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SUMMARY
Due to significant progress in cancer treatments and management in survival studies involving
time to relapse (or death), we often need survival models with cured fraction to account for the
subjects enjoying prolonged survival. Our article presents a new proportional odds survival
models with a cured fraction using a special hierarchical structure of the latent factors activating
cure. This new model has same important differences with classical proportional odds survival
models and existing cure-rate survival models. We demonstrate the implementation of Bayesian
data analysis using our model with data from the SEER (Surveillance Epidemiology and End
Results) database of the National Cancer Institute. Particularly aimed at survival data with cured
fraction, we present a novel Bayes method for model comparisons and assessments, and
demonstrate our new tool’s superior performance and advantages over competing tools.
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1. Introduction
With rapid developments in medical and health sciences, we now encounter more survival
studies where some patients are expected to be cured. Survival models that account for cure
are important for understanding prognosis in potentially terminal diseases. Traditional
parametric survival models such as Weibull or Gamma (see, e.g., Cox and Oakes, 1984) do
not account for the probability of cure. Although subtle, one needs to distinguish between
the concepts of censoring and cure: censoring refers to a subject who does not fail within the
monitoring time window of a particular subject, while cure refers to one who will not fail
within any reasonable monitoring time window. Indeed the latter is an abstraction as we
never “observe” a cure (due to a finite monitoring time). Still estimating the probability of
such an outcome, especially in various cancer-relapse settings, can help expose unknown
health issues concerning that population.

Recently much attention has been devoted to formulating parametric survival models
incorporating a cured fraction – a non-zero tail probability of the survival function. These
have focused upon cancer-relapse trials including breast cancer, non-Hodgkins lymphoma,
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leukemia, prostate cancer, melanoma, and head and neck cancer, where due to recent
advances in therapy and treatment, a significant proportion of patients are expected to be
“cured”, that is to remain disease-free even after really long follow-ups. Cure rate models
incorporating a cured fraction, defined as a non-zero tail-probability of the survival function,
adjust for this feature of the data and date back to the mixture model by Berkson and Gage
(1954) (BG model, in short) and has been extensively discussed by several authors,
including Farewell (1982, 1986), Gray and Tsiatis (1989), Maller and Zhou (1996), Ewell
and Ibrahim (1997), Stangl and Greenhouse (1998), and Sy and Taylor (2000). In this
model, the survivor function for the entire population is given by

(1.1)

where π = Sp (+∞) is the “cured fraction”, and S(t) with S(+∞) = 0 is the proper survivor
function for the non-cured group. In the presence of the p × 1 vector of covariates

 for the ith subject, assuming an accelerated failure time model S(t|xi) =
S0(tθ(xi)) for non-cured subject and the cured fraction π to be free of xi, we get obtain an
accelerated failure time model

(1.2)

for the population survival function.

Another class of models, formulated by Yakovlev et al. (1993), Yakovlev (1994), Yakovlev
and Tsodikov (1996) and Chen, Ibrahim and Sinha (1999) (YCIS model, in short) in cancer
relapse settings, assume that a latent biological process of propagation of latent clonogenic
tumor cells (latent factors) is generating the observed failure (relapse). Cooner et al. (2007)
generalized this framework to a flexible class of cure models under latent activation
schemes. Consider a typical cancer setting where for each individual in the population under
study, we posit a certain unknown number, N, of latent factors. Let Zi be the time
(promotion time) for the ith latent factor. Given N > 0, Y1, …, YN are assumed to be
independent and identically distributed with a common distribution function F(y) = 1−S(y)
that does not depend upon N. The time to final event of interest can be defined by T = min
{Yi : 1 ≤ i ≤ N}, when N > 1. This model can be used in cancer relapse or other disease
models whenever we can envisage one or several latent factors or events corresponding to
each patient. For an individual to be at risk of failure, he/she must be exposed to at least one
of these latent factors. If N = 0, then the individual is not at risk of final event and is
considered cured. Failure is observed when one (or some) of these latent factors get
activated/prommoted.

Notice that N must be modeled using a stochastic mechanism. The number of possible latent
events N can have any finite-mean integer-valued distribution (e.g., Binary, Geometric, etc.)
with the moment generating function m(t) = E[exp(tN)] and a cure fraction defined as P(N =
0) = m(−∞). In this setting, the marginal distribution of T is given in terms of m(t) as
(Cooner et al., 2007):

(1.3)

For example, in the traditional BG model, N is binary N ~ Ber(θ) (0 ≤ θ ≤ 1) with m(t) = 1 −
θ (1 − et) to give
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(1.4)

with cure fraction 1 − θ ≤ 1. The YCIS model assumes that N has a Poisson distribution
with m(t) = exp[−θ (1 − et)] for θ > 0 and the corresponding marginal cure rate model is

(1.5)

with cure fraction exp (−θ). The biological arguments for using this assumption for a cancer
relapse study are put forward by Hanin et al. (2001) and Hanin (2001) among others.
However, Tucker and Taylor (1996), among others, find the Poisson assumption at best
debatable irrespective of any situation involving cure in cancer. The class of models in (1.3)
is far more general than these two competing models in existing literature of cure-rate
survival data.

The hazard function of the YCIS model in (1.5) is given by

(1.6)

when the covariate vector xi for the ith subject is incorporated through the cure rate
parameter θi as , where β = (β1, …, βp)′ denote the corresponding
vector of regression coefficients, and F(t) is assumed to be free of xi to get a proportional
hazards structure for the population hazard in (1.6).

Most of the existing cure models in the literature are modifications of either the BG (see,
e.g., Sy and Taylor, 2000, Li and Taylor, 2002, Banerjee and Carlin, 2004) or the YCIS
models (see, e.g., Tsodikov et al., 2003). Our first goal here is to develop another class of
cure-rate models where the survival function Sp(t|x) will have a proportional odds structure,
an already popular regression model in ordinary survival model (see, e.g., Bennett, 1983 and
Collett, 1994). Our second goal is to present the associated Bayesian method including a
novel Bayesian model diagnostic tool for cure-rate survival data. The cross-validated
method like L-criterion (e.g. Ibrahim, Chen and Sinha, 2001) popular for uncensored data
from linear and generalized linear model depends on difference between observed and
predicted, and their extension is not obvious when observed data is subject to right
censoring. The Bayesian cross-validated predictive density based method of CPO (e.g.,
Ibrahim et al., 2001b) is problematic particularly for cure-rate model because the CPO for a
subject can be either density-value (for uncensored non-cured) or probability (for either
censored or cured).

In Section 2, as an alternative to the YCIS and BG models, we develop a new general class
of cure models having a proportional odds structure. The key feature of the proportional
odds survival model with cured fraction is that the ratio of hazards for two covariate values
does not remain constant over time (unlike the Cox model structure of the YCIS). However,
unlike the hazard ratio for a proportional odds survival model with no cured fraction, the
hazard ratio for the cure-rate proportional odds model does not go to one at infinity. We
investigate the key characterizations and properties of this model. Specifically, we show
how this cure-rate proportional odds model can be characterized by the latent factors model
of Cooner et al. (2007) with a geometric distribution for the number of latent factors. We
also discuss the posterior and Bayes estimation of our model. Section 3 introduces our
Bayesian method of model selection particularly aimed at right-censored survival data.
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Section 4 illustrates the performance of our models with the melanoma data. Section 5
concludes the paper with a summary and indicates future areas of related research.

2. Models, Properties and Posteriors
The cure models envisaged by Yakovlev (1994) and others deal with failure (relapse) times
at two different levels: an observed failure time, say T, corresponding to the time when the
individual fails, and the latent event times, Yk, k = 1, …, N, the activation times for the N
latent factors that generate the observed failure at time T. Note that if N = 0 then the
individual is not exposed to any of the latent factors and is considered immune from failure.
Conditional upon N, the Yk’s are assumed to be independently and identically distributed
with a latent survival function P(Y > t) = S(t) = 1−F(t). When N is distributed as Geo(θ) with
p.d.f. P[N = k] = θk /(1 + θ)k+1, then we get the population survival function as

(2.7)

This survival function in (2.7) has proportional odds structure when covariate x is modeled
via θ(x) and the latent survival S(t) = 1 − F(t) is free of x, because

(2.8)

The corresponding hazard is

(2.9)

where the density f(t) of F(t) is assumed to be continuous except at finite time points. For
proportional odds model with no cured fraction, the ratio of hazards h(t|x1)/h(t|x2) goes to
one as t → ∞ and it goes to θ(x1)/θ(x2) as t → 0. However, for the proportional odds-model
with cured fraction in (2.7), the ratio hp (t|x1) hp (t|x2) goes to [1+θ(x2)]θ(x1)/{[1+
θ(x1)]θ(x2)} as t → ∞, because F(+∞) = 1.

We specify the latent survival function S(t) using a two-parameter Weibull distribution
Weib(ρ,η) with survival function S(t) = exp(−ηtρ). This implicitly assumes that hazard h(t) =
ηρtρ−1 is either increasing (for ρ ≥ 1) or decreasing (for ρ ≤ 1). However, the corresponding
hp (t|x) may not have the same monotonic trend. When h(t) = η (constant), the
corresponding hp(t|x) = {θ(x)η} / {(θ(x) + 1)eηt − θ} is strictly decreasing.

For the ith individual, our observed data Di = {yi, δi, xi} consists of covariate vector xi, yi =
min(Ti, Ci) as the observed failure time, δi = I[Ti ≤ Ci] as the failure indicator, where Ci is
the non-informative random censoring time. We denote the model parameters (and hyper-
parameters) into Ω, which actually depends on the specific model. The contribution of
subject i to the data likelihood (in a right-censored setting) is

where for the proportional odds model with cure rate, Sp (t | Ω; xi) and hp (t | Ω; xi) are
given in (2.7) and (2.9) respectively. For other models, such as the BG and the YCIS model,
the Sp and hp will be corresponding to the chosen model.
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The posterior distribution of Ω is

(2.10)

where  denotes the observed data and π(Ω) is the joint prior of Ω. For the model in
(2.9), it is assumed to be π(Ω) = ρ1(ρ,η)π2(β|ρ,η). A more precise notation would
acknowledge L and Ω to depend on the model m, but we supress the dependence of L and Ω
on m in the notation for ease of presentation. In general the marginalization of p(Ω | D) is
analytically intractable and is performed using Markov Chain Monte Carlo tool, which
iteratively samples from the joint posterior using possibly Metropolis updates for the full
conditionals. In general, we adopt normal proposals for β, log-normal for η and Gamma for
ρ (as the case may be).

3. Bayesian Model Comparisons
With the broad range of models we can entertain for cure-rate survival data, model selection
becomes an important question. Although several models may provide adequate fit to the
data, each model for cure-rate survival data represents a hypothesis (or a set of hypotheses)
for the mechanism of relapse, and it is beneficial to have a framework for choosing between
these models. One decision-theoretic criteria proceeds from a posterior predictive loss
paradigm (Gelfand and Ghosh, 1998), stating that preferred models will perform well under
a decision-theoretic balanced loss function that eventually yields a model selection metric
called the L-measure (Ibrahim, Chen and Sinha, 2001), given as

can be used to compute the MC approximation of Lm as

where expectation is taken with respect to the posterior predictive distribution of Tip for
patient i given by

(3.11)

and f (tip | Ω) is the sampling density for patient i conditional upon Ω being known.

Computing (3.11) proceeds using composition sampling: given samples  from the
posterior distribution (2.10), we sample tip(j) from f(tip | Ω = Ω(j)) for i = 1, …, n and j = 1,

…, G. The samples  from the posterior predictive distribution of the i-th subject, viz.
p(tip | D).

If there is no cure-rate and no right-censoring, the sampling of finite predictive survival
times tip(j) given Ωj (MCMC sample from posterior) can be easily done. For the cure-rate
survival model subject to random censoring Ci, the response consists of the pair Yi =
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min(Ti,Ci) and censoring indicator δi = I [Ti ≤ Ci]. Therefore, we need a new definition of
Tip from this situation.

We propose a new measure of model diagnostic for censored data. For censored data, since
the censoring indicator is also part of the observed data, the closeness between the observed
Yi = min(Ti, Ci) and the predicted Yip is not appropriate. For example, when δ obs = 1 and
observed yobs = tobs = 10, then prediction of censoring at yp = 11 is not as good as failure/
death at yp = 11, although (yobs − yp)2 are the same for both cases. In presence of censoring
and cured fraction (i.e. E(T) is not finite), it may not be appropriate to perform selection
based on either E(Ti − Tip)2 or E(Yi − Yip)2. To avoid any of these problems, we use the
counting process of number of deaths over time to compare with the number of observed
deaths over time to define our measure of model adequacy. We define the counting process

, where Ni(t) = I[yi ≤ t, δi = 1]. The N+(t) denotes the number of observed

failures before time t. Let  be the observed value of the counting
process N+(t) from observed data D. Let Np(t) denote the posterior predicted sample path of
the counting process N+(t). Our new measure, which we call the M-measure for model m, is
defined as

(3.12)

where τ = maxi{yi} and the distribution of censoring variable Ci is assumed to be known as
F̂CKM, the Kaplan-Meier estimator of the cumulative distribution function of C from D.
Different forms of norm can be used in the formula, such as the absolute value and the
square.

The M-measure can be computed with a two-step procedure. First, we sample (using
MCMC) Ωj for j = 1, …, N from the posterior density p(Ω | D) for model m. Then, for j = 1,
…, N, the {yipj, δipj} are simulated from the predictive distribution of (Yip, δip) assuming the
distribution of C to be F̂CKM. Nest, for each Cipj sampled from the Kaplan-Meier cumulative
density function F̂CKM, we sample δipj ~ Ber(Fp(Cipj)) where Fp(Cipj) = θi F(Cipj)/(1 + θi
F(Cipj)) is the population c.d.f. and set yipj = Cipj if δipj = 0. When δipj = 1, we sample Uij ~
U(0, 1) and set , where

for 0 < y < Cipj and . Once the posterior predictive samples are obtained, for
each j we compute

where 0 = a0 < a1 < a2 < … < aK < aK+1 = τ are distinct points where No(t) and Npj(t) have
jumps, and Δj′ = aj′+1 − aj′. Finally, Mm is obtained as an average over the Mj’s for j = 1, …,
N, where N is chosen large enough to achieve a desired level of Monte Carlo error.
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Smaller values of Mm indicate better fit to the observed data as well as more precise
predictive fit for the model. The advantage of this criterion, compared to deviance
information criterion (DIC), is that the measure is based on the notion of predictive loss
paradigm (e.g. Gelfand and Ghosh, 1998, Ibrahim et al., 2000), and only a very weak
assumption about censoring is made for the computation of M-measure. The Kaplan-Meier
estimator of the cumulative distribution function of C is not necessary. Other assumptions of
the censoring time can also be used, such as the exponential distribution with the rate that
has a Gamma distribution. So a wide range of models can be compared according to the M-
measure.

4. Illustration With Data Analysis
4.1 Analysis of breast-cancer data

To illustrate our new methods, we analyze this breast cancer data set provided by the
National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) data about
a national cohort of women who have been monitored for assessing breast cancer prognosis.
For each of 305 patients in this database, we have racial information, age at diagnosis, the
number of primary cancers that has been diagnosed, and the stage of the disease (local,
regional or distant, with local as baseline). The event of interest here is the time to death
since the diagnosis of first breast cancer. Only 102 patients are observed to experience the
event. The other patients are considered censored, including some who might have died
either from other types of cancer or other diseases. The maximum observed failure time is
84 months. With such a long observation period, the cure rate model assumption is deemed
reasonable for this data set.

The prior is selected based upon the prediction for patients with median age at diagnosis
after standardization 0.1133, 1 primary cancer that has been detected, and the stage of the
disease as local. To show the priors are noninformative, we simulated 5 copies of observed
survival time {Yi,pred = min{Ti, Ci}, i = 1, …, 100} from the prior predictive density under
model 1 where the censoring time  are generated from the Kaplan-Meier estimator of the
original data set. Figure 1 illustrates the boxplots of the 5 copies of simulated survival time
we generated based on the prior and the histogram of one copy. The medians of the 5 copies
are all around the median of the observed survival time in the original data set and for each
copy, it covers all the range of observed survival time in the original data set. Figure 2 is the
histogram of the cured fraction we generated based on the prior. The prior median of the
cured fraction is around 0.2.

Table 1 below provides the results of our Bayesian model comparison based on the M-
measure and the DIC. Model 1 is the proportional odds model with cure-rate given in (2.6).
Model 2 is the YCIS model, with regression on the mean of Poisson distribution. This gives
us a proportional hazard structure for hp (t|x) = θ(x)f(t), where θ(x) = ex′β and f(t) is the
density function of Weibull distribution. Whereas model 3, the survival time has a Logistic
distribution with regression on the location parameter μ, with Sp(t|x) = 1/(1 + eτ(t − μ)). Table
1 represents the results of different model selection methods for these three models. The
proportional odds model with cure-rate (Model 1) has the lowest M-measure value which is
obtained by the sampling approach of Section 3. We get consistent result when we replace
the absolute value with the square. The DIC is also the lowest for Model 1 but −2 log(CPO)
for Model 2 is slightly smaller than that for the proportional odds model with cure-rate (less
than 1%). The appropriateness of using DIC and −2 log(CPO) is still questionable for
censored data, but the lowest M-measure value shows the best predictive fit of Model 1
among these three models.
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Figure 3 above gives a graphical comparison among the three models. We generated 500
realizations of cumulative counting processes Np(t) from the posterior predictive samples
according to the method of Section 3. At each jump point a of the observed cumulative
counting process No(t), the 2.5% and 97.5% quantiles of the sampled values of all the
predicted counting processes No(a) are plotted. The observed cumulative counting process is
right in the middle of the credible region in the first plot of Figure 3 while in the second or
third plot, it either deviates from the center of the interval or stays out of the region when the
survival time is small. Although M-measure shows that Model 1 fits the data set better, the
two plots on the right in Figure 3 indicate that either Model 2 or 3 is not a very bad choice
for this data set as far prediction of death due to relapse of breast cancer is concerned.

Table 2 contains the estimates from the best model we have, proportional odds model with
cure rate. The four covariates are age at diagnosis, the number of primary cancers that has
been detected, and the two variables for the stage of the disease with local as baseline. 0 is
contained in the 95% credible intervals of the estimated coefficients for the three covariates,
age and two variables for the stage of the disease, which means they are all significant. The
odds ratio is multiplied by 1.6352 for every one unit of increase after standardization with a
95% credible interval (1.2937, 2.0927). The odds ratio increases by 73% if the stage of
disease for a patient moves from local to reginal, with a 95% credible interval (1.0414,
2.7138). If the stage moves from local to distant, the odds ratio will be multiplied by
16.2125 with a 95% credible interval (7.1492, 39.5154). The probability of cure of a
hypothetical patient with the covariates at their sample medians, (0.1133, 1, 0, 0), is
estimated as 0.3035 with a 95% C.I. (0.038, 0.6717) in the last row of Table 2. This 95%
credible interval shows a strong data evidence of a significant portion of cure-rate for this
study.

5. Summary
We have proposed a new general class of cure rate models with a proportional odds
structure. Our models keep all the advantages of regular proportional odds model for
survival analysis. We can also derive our proportional odds model with cure rate from the
latent factors model of Cooner et al. (2007), which makes our models share some of the
properties from there. To compare the performance of our models, we developed a Bayesian
model selection method that takes the censoring into consideration. Posterior predictive loss
is computed as the criteria by Markov Chain Monte Carlo samples. Applying our model
selection method to the breast cancer data set reveals that our proportional odds model with
cure rate fits adequately compared to the other two competing models.

To extend our work, a power prior based on stage-0 data can be added to our current model.
Also, it is common for patients to be at risk of death from multiple competing causes, like
breast cancer and other cancers, strokes, etc. We can accommodate this feature, i.e., that one
of the causes may have a cured fraction for the cause-specific survival function. For our
Bayesian model selection method, theoretical explorations and simulation experiments will
be needed to generalize the use of the M-measure to a wider range of survival data sets.
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Figure 1.
Boxplots of 5 copies of simulated data sets (n=100, covariate set at median values) from
prior model, and a histogram of one simulated data set.
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Figure 2.
Histogram of the marginal prior density of the cured fraction (for n=100, covariate evaluated
at median).
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Figure 3.
A plot of the 2.5% and 97.5% quantiles of the posterior predicted cumulative counting
process and the observed cumulative counting process for the breast cancer data.
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Table 1

Model comparison results for breast cancer data.

Model M-measure DIC −2log(CPO)

Proportional Odds Model with cure-rate 569.4 1130.886 1227.642

YCIS Model 610.8 1207.063 1193.512

Logistic Model 600.5 1685.055 1685.212
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Table 2

Posterior estimates of the odds ratios and the cured fraction (evaluated at median value of covariate) using the
proportional odds model with cured fraction for breast cancer data.

Regression Parameters Median Standard deviation 95% C.I.

Age 1.6352 3.003 (1.2937, 2.0927)

Primaries 1.132 1.2457 (0.8247, 2.0763)

Stage 1 1.7369 1.263 (1.0414, 2.7138)

Stage 2 16.2125 1.27 (7.1492, 39.5154)

Cured fraction 0.3035 0.194 (0.038, 0.6717)
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