly effect the performance of the Hotelling observer.

6. SUMMARY AND CONCLUSIONS
The purpose of this work has been to investigate observer performance in detection tasks that
are similar in design to previously reported results for noise-limited detection but oriented more
toward tomographic image reconstruction. This has been done by considering correlated
Gaussian noise that has a ramp-spectrum component to approximate the effects of the
reconstruction process on quantum noise in projection data, as well as a low-pass component
to roughly simulate patient-to-patient variability in reconstructed images. The effect of
regularization that is due to a reconstruction algorithm is implemented as a low-pass
Butterworth filter that affects both the signal profile and the correlation structure of the noise.
While this is a crude model of the variability present in clinical SPECT or PET reconstructed
images, we feel that it is sufficient to achieve our goal of understanding factors that influence
human-observer performance and seeing if these effects are captured in the performance of
model observers.

A total of 17 detection experiments have been organized into three studies to generate the
results of this work. The studies investigate the effects of parameters related to regularization
and exposure time and a parameter related to tissue properties that is called the anatomical
slope. Performance has been assessed for human observers through psychophysical studies and
for a number of model observers through ensemble calculations utilizing principles from signal
detection theory. The human-observer results of these studies are relatively consistent between
observers (9% coefficient of variation) and highly dependent on the experimental parameters.

A total of ten model observers have been tested for agreement with the human-observer data
including the Hotelling observer—the ideal observer for these experiments, three
nonprewhitening observers that do not take into account pixel-to-pixel correlations in the
images, and six implementations of the channelized-Hotelling observer. The Hotelling and
nonprewhitening observers generally do not reproduce important features of the human-
observer data. Hence we can conclude that these models are not good predictors of human-
observer performance in images with structured noise similar to that used here. The
channelized-Hotelling observers give generally good agreement with the human-observer data,
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with good matching performance on an absolute scale when internal noise is added to the
channel responses. Hence the channels appear to be a good mechanism for implementing a
suboptimal observer that is able to partially adapt to image statistics.

The fact that the three channelized-Hotelling observers all make similar predictions for these
experiments indicate that there is still work to be done in distinguishing between observers as
predictors of human-observer performance. A broader set of experiments may serve to identify
an optimal and robust set of channels for predicting human performance. An alternative
approach is to estimate human-observer templates directly as described recently by Abbey et
al.59,60 Under this approach, estimated human-observer templates could be directly compared
with model-observer templates.
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Fig. 1.
Four steps in the image-generation process: (a) initial white-noise field, (b) effect of filtering
to induce pixel correlations, (c) effect with a signal added (with artificially high contrast for
the purposes of visibility in this figure), (d) effect of cropping the edges to the final 64 × 64
pixels used in the psychophysical studies.
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Fig. 2.
Noise and signal power spectra. Plots of signal and noise power spectra as a function of radial
frequencies (in pixels−1). (a) Components of the noise-power spectrum (NPS). The total NPS
is the sum of the quantum and anatomical components multiplied by the filter spectrum. (b)
Components of the signal spectrum. The total signal spectrum is the product of the signal
spectrum and the filter spectrum. Note that the signal power is plotted on a logarithmic scale
to capture the low-amplitude peaks at 0.28 and 0.40 pixels−1.
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Fig. 3.
Channel profiles for channelized-Hotelling observers. The three plots illustrate the frequency
response for the square (SQR), sparse difference-of-Gaussians (S-DOG), and dense difference-
of-Gaussians (D-DOG) channel models used in this work.
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Fig. 4.
Sample images used in the regularization study experiments. The successive smoothing of the
image reflects the effect of a lower cutoff frequency. A. High-frequency cutoff in the
regularizing filter (experiment 1: ρc = 0.450). B. Midrange frequency cutoff in the regularizing
filter (experiment 4: ρc = 0.165). C. Low-frequency cutoff in the regularizing filter (experiment
7: ρc = 0.060).
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Fig. 5.
Sample images used in the exposure-time study. The higher-frequency quantum noise
component is reduced as exposure time goes up. A. Low-exposure time (experiment 1: Wa/
Wq = 0.528). B. Midrange exposure time (experiment 3: Wa/Wq = 29.70). C. High-exposure
time (experiment 5: Wa/Wq = 1223.7).
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Fig. 6.
Sample images used in the anatomical-slope study. The anatomical noise extends into higher
spatial frequencies as the slope is reduced. A. Steep slope (experiment 1: β = 4.0). B. Midrange
slope (experiment 3: β = 3.0). C. Low slope (experiment 5: β = 2.0).
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Fig. 7.
Human-observer performance and model fits. Each row of plots corresponds to the named
study (regularization, exposure time, and anatomical slope). Y-axis labels on the left apply
across the entire row. The first column of plots shows the performance of all four subjects. For
reference, average human-observer performance is plotted with 1-standard-deviation errorbars
in all the model-observer plots as well. The second column gives the performance of the
Hotelling observer, the nonprewhitening (NPW) observer, the region-of-interest (ROI)
observer, and the eye-filtered nonprewhitening (NPW-eye) observer. The remaining columns
show the performance of channelized-Hotelling observers with the square channels (SQR), the
three-channel difference of Gaussians (S-DOG), and the ten-channel difference of Gaussians
(D-DOG), both with and without internal noise (+noise).
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Table 1

Parameter Settings for the Regularization Studya

Exp. No. As Wa Wq ρc

1 25.7 80021. 1724.9 0.450

2 33.3 134166. 2894.7 0.323

3 38.9 184259. 3975.3 0.230

4 42.3 216412. 4665.4 0.165

5 44.4 238594. 5145.4 0.117

6 46.2 258503. 5578.6 0.084

7 48.5 284949. 6145.3 0.060

a
The parameter As refers to the signal amplitude (prior to the Butterworth filter), Wa refers to the magnitude of the anatomical NPS, Wq refers to the

magnitude of the quantum NPS, and ρc refers to the cutoff frequency of the regularizing (Butterworth) filter.
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Table 2

Parameter Settings for the Exposure-Time Studya

Exp. No. As Wa Wq T

1 24.0 4968.1 9409.0 0.528

2 24.0 19872.6 6021.7 3.301

3 24.0 79490.3 2676.3 29.70

4 24.0 209904.0 441.7 475.2

5 24.0 236533.0 193.3 1223.7

a
The parameter T is the exposure time of the experiment. The cutoff frequency of the regularizing filter was held constant at ρc = 0.2 across all

experiments of the study. The anatomical slope was held constant by setting the power-law exponent to β = 3.0 across all experiments of the study.
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Table 3

Parameter Settings for the Anatomical-Slope Studya

Exp. No. As Wa Wq β

1 40.0 519007. 4181.8 4.0

2 40.0 444051. 4181.8 3.5

3 40.0 345010. 4181.8 3.0

4 40.0 226022. 4181.8 2.5

5 40.0 113931. 4181.8 2.0

a
β refers to the power-law exponent (or anatomical slope) of the anatomical NPS. The cutoff frequency of the Butterworth regularizing filter was held

constant at ρc = 0.3 across all experiments of the study.
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