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The molecular regulation of smooth muscle cell (SMC) behavior is reviewed, with particular emphasis on stimuli
that promote the contractile phenotype. SMCs can shift reversibly along a continuum from a quiescent, con-
tractile phenotype to a synthetic phenotype, which is characterized by proliferation and extracellular matrix
(ECM) synthesis. This phenotypic plasticity can be harnessed for tissue engineering. Cultured synthetic SMCs
have been used to engineer smooth muscle tissues with organized ECM and cell populations. However, re-
turning SMCs to a contractile phenotype remains a key challenge. This review will integrate recent work on how
soluble signaling factors, ECM, mechanical stimulation, and other cells contribute to the regulation of contractile
SMC phenotype. The signal transduction pathways and mechanisms of gene expression induced by these stimuli
are beginning to be elucidated and provide useful information for the quantitative analysis of SMC phenotype in
engineered tissues. Progress in the development of tissue-engineered scaffold systems that implement bio-
chemical, mechanical, or novel polymer fabrication approaches to promote contractile phenotype will also be
reviewed. The application of an improved molecular understanding of SMC biology will facilitate the design of
more potent cell-instructive scaffold systems to regulate SMC behavior.

Introduction

Each year, 250,000 patients undergo coronary artery
bypass grafting operations.1 Unfortunately, 20%–30% of

patients who require coronary artery bypass grafting do not
have suitable autologous vessels for the procedure.2,3 The
goal of vascular tissue engineering is to generate functional
vascular replacements that provide an option for these pa-
tients. One of the limitations of current engineered vascular
prostheses is stenosis caused by excessive proliferation of
smooth muscle tissue, known as intimal hyperplasia (IH).
During the development of IH and other vascular patholo-
gies, such as restenosis and atherosclerosis, smooth muscle
cells (SMCs) lose their contractile proteins and cellular qui-
escence and increase their proliferation, migration, and pro-
duction of extracellular matrix (ECM) proteins. These
processes define a shift from normal, ‘‘contractile’’ SMC
phenotype along a continuum toward a phenotype described
as ‘‘synthetic’’ or ‘‘proliferative’’ (Fig. 1). For this review, the
term ‘‘de-differentiation’’ will be used to describe this shifting
of contractile SMCs toward synthetic phenotype. Promoting
well-differentiated contractile SMC phenotype is one strat-
egy to minimize the development of IH. Contractile SMCs

also regulate the diameter of normal blood vessels. Devel-
oping approaches to impart this function to engineered
vascular conduits is also an important goal. In this review,
the molecular regulation of SMC behavior will be reviewed,
with particular emphasis on stimuli that promote the con-
tractile phenotype.

SMCs with a synthetic phenotype eventually can reacquire
many of the characteristics of normal contractile SMCs,
suggesting that phenotype switching can occur in both di-
rections.4–10 It may be possible to harness this phenotypic
plasticity to form autologous, functional arteries ex vivo11 or
even in vivo from adjacent native SMCs. Proliferation of
synthetic SMCs is required to populate the construct, and
ECM deposition and remodeling are required to provide the
appropriate mechanical strength and tissue architecture.
Eventually these proliferative, synthetic SMCs must re-
differentiate to a quiescent, contractile state, where they are
refractory to signals that drive IH. For this review, the term
‘‘re-differentiation’’ will be used to describe such shifting of
synthetic SMCs back toward a contractile phenotype. These
processes require activation of diverse (and often opposing)
cellular programs that must be appropriately controlled both
spatially and temporally. Although expansion culture of
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synthetic SMCs has become routine, less is known about
promoting contractile SMC phenotype from synthetic SMCs.
Recent work on the cell and molecular biology of SMCs has
elucidated many intra- and extracellular factors that affect
SMC phenotype.12 Application of this information to the
field of vascular tissue engineering is critical for the devel-
opment of bioactive scaffold systems that can control SMC
behavior.

The Continuum of SMC Phenotypes

In vivo, smooth muscle tissues play an important role in a
wide range of systems from the vasculature to reproduction.
To perform a diversity of functions, SMC phenotype spans a
continuum from quiescent and contractile to proliferative
and synthetic13,14 (Fig. 1). At the contractile extreme are
SMCs with a fully functional contractile apparatus that re-
sponds to small molecule signals such as acetylcholine and
norepinephrine. In early studies, these cells were character-
ized by an ultrastructure, observed by transmission electron
microscopy, composed of tightly bundled myofilaments and
minimal rough endoplasmic reticulum, Golgi, or free ribo-
somes.15–17 Contractile smooth muscle tissues also generally
contain little connective tissue that would necessitate exten-
sive SMC synthetic capacity.15 In culture, these cells possess
a dense fusiform morphology.15,18 At the synthetic pheno-
type extreme of this continuum are fibroblast-like SMCs,
which contain minimal contractile proteins and secrete ECM.
The ultrastructure of these cells shows a cytoplasm devoid of
contractile bundles with extensive rough endoplasmic retic-
ulum, Golgi, and ribosomes.15–17 In culture, these cells ini-
tially adopt a broad, spread shape, and then begin to grow
over one another in a ‘‘hill-and-valley’’ morphology.15,18 A
synthetic phenotype is also correlated with SMC prolifera-
tion, with the number of S-phase cultured SMCs increasing

from 3%–5% to 40%–60% during primary culture and pa-
thologies such as IH.15 Most SMCs, even SMCs in contractile
tissues, lie somewhere along the continuum. For example,
SMCs in small muscular arteries typically have 80%–90% of
their cytoplasm filled by myofilaments, whereas SMCs in the
aorta typically contain only 60%–70%, indicating that aortic
SMCs have both contractile and synthetic functions.15

The expression patterns of a wide range of protein
markers have been characterized to describe the phenotypic
state of SMCs (Table 1). Contractile SMCs, which predomi-
nate in normal vessels, exhibit a mature contractile apparatus
including smooth muscle a-actin (SMaA), smooth muscle
myosin heavy chains SM-1 and SM-2, calponin, SM-22a, and
smoothelin (Fig. 2). Relative expression of these and other
marker proteins can be used to localize SMCs on the
contractile-synthetic continuum.13,19 Marker protein expres-
sion also can be correlated with an SMC’s likelihood to re-
spond to mitogens,20,21 or can predict the composition of
secreted ECM proteins, which differ between contractile and
synthetic SMCs.22 There also are several markers of synthetic
SMC phenotype (Table 2), but these have been utilized less
widely in the literature. Generally, these markers have less
SMC specificity and their expression must be interpreted in
the context of cells with known SMC lineage, if used to assess
SMC phenotype.

Functional contractility is the most robust indicator of
contractile SMC phenotype. Contraction of individual cells
can be assessed by observing the shortening of SMaA stress
fiber-like structures by confocal microscopy23 or by direct
observation of SMC morphology.24,25 To assess the force
generation of single cells, SMCs have been cultured on mi-
crofabricated poly(dimethylsiloxane) posts coated with fi-
bronectin (FN) where the force is proportional to the
deflection of the posts.26 In native smooth muscle tissue, one
of the key second messengers for contraction is cytosolic

FIG. 1. Summary of charac-
teristics of SMC phenotypes,
which vary along a contin-
uum from synthetic and pro-
liferative to contractile and
quiescent. The position along
this continuum is modulated
by a variety of extracellular
signals. ECM, extracellular
matrix; RER, rough endoplas-
mic reticulum; SMC, smooth
muscle cell. Color images
available online at www
.liebertonline.com/ten.
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Ca2þ. Calcium concentration can be modulated using Ca2þ

ionophore A23187 or by depolarization with potassium
chloride, and the status of the contractile apparatus can be
assessed by microscopy.23,25 Upstream signaling in response
to physiologically relevant small molecular signals, such as
cholinergic agonists (typically simulated with carbachol),
angiotensin II (Ang-II), and endothelin, can be assessed by
observation of SMC contraction.11,24,25,27 Electrophysio-
logical recording of membrane potential can also be used to
assess the status of the contractile signaling apparatus.25

Ang-II, epinephrine, and carbachol inhibit the smooth-
muscle-specific ATP-sensitive potassium channels (IKATP)
and the large-conductance Ca2þ-activated Kþ channels,
which contribute to SMC contraction.25,28–31 The functional
contraction of whole engineered tissues also can be assessed.
Tissue contraction in response to serotonin, endothelin-1,
prostaglandin F2a, histamine, bradykinin, ATP, and UTP has
been measured by conventional myography that has been
adapted to test engineered tissues.11,32 These approaches al-
low for more definitive characterization of SMC contractility,
but may have limited utility in SMCs that have an interme-
diate phenotype.

Mediators of SMC Phenotype

Because of the role SMC proliferation plays in vascular
pathology, disproportionate effort has been allocated to
studying the mechanisms that promote SMC proliferation,
migration, and other markers of synthetic phenotype.
However, the focus of this section will be weighted toward
factors that promote contractile SMC phenotype, since this
poses the greatest challenge to vascular tissue engineering,
especially in the context of re-differentiating synthetic cells
toward a contractile phenotype.

The role of soluble signaling factors

Extracellular signaling molecules play a major role in de-
termining the phenotypic fate of vascular SMCs. A wide
variety of signaling factors have been implicated in the
transition of SMCs into the proliferative, synthetic pheno-

type, including platelet-derived growth factor (PDGF), basic
fibroblast growth factor (bFGF), insulin-like growth factors
(IGFs), epidermal growth factor, a-thrombin, factor Xa, Ang-
II, endothelin-1, and unsaturated lysophosphatidic ac-
ids.24,33–37 In vitro fetal bovine serum is commonly used to
stimulate SMC proliferation and de-differentiation. An
overview of these signaling pathways is shown in Figure 3.
The array of extracellular signaling factors that can prevent
SMC de-differentiation and proliferation and/or promote
contractile phenotype are fewer in number and include sol-
uble heparin, transforming growth factor beta 1 (TGF-b1),
Ang-II, and IGF-1 (limited to primary SMC isolates).38

Heparin. The ability of heparin to inhibit SMC prolifer-
ation has been well described in vivo and in vitro.35,36,39,40

Although the effect of heparin has been known for some
time, the mechanism of this effect remains incompletely
understood and appears to be multifactorial in nature.

bFGF can promote proliferative, synthetic SMC phenotype
directly or can stimulate growth in an autocrine fashion after
release secondary to stimulation by another factor such as
PDGF, thrombin, or factor Xa.37,41,42 It is well known that
heparan sulfate proteoglycans, which are structurally similar
to heparin, on the cell surface, act as low affinity receptors for
bFGF and are necessary for full activation of the high affinity
FGF receptor.43–45 The hypothesis that heparin disrupts
bFGF signaling cannot explain the range of observations
concerning the role of heparin in inhibiting many stimuli.
When soluble bFGF is presented to SMCs in relatively high
concentrations, it can both potentiate36,46,47 and inhibit40,43 its
signaling. The effect of heparin on other stimulatory signals,
such as PDGF, has not been consistent. In some studies,
heparin inhibits PDGF-stimulated proliferation,34,41,48

whereas in others it has no effect.36,47 Differences in response
may be related to species differences or specific culture
conditions such as serum concentration. However, heparin
consistently inhibits serum-stimulated SMC prolifera-
tion.36,46,47,49,50

The inconsistencies in these experiments have prompted
the exploration of other mechanisms of heparin regulation of

FIG. 2. Expression of contractile apparatus proteins in human coronary artery SMCs that have been cultured to re-induce
contractile phenotype,observedby immunofluorescent staining.103 (A) Calponin (green) colocalizes (yellow) with SMaA (red) fibrils in
the central region of the cells. (B) SM-22a (green) colocalizes (yellow) along the length of SMaA (red) fibrils. Variable staining between
cells highlights the heterogeneity of cell populations along the contractile-synthetic phenotype continuum. Nuclei are counterstained
with DAPI (blue). Scale bars: 50mm. SMaA, smooth muscle a-actin. Color images available online at www.liebertonline.com/ten.
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SMC growth. Heparin can be internalized51 via cell-surface
heparin sulfate proteoglycans52 and can activate the double-
stranded RNA protein kinase, PKR, which blocks the G1–S
transition.49 Other possible mechanisms have been proposed,
including direct signaling through an unspecified surface
receptor, activation of protein phosphatases, and modulation
of cell cycle progression machinery.48,50,53 It is likely that
heparin utilizes more than one of these proposed pathways
to modulate cell phenotype.

The precise structural determinants of antiproliferative
activity have yet to be fully explained. Nonanticoagulant
heparin effectively inhibits SMC proliferation in vitro54 and
in vivo,55 and it has been well established that heparin’s an-
tiproliferative activity is unrelated to its anticoagulant ac-
tivity. Heparin chain lengths >10–12 repeats (*7 kDa) seem
to exhibit roughly similar degrees of anti-proliferative ac-
tivity (as a function of mass concentration). Sulfation pat-
terns at the four sulfation sites in heparin also influence
antiproliferative activity. In general, the overall level of sul-
fation (beyond some critical level, as found in unmodified
heparin preparations) is the most important determinant of
antiproliferative activity, but there is not one critical sulfation
site or structural motif that mediates the antiproliferative
effect.54,56–59

The well-established antiproliferative effect of heparin
does not necessarily infer that heparin can promote a con-
tractile SMC phenotype. A limited number of studies have
shown that heparin can induce expression of SMaA60–63 and
other smooth muscle contractile markers.60,63 Heparin also
has been shown to delay the loss of smoothelin expression in
cultured SMCs.64 However, the role that heparin’s anti-

proliferative signal transduction pathways play in contractile
gene expression remains unclear.

Transforming growth factor beta 1. TGF-b1 has a well-
described ability to both inhibit proliferation and induce
expression of contractile SMC marker genes, in the absence
of stimuli. Active TGF-b1 is a 25 kDa homodimer of two 112
amino acid polypeptide chains, which are cleaved from
longer propeptides.65 In cultured vascular SMCs, TGF-b1
inhibits growth induced by serum, PDGF, and epidermal
growth factor,66–68 although the specific response to TGF-b1
may depend upon the vascular origin of the SMCs.69 TGF-b1
also has been shown to enhance expression and organization
of SMaA, SM-major histocompatibility complex (MHC), and
SM-22a in SMC lines as well as primary rat and human SMC
cultures.66,68,70–72 Furthermore, in rodent models, the level of
TGF-b1 in the neointima and damaged media of injured
vessels is decreased and is correlated with a decrease in
SMaA, type IV collagen, and SM-MHC.73

Classically, TGF-b1 signals via the Smad family of sig-
naling molecules.74 Smad-2 nuclear translocation has been
correlated with growth inhibition and SMaA expression in
ocular microvascular pericytes,72 and Smad-3 has been as-
sociated with increased contractile marker gene expression
via interaction with dEF-1.75 Other signaling pathways have
been implicated in TGF-b1-mediated stimulation of con-
tractile SMC phenotype involving the intracellular Src tyro-
sine kinases or RhoA tyrosine kinases and protein kinase N
(PKN).68,71 It should also be noted that while TGF-b1 has
been shown to reduce proliferation and induce contractile
SMC marker gene expression, it is unclear whether TGF-b1

FIG. 3. Brief overview of mechanisms involved in the modulation of SMC phenotype. The mechanism of action for heparin
is unclear. Heparin may act by inhibiting binding of extracellular growth factors or secondary autocrine signaling factors,
inhibiting intracellular signal transduction by these stimuli, and/or directly promoting contractile phenotype. Angiotensin II
action can induce both synthetic and contractile characteristics. bFGF, basic fibroblast growth factor; PDGF, platelet-derived
growth factors; EGF, epidermal growth factors; IGF, insulin-like growth factors; LPA, lysophosphatidic acid; TGF-b1,
transforming growth factor beta 1; RTK, receptor tyrosine kinase; HSPG, heparan sulfate proteoglycan; GPCR, G-protein
coupled receptor; TGFbR, TGF-b receptor. Color images available online at www.liebertonline.com/ten.
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stimulation is sufficient to restore ligand induced contractil-
ity to cultured SMCs.

Other factors. Ang-II plays an important role in normal
vascular physiology and cardiovascular disease. SMC re-
sponse to Ang-II differs among individual cells, arteries, or
arterial layers.76–81 Ang-II interacts primarily with two re-
ceptors on SMCs, the type 1 (AT1) receptor and type 2 (AT2)
receptor.82 The AT1 receptor mediates changes in intracel-
lular calcium that are a major determinant of SMC contrac-
tion.76 Ang-II may stimulate SMC proliferation83,84 or
stimulate hypertrophy without proliferation.85 AT1 receptor
signaling modulates SMC proliferation and hypertrophy
through a complex, calcium-dependent pathway.24 Ang-II
also may stimulate the selective apoptosis of synthetic SMCs
through the AT1 receptor.86 Ang-II induces expression of
SMaA in cultured rat aortic SMC through the AT2 receptor
by increasing expression of the transcription factor myo-
cardin.87 This result suggests that Ang-II also would upre-
gulate expression of other myocardin-dependent marker
genes such as SM-MHC, which was observed before the
discovery of myocardin.88 Ang-II may also inhibit SMC mi-
gration through the AT2 receptor by increasing cellular FN
synthesis and associated cell binding.89

IGF-1, a small polypeptide with structural homology to
proinsulin, is produced by many cell types and acts as an
autocrine/paracrine growth factor. It has been postulated to
play a role in SMC growth in the bladder, uterus, and vas-
culature.90 In vascular SMCs, IGF-1 may stimulate prolifera-
tion, migration, and hypertrophy and its effects may interact
with those of insulin and other growth factors.91 Like Ang-II,
IGF-1 may have dual roles in the modulation of SMC phe-
notype. Hayashi et al. demonstrated that IGF-1 can maintain
contractile phenotype in differentiated primary SMCs via a
protein kinase B (PKB)-mediated pathway, while IGF-1 pro-
motes proliferation of cultured de-differentiated SMCs.24,92

The phenotype-dependent response appears to be mediated,
at least in part, by the interaction of the phosphatase, Src
homology 2 domain-containing tyrosine phosphatase-2 (SHP-
2), with the IGF receptor complex, blocking its signaling
via extracellular signal-regulated kinase (ERK) and p38-
mitogen-activated protein kinase (MAPK) pathways.38

However, overexpression of IGF-1 in a transgenic mouse
model resulted in increased SMC proliferation and migration
in both the media and neointima following mechanical injury
compared with wild-type mice.93 Although the precise role of
Ang-II and IGF-1 on SMC phenotype remains to be fully
elucidated, these signaling molecules clearly play a role in
phenotype modulation and the resulting effect may depend
on the receptor profile, intracellular signaling, and overall
phenotype of the target SMC.

The role of the ECM

It has been known for some time that SMCs rapidly loose
their contractile apparatus and adopt a synthetic phenotype
in culture.16 Early reports demonstrated FN, derived from the
serum, typically used to coat the substrates for these cultures,
most potently supported a loss of contractile phenotype.17

Normally, SMCs are surrounded by a basal lamina composed
predominantly of type IV collagen and laminin (LN). It ap-
pears that this basal lamina is critical for the maintenance of

contractile smooth muscle phenotype, perhaps in part be-
cause it forms the interface between the SMC’s contractile
apparatus and the ECM.94 It was later discovered that, in
contrast to FN, the basement membrane proteins LN and/or
type IV collagen could delay, but not eliminate, the transition
to the synthetic phenotype, even when cells were cultured
under serum-free conditions.24,95–98 SMCs seeded on these
substrates rapidly began to produce their own provisional FN
matrix, which became the dominant cell–ECM interaction
and was correlated with an eventual phenotypic shift.95,99,100

RGD-peptide-dependent interactions are critical for this
transition. Soluble RGD peptide can delay the transition to
the synthetic phenotype on FN97,98,100 or enhance LN’s miti-
gating effects on SMC response to mitogens like PDGF.17

Furthermore, a substrate of RGD peptide alone was sufficient
to induce SMC de-differentiation.100

Some evidence exists suggesting that LN can promote ex-
pression of contractile markers in cultured vascular SMCs, as
well as mitigate their response to mitogens,99,101,102 although
serum-starved cultured SMCs on LN do not show increased
contractile marker expression.103 LN also can attenuate the
response to PDGF and thrombin in airway SMCs.104 The
study of airway SMCs also has suggested that re-differentia-
tion of cultured SMCs may involve the production of endog-
enous basement membrane LN. However, the predominant
LN produced, a2b1g1, is of a different form from LN-1 (a1b1g1),
which typically has been used to promote contractile pheno-
type.105 Interestingly, the nonbasement membrane ECM pro-
tein elastin also can promote contractile phenotype.98,106

The signaling pathways involved with ECM-dependent
modulation of phenotype have been explored to a limited
degree. Inhibition of tyrosine kinases by genistein resulted in
decreased cell spreading and an attenuated progression to
the synthetic phenotype in primary rat SMCs.107 Although
decreased focal adhesion kinase activity was observed, it is
unclear the extent to which these effects were regulated by
focal adhesion kinase. Furthermore, the loss of a7b1 integrin,
which is an LN receptor that links the contractile apparatus
to the basement membrane,94 resulted in decreased expres-
sion of contractile SMC markers and increased proliferation
through a Ras-MAPK-mediated signaling pathway.108 This
suggests that ECM–a7b1 interactions may normally check
this proliferation-inducing signaling pathway.109 It has also
been suggested that autocrine/paracrine IGF-1 signaling
may be involved in maintenance of contractile marker ex-
pression in primary SMCs cultured on LN.24,92 Furthermore,
it appears that this signaling pathway is available only to
freshly isolated cells, since subcultured rat SMCs are stimu-
lated to proliferate by IGF-1.102

Matrix metalloproteinases (MMPs), which are critical
for ECM dynamics, also play an important role in migra-
tion of synthetic SMCs and also may contribute to the de-
differentiation process.110–112 SMCs produce MMP-1, -2, -3,
-7, -9, and -14 (membrane type 1-MMP [MT1-MMP]).113 SMC
migration, after arterial balloon injury, has been associated
with MMP expression and activity, and MMP inhibition
decreases SMC migration.114,115 In vitro, overexpression of
MT1- and MT3-MMPs was found to result in reduced SMC
adhesion and increased migration.116 Overexpression of
MMP-9 also enhanced migration of rat SMCs in a collagen
invasion assay.117 Furthermore, upregulation of MMPs by
synthetic SMCs may contribute to aneurysm formation118
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and to failure of vascular grafts.119 MMPs are clearly re-
sponsible for the breakdown of vascular matrix and espe-
cially of the internal elastic lamina, which is composed of
contractile phenotype promoting type IV collagen and
LN.120–122 It has been observed that the de-differentiation of
isolated SMCs is preceded by a dramatic upregulation of
MT1-MMP.123 However, it is not clear whether MMP ex-
pression actively drives de-differentiation per se or if in-
creased MMP expression is simply a characteristic of the
synthetic SMCs that the de-differentiation process creates.

The role of mechanical stimulation

The vascular media is subjected to continuous cyclic me-
chanical loading in vivo. As a result, it has been assumed that
the mechanical environment plays an important role in de-
termining SMC phenotype. Although the effects of cyclic
mechanical strain have been studied extensively, the precise
mechanisms that dictate the effects of cyclic strain on SMC
phenotype still are understood poorly.124

Early studies with embryonic rat aortic SMCs demon-
strated increased cell proliferation in response to cyclic strain
that was, in part, due to release of paracrine/autocrine
PDGF.125,126 Subsequent studies by other groups have con-
firmed this response in neonatal rat cells,127,128 but have
shown increased,129 decreased,127,130 or unchanged128,131

proliferation with adult rat aortic cells or cell lines. SMCs
derived from other species have a variety of responses to
cyclic mechanical strain. Rabbit and bovine SMCs increased
proliferation,132,133 while the growth of human and canine
SMCs was unchanged.134,135

Some studies have suggested that an LN or elastin ECM
attenuates the ability of SMCs to proliferate in response to
cyclic strain,126,135 but this has not been a consistent find-
ing.127,128 It has been suggested that FN–cell interactions are
important for transducing strain into proliferation signals,
since the RGD peptide or soluble FN can inhibit neonatal rat
SMC proliferation in response to strain.126 It is interesting
that the effects of the ECM on the response to cyclic strain
follows a similar pattern to the effects of ECM on SMC
phenotype in static culture; that is, LN and elastin prevent
de-differentiation, while FN promotes the proliferative,
synthetic phenotype.24,95–98

SMCs, typically of rat or rabbit origin, cultured in three-
dimensional (3D) scaffold systems seem to proliferate only
slightly in response to mechanical stimulation.136–138 How-
ever, the culture duration in these systems is typically longer
than two-dimensional (2D) Flexcell-based experiments and
unstrained samples tend to lose cell population, suggesting
that the enhanced growth might not be due to strain per se
but due to enhanced convective transport of nutrients into
the scaffolds, which simply enhances cell viability. The effect
of cyclic strain on intrascaffold transport has not been well
characterized for smooth muscle tissue-engineered con-
structs and may be an important element underlying higher
cell population in these systems, compared with static con-
trols.

Cyclic mechanical strain also can stimulate the production
of ECM components such as collagen and elastin in tissue
culture models.134,139 There is some evidence to suggest that
this response is mediated by paracrine release of TGF-b1,
which is known to directly stimulate collagen production.140

This effect has led to the implementation of cyclic loading
protocols to improve the mechanical properties of en-
gineered vascular tissues. Cyclic mechanical strain increased
the collagen and elastin content, organization, and overall
strength of 3D smooth muscle tissues.136–138 Many studies
have used these results as a rationale for mechanical stimu-
lation of tissue-engineered blood vessels (TEBVs).11,137,141,142

In apparent conflict with the synthetic phenotypic response
outlined above, cyclic strain can also increase expression of
markers of contractile phenotype, including SMaA,128,131

calponin,131 SM-22a,131 h-caldesmon,132 and SM-MHC.131,143

This change in marker expression appeared to be related to
intracellular signaling or short-lived paracrine signaling, since
medium conditioned by strained SMCs did not induce con-
tractile marker expression.131 However, these results were not
consistent in all studies. Some reports indicate that strain has
no effect on expression of marker proteins.136,144

Given the inconsistencies in the phenotypic response of
SMCs to cyclic strain, it is not surprising that the signaling
mechanisms underlying these responses are not well under-
stood. Immediately following the initiation of cyclic strain, all
three classical MAPK systems (ERK1/2, c-Jun N-terminal
kinase [JNK], and p38) are activated in a transient fashion
with a peak response about 10–15 min after initiation and a
return to baseline after 30–60 min.131,133,144,145 In particular,
inhibition of p38 activation prevents SMaA promoter activi-
ty.128 While p38 may be necessary for these responses, it is not
clear whether strain directly signals through this pathway.
p38 simply may be a more globally required element of the
system, especially since blocking p38 tends to reduce marker
gene transcript even in the absence of strain.131 Putative roles
for calcium channels and tyrosine kinases also have been
proposed.129,139 It is also clear that paracrine release of soluble
mediators, including Ang-II, PDGF, TGF-b1, and IGF-1, play
an important role and may antagonize each other’s ef-
fects.125,129,130,139,146,147 It has been suggested that phenotypic
outcome in response to cyclic strain may depend on the
phenotype of the cells before strain148 or on the magnitude
and duration of the strain.124 Future studies will provide a
more complete understanding of the signaling processes in-
volved in mechanical stimulation of vascular SMCs.

In addition to the role of cyclic, circumferential mechanical
strain, there also is evidence that SMCs may respond to
uniaxial strain. Increasing the axial strain of rabbit carotid
arteries from 62% to 92% increased endothelial and SMC
proliferation dramatically, while also causing ECM deposi-
tion to increase and remain elevated over a 12-week peri-
od.149 Ex vivo engineered vessels that were elongated by 50%
over 9 days under both physiological and subphysiological
perfusion conditions showed significant increases in prolif-
eration and collagen mass, and similar viability and ap-
pearance native tissue.150 These data suggest that there are
substantial interactions between cyclic strain conditions and
axial strain that modulates arterial remodeling. The full ex-
tent to which these effects alter expression of contractile SMC
phenotype is not known.

Clearly, the SMC response to cyclic mechanical strain
depends on the state of the cells (both origin and pheno-
type),148 and additional work is needed to better understand
the conditions that regulate this response. While it is clear
that mechanical input plays an important role in the phe-
notypic modulation of SMCs, a lack of knowledge regarding
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the mechanism by which cyclic strain exerts its effects on
cells limits its utility for tissue engineering. Pathways that
regulate conflicting phenotypic outcomes such as prolifera-
tion and ECM production (synthetic properties) and ex-
pression of contractile markers must be more clearly defined
so the tissue engineer can specifically target the appropriate
cell behavior.

The role of endothelium

Endothelial cells (ECs) play an important role in guiding
SMC behavior.151 Small molecules released from ECs in vivo
such as nitric oxide152 and endothelin-1153 have been shown
in vitro to inhibit or stimulate SMC growth, respectively.
SMCs also are known to send projections toward the endo-
thelium.154 A variety of coculture systems have been utilized
to explore these interactions, including direct coculture,155

transmembrane culture,156–158 and bioreactor systems.142,159

ECs in these studies tend to increase SMC prolifera-
tion,154,158,159 suggesting that ECs’ presence promotes syn-
thetic vascular SMC phenotype. However, many of these
studies are performed under static culture conditions, which
likely alters the response of the ECs compared with ECs
under shear. However, increased SMC proliferation has also
been observed in a 3D tissue construct with monolayer ECs
cultured under shear.159 It is important to note that hyper-
plastic smooth muscle lesions have been identified in the
‘‘floor’’ region of the distal anastomoses of vascular recon-
structions, a region that contains native endothelial and
smooth muscle tissue but where there is abnormal (zero)
shear stress.160 SMCs in the presence of ECs also tend to
upregulate expression of the mitogen PDGF155 and the in-
flammatory cytokines interleukin-8 (IL-8) and monocyte
chemotactic protein-1,156 even as other proteins associated
with the synthetic SMC phenotype are downregulated, such
as collagen159 and bFGF.155 Furthermore, EC–SMC interac-
tions may depend on the SMC phenotype. The synthetic
SMC phenotypic state during coculture has been shown to
increase expression of inflammatory signals in both SMCs
and ECs.156,157 Early studies indicated that nonsheared ECs
can delay the contractile-to-synthetic transition of primary
SMCs.15 While ECs clearly play a critical role in modulating
SMC behavior in vivo, this regulation process is complex.
Neither the simple presence or absence of ECs will result in
appropriate SMC behavior, but the appropriate environment
must be provided to both cell types to achieve control of
SMC phenotype.

The role of inflammation

Inflammation, which follows implantation of a vascular
prosthesis, contributes to a loss of contractile SMC pheno-
type. Cytokines released from inflammatory cells can di-
rectly stimulate SMC growth and play an important role in
the development of IH.161,162 Several days after endothelial
denudation injury, macrophages appear in the resulting le-
sion of proliferating, synthetic SMCs.163,164 Disrupting the
accumulation of macrophages resulted in decreased SMC
hyperplasia in vivo, suggesting that these cells play an im-
portant role in the process.162 Furthermore, many of the
factors generated by macrophages have been linked di-
rectly with SMC proliferation, including IL-1a,165 IL-8,166 C-
reactive protein,167 and tumor necrosis factor-a.168 Various

stimuli from activated endothelium and inflammatory cells
can also induce the endogenous production of inflammatory
cytokines and markers in SMCs, such as monocyte chemo-
tactic protein-1,156 IL-8,156 vascular cell adhesion molecule-
1,164 intercellular adhesion molecule-1,163 and class II major
histocompatibility complex (MHC).163 Expression of these
molecules by synthetic SMCs provides a mechanism of
positive feedback, accelerating SMC proliferation. These in-
flammatory processes may also result in downregulation of
contractile marker proteins, which generally has been cor-
related with SMC proliferation, but this effect has not been
studied.

Molecular Regulation of SMC Gene Expression

This section will briefly review the mechanisms of phe-
notypic regulation in SMCs. Additional discussion can be
found in reviews by Miano et al.169 and Kawai-Kowase and
Owens.12

Serum response factor

Serum response factor (SRF) is a 62–67 kDa transcription
factor involved in the regulation of a diverse set of cell
programs including proliferation and differentiation of
SMCs.170 SRF was initially identified as a transcription factor
that acts as a promoter for c-fos, a gene involved in the early
stages of cell proliferation.171,172 SRF is activated by tran-
scription following serum stimulation and does not require
additional protein translation to exert its effects.173 However,
SRF also is active in the promoters of muscle-specific genes
during differentiation.174

SRF binds as a homodimer to a consensus sequence in
DNA of CC(A or T)6GG, called a CArG box.169,173 Putative
CArG elements have been identified in the promoter/
enhancer regions of nearly 200 genes,175 and many of these
genes are involved in formation and regulation of the cyto-
skeleton or contractile apparatus.169 Most, but not all,
markers of contractile SMC phenotype contain at least one
CArG box including SMaA, calponin, SM-22a, and SM-
MHC.169 The ability for SRF to activate specific transcrip-
tional programs within the wide range of genes containing
CArG boxes depends upon the presence of program-specific
coactivators and repressors. Specific expression of many
smooth-muscle-specific genes is substantially enhanced by
the coactivator myocardin.

Myocardin

Myocardin is thought to be a central regulator of the SMC-
specific expression program and can drive expression for
most, but not all, contractile marker genes.176 Myocardin is a
96 kDa transcription factor that directly interacts with SRF
dimers rather than binding directly to DNA.177 Myocardin
appears to be regulated, at least in part, at the transcriptional
level and is generally restricted to the nucleus.176,178 Myo-
cardin also contains a leucine zipper domain, which allows
myocardin dimers to bridge adjacent CArG boxes in the
promoter region of many SMC marker genes, including
SMaA, calponin, SM-22a, and SM-MHC.170,179 This six
member myocardin2–SRF4 dimer complex seems to enhance
activation of these genes.179 It has also been suggested that
myocardin’s interaction with SRF enhances SRF’s binding to
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degenerate CArG boxes in the promoters of some SMC
marker genes,180 such as SM-MHC, SMaA, and calponin,
which typically contain one guanine substitution in the A/T
rich part of the CArG sequence.170

Myocardin coactivation alone, however, does not fully
explain the transcriptional control of SMC marker genes for
several reasons. Overexpression of myocardin in rat aortic
SMCs, mesenchymal stem cells (MSCs), and fibroblast results
in inappropriate activation of skeletal and cardiac muscle
genes and fails to activate non-CArG containing markers
such as smoothelin-B.176,181 Dominant negative myocardin
also fails to interrupt marker expression in an SMC differ-
entiation model cell line A404.176,182 Even among genes with
known CArG-containing promoters, some possess only a
single CArG box such as h-caldesmon and telokin, suggesting
that the myocardin dimerization hypothesis179 has lim-
itations. Strikingly, although myocardin-null mice die in
utero,183 myocardin-null mouse embryonic stem cells (ESCs)
can express some SMC markers in vitro.184 The vasculature of
embryos formed from a chimera of wild-type and myocardin-
null stem cells contains myocardin-null SMCs expressing a
normal complement of SMC markers.184

Other coactivation systems

Other coactivation schemes can function in conjunction
with the myocardin–SRF system to drive marker expression.

The SMaA promoter has been studied most thoroughly and,
in addition to three CArG boxes, contains two E-boxes
(CANNTG motifs), two muscle CAT (MCAT) elements
(AGGAATG motifs), and a TGF-b control element (Fig. 4).185

The E-boxes are bound by basic helix-loop-helix transcription
factor dimers that enhance SRF-dependent transcription via
the protein inhibitor of activated signal transducer and ac-
tivator of transcription-1 (STAT-1).186 The two MCAT boxes
may be involved in parallel SMaA regulatory pathways in
myofibroblasts that are not critical for SMCs.187 The ho-
meobox-binding protein Prx-1 also has been shown to be
important in SMaA transcription.87 Myocardin-related tran-
scription factors may also play a role in modulating gene
expression in a fashion similar to myocardin via sensing
changes in the actin cytoskeleton.169,188

Repressor systems

Several repressor pathways are known to affect the regu-
lation of many of the CArG-box-regulated SMC marker
genes. Two examples are Elk-1 and Kruppel-like factor 4
(KLF-4). Elk-1 is a transcriptional cofactor that, like myo-
cardin, interacts with SRF to modulate transcription. Elk-1 is
activated by phosphorylation by ERK1/2 and JNK MAPKs,
depending on the stimulus, and increases SRF-dependent
transcription of c-fos.189 Thus, Elk-1 promotes cell prolifera-
tion.189 Elk-1 can interact with SRF and DNA in the promoter

FIG. 4. Molecular regulation of SMaA transcription, illustrating example mechanisms of transcriptional activation in differ-
entiated SMCs (A) and mechanisms of downregulation (B). (A) Transcription is activated by SRF binding to CArG box up- and
downstream of the TATA box, enhanced by the coactivator, myocardin. Additional elements further enhance transcription, such
as bHLH transcription factors via PIAS-1. (B) Transcription is downregulated by phospho-Elk-1 blocking myocardin interac-
tions with SRF. KLF-4 and HERP-1 block SRF binding to CArG boxes via sequestration. KLF-4 also activates histone deacetylases
that close chromatin structure (represented as a closed door in the diagram), limiting transcription factor access to the promoter
region. bHLH, basic helix-loop-helix; PIAS-1, protein inhibitor of activated STAT-1; SRF, serum response factor; KLF-4, Kruppel-
like factor 4; HERP-1, Hairy- and enhancer of split-like-related repressor protein-1; TCE, TGF-b control element. Color images
available online at www.liebertonline.com/ten.
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region of several SMC marker genes to inhibit myocardin
binding and marker gene activation,190–192 and this activity
seems to vary between genes.190 KLF-4 binds in the promoter
region of several SMC marker genes,193,194 which may allow
it to block SRF binding to SMC marker gene promoters195

and recruit histone deacetylases that alter chromatin struc-
ture to limit transcription factor access to the promoter re-
gions.191 KLF-4 can also suppress myocardin expression.195

In addition to enhancing SMaA transcription via interactions
with E-box-binding proteins, protein inhibitor of activated
STAT-1 may promote gene expression by inhibiting the ac-
tion of KLF-4.196 In addition to these modifiers, additional
inhibitory pathways have been identified. Hairy- and en-
hancer of split-like-related repressor protein-1 (HERP-1),
which is upregulated in cultured SMCs, binds to SRF to in-
hibit its binding to CArG boxes.197 Ets-1, which is related to
Elk-1, is upregulated in vascular injury and suppresses
marker gene expression.198 An overview of both transcrip-
tional activation and repression mechanisms, using SMaA
transcription as an example, can be found in Figure 4.

Engineered Biomaterial Approaches
to Regulate SMC Phenotype

Biomaterial and tissue engineers have begun to investigate
the effects of scaffold chemistry and structure on SMC phe-
notype. These studies have used engineered materials as
model systems to explore factors that affect SMC behavior.
Novel materials and fabrication strategies also have been
developed to modulate SMC phenotype.199,200

Effects of cell–scaffold interactions on phenotype

Early work in smooth muscle tissue engineering explored
the effect simple scaffold materials such as poly(glycolic
acid) (PGA), poly(lactic-co-glycolic acid), and type I collagen
gels had on SMC behavior.22 SMCs in polyester scaffolds
showed a higher ratio of elastin:collagen production than
collagen gels, suggesting a shift toward a contractile-like
phenotype.22 Although the 3D structure of these matrices
was dissimilar, the observed differences likely were due, at
least in part, to differences in the scaffold chemistry either by
affecting SMCs directly or by inducing differences in the
adsorbed protein content on the scaffolds.22 Despite these
promising results, SMCs in PGA vascular grafts11 showed
incomplete differentiation and contractility in vivo, and a
later study suggested that breakdown products from PGA
may promote synthetic SMC phenotype.201

In an effort to understand the role-specific cell–ECM in-
teractions play in SMC phenotype modulation, cell-adhesive
peptides and sugars have been immobilized on various sur-
faces and their effects on cell behavior studied. For SMCs
seeded on modified glass, collagen production decreased with
ligand concentration and collagen per cell was highest on
weakly adhesive substrates (such as RGE peptide-modified
glass), though these results were confounded by high non-
specific cell binding to the substrates.202 However, similar
results were obtained for SMCs seeded on poly(ethylene
glycol) (PEG)-based hydrogels,203 which resist nonspecific
attachment.103 The use of tethered TGF-b1 also increased the
synthesis of ECM components on RGD-containing PEG-based
gel systems.140 Short hyaluronic acid fragments tethered to
glass induced increased elastin production and cross-

linking.204 However, the biological characterization of SMC
phenotype in these studies was limited to indirect markers.
SMCs, attached to RGD-bearing PEG-based hydrogels, have
been shown to express markers of contractile phenotype.205

This expression may be related to the mechanical character-
istics of the underlying substrate.205 Recently, it has been
shown that RGD-bearing hydrogels with highly specific cell–
matrix interactions, can support a robust, quantitative re-
expression of contractile marker mRNA and proteins.103

Effects of scaffold geometry on phenotype

Many groups have noted that SMC behavior depends on
scaffold geometry (2D vs. 3D). Culture in 3D type I collagen
gels resulted in decreased proliferation and increased colla-
gen synthesis compared with 2D type I collagen cultures.206

Furthermore, inhibition of ERK activation using PD98059
induced cell proliferation for SMCS in 3D type I collagen
matrices, whereas it inhibited growth in 2D cultures on the
same substrate, suggesting that culture geometry plays an
important role modulating this signal.207 Synthetic scaffolds
must be biodegradable and/or highly porous to permit 3D
SMC culture. To allow for degradation in synthetic gel scaf-
fold systems, the gel network must incorporate a degradable
component. SMCs cultured in 3D PEG-based gel systems
with an elastase degradable sequence showed higher collagen
production than SMCs in nondegradable controls.208 Culture
in 3D PEG-based hydrogel scaffolds resulted in small but
significant increases in the SMC markers SMaA and SM-
MHC, compared with control SMCs cultured on tissue cul-
ture polystyrene, although it was difficult to discern from this
study the contributions of the scaffold geometry from sub-
strate chemistry or mechanical properties (gel vs. tissue cul-
ture polystyrene).209 Increased mechanical modulus in 3D
fibrinogen/PEG-based hydrogel scaffolds was also correlated
with increased expression of vinculin, a marker of focal ad-
hesions, and SMC differentiation markers, but only for SMCs
overexpressing RhoA, which is a signaling protein that plays
an important role in focal adhesion formation.210

Combined biochemical and mechanical stimulation
in engineered scaffolds

The interplay between the scaffold chemistry, mechanical
stimulation, and external biochemical stimulation has also
been explored. SMCs on FN-coated PGA-based scaffolds in-
creased elastin production in response to mechanical stimu-
lation more than SMCs in type I collagen gels.138 Mechanical
stimulation of rat aortic SMCs, when seeded in a type I
collagen–based tubular-graft-like construct, resulted in in-
creased compaction of the collagen, which could be further
enhanced by stimulation with TGF-b1.136 TGF-b1 also im-
proved histological organization and increased SMaA
expression.136 Interestingly, SMCs transfected with cyclic
guanosine monophosphate (GMP)-dependent protein kinase,
which promotes contractile SMC phenotype,20,211 did not
affect histological organization in type I collagen gels al-
though SMaA expression was increased dramatically, espe-
cially with exogenous TGF-b1.212 These results suggest that
forced expression of contractile SMC markers per se may not
substantially facilitate the organization of vascular tissues
in vitro. Recently, RGD-bearing PEG diacrylate hydrogels
were utilized as a 3D scaffold material to examine the effects
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of both SMC coculture with ECs and cyclic mechanical
loading.142 When subjected to both conditions, SMCs showed
a modest upregulation of elastin, calponin, and myocardin as
well as a slight decrease in collagen production.142 However,
this study was limited by the use of nondegradable PEG
diacrylate, which does not permit normal SMC morphology
postencapsulation, and the nonphysiologic 3D encapsulation
of the ECs (as opposed to monolayer culture).142

Micropatterning

Rat A7r5 cells organized into aligned patterns when seeded
in 160-mm-wide channels of photopolymerized poly-(capro-
lactone-lactide-glycolide) diacrylate microchannels with some
evidence of increased SMaA production in these cells.199

However, the mechanism by which the channels induced
alignment was unclear. Since cultured SMCs have a propen-
sity toward alignment, the uniform cell orientation in this
system may be attributed to preclusion of alignment perpen-
dicular to the channels (because they are narrower than the
length of an SMC). It is also unclear if this alignment directly
affects SMC phenotype, although some limited data suggest
that SMCs in these microchannels may upregulate SMaA.199

Conducting polymers

Cyclic electrical stimulation of vascular SMCs using an
ECM-coated, conducting polymeric (polypyrrole/hyaluronic
acid) scaffold stimulated SMC proliferation and concomi-
tantly stimulated upregulation of SMaA and SM-MHC.200

Blockade of L-type calcium channels abrogated this effect,200

consistent with others that have shown that calcium influx
through L-type calcium channels (induced by depolarization
with potassium chloride) can result in increased expression
of CArG-dependent marker genes.213

SMC Phenotype in TEBVs

The smooth muscle layer of TEBVs has been generated
using natural and polymeric scaffold systems as well as en-
gineered directly from sheets of cultured cells.214–216 Primary
SMCs have been used to populate these scaffolds, although
recently there has been interest in alternative cell sources.
Progress in the development of TEBVs has been reviewed
extensively elsewhere.217,218 Here, we briefly review SMC
behavior in TEBVs.

Several groups have demonstrated that decellularized
scaffold systems, derived from harvested vasculature or other
tubular structures, can accommodate the in-growth and re-
modeling of differentiated, functional smooth muscle tis-
sue.219–221 Scaffold systems derived from a variety of natural
materials have been explored to increase the engineering
control of scaffold properties, while retaining the remodeling
potential observed with decellularized TEBVs. In particular,
type I collagen has been used widely as a scaffold material for
TEBVs because it is one of the major structural ECM proteins
in the vasculature.216,222,223 SMCs can proliferate in and re-
model these matrices and these processes can be enhanced by
mechanical and biological stimulation of the cells, as dis-
cussed elsewhere in this review.136,224 SMCs also can readily
remodel fibrin scaffolds to form mechanically robust vascular
structures and support differentiated, contractile SMC-like
cells.225,226 Polymeric scaffold materials for TEBVs also have

been explored because their properties can be controlled to a
much greater extent than natural scaffold materials. Although
the overall results of these synthetic TEBVs have been
promising,215,227,228 these scaffolds have supported only lim-
ited SMC remodeling, penetration, and functional contractil-
ity.201,215,229 Likewise, electrospun scaffold materials made
from synthetic and natural materials have demonstrated
promising results as blood conduits, but SMC response has
been suboptimal with poor infiltration and limited study of
SMC phenotype and functional capacity.230–232

Another approach has been the use of blood vessels en-
gineered from sheets of cultured human cells to recapitulate
the layered structure of native blood vessels.214,233–235 Con-
structs containing both smooth muscle and adventitial
(fibroblast) layers developed robust mechanical properties
in vitro and were able to be implanted in vivo.233 Subsequent
testing of similar constructs showed differentiated SMCs
with SMaA expression and functional contraction (Fig. 5).214

However, continued study of this approach indicated that
adequate mechanical properties of these constructs can be
conferred by a fibroblast layer, obtained from cells that are
easier to isolate and culture. Composite grafts formed from
human fibroblasts have been tested in a variety of animal
models (dog, athymic rat, and macaque) to demonstrate
surgical feasibility and long-term patency.234 Recently, au-
tologous graft materials formed using these techniques have
been used as shunts for hemodialysis in human trials with
moderate success (60% patency at 6 months).235

SMCs Derived from Stem Cells

The derivation of SMCs from progenitor cells has attracted
extensive research interest. SMCs have been derived from
ESCs, induced pluripotent stem cells (iPSCs), MSCs, and hair
follicle stem cells.25,236–238 Contractile SMCs have been de-
rived from ESCs using all-trans retinoic acid for over a de-
cade.239,240 Analysis of the transcriptome of ESC-derived
SMCs has suggested that these cells can express a full com-
plement of contractile phenotype markers, SMC-specific ion
channels, functional contractility, and limited proliferation.25

Recently, the use of iPSCs has attracted interest to avoid the
ethical issues surrounding the use of ESCs. These cells, de-
rived from genetically reprogrammed somatic cells, can
generate SMC-like cells that have expression profiles similar
to native SMCs.236,241 However, significant variability in the
expression patterns of contractile marker genes have been
observed among different lines of iPSCs and ESCs, sug-
gesting that additional work is needed to better define robust
protocols for these differentiation processes.236,241 Smooth
muscle progenitor cells also have been isolated from bone
marrow or hair follicles using a smooth-muscle-tissue-
specific promoter and fluorescence-activated cell sorting.237,238

These stem-cell-derived SMCs showed high proliferation po-
tential, exhibited similar morphology to primary SMCs, ex-
pressed several SMC markers, showed a contractile response
to vasoactive agonists, and organized into a fibrillar network
similar to that of native vessels.237,238

Many of the factors that affect the differentiation status of
primary SMCs also contribute to stem-cell-to-SMC differen-
tiation. For example, mechanical strain increases SMaA
and SM-22a gene expression in MSCs.242 TGF-b1 and
bone morphogenetic protein-4 stimulate expression of
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SMC-contractile markers in adipose-derived stem cells.243

Study of MSC-to-SMC differentiation also provides an op-
portunity to study signaling involved in SMC lineage differ-
entiation.244,245 During this process, ECM such as LN plays
an important role in upregulation of SMC-specific genes.246

Discussion and Conclusions

The phenotypic plasticity of SMCs confers these cells with
great regenerative potential. However, to engineer functional
smooth muscle tissues while minimizing development of

hyperplastic pathologies such as IH, SMC phenotype must
be well controlled. In the last several decades, a better un-
derstanding of the myriad factors that regulate SMC phe-
notype has emerged. The intracellular signaling machinery
that relays these signals and the transcriptional machinery
that ultimately results in phenotype changes are also be-
coming clearer. A panel of markers that can be utilized to
quantitatively characterize SMC phenotype has been well
established (Tables 1 and 2). However, the best approaches
to modulate synthetic, cultured SMCs toward a functional
contractile phenotype remain largely unknown, though the
fact that SMCs seem to re-differentiate in vivo4–10 suggests
that given the right conditions, this goal is attainable.

Despite these advances, the tissue engineering literature
for smooth muscle tissues remains largely observational
in nature. Few studies (e.g., Refs.136,142) exploit the well-
established basic science literature on the topic, to generate
scaffold systems specifically designed to modulate SMCs
toward a contractile phenotype. Mechanical stimulation,
which has yielded inconsistent results in the basic science
literature, has been the most commonly used strategy, al-
though this approach does tend to yield tissues that are
mechanically robust. Critical parameters such as cell origin
and cell phenotype during stimulation generally have been
ignored. Studies on scaffolds that promote contractile phe-
notype using stimulation with exogenous signaling factors
such as heparin and TGF-b1 has been surprisingly limited,
given the clear evidence of the efficacy of these approaches.

Further confounding the interpretation of these studies is a
lack of clear, consistent, and quantitative readouts of SMC
phenotype. Most studies have employed indirect measures
such as ECM synthesis and cell proliferation. Given the di-
versity of factors that can affect these nonspecific cell be-
haviors, it is challenging to compare true SMC phenotypes
between studies. Studies that have examined SMC pheno-
type markers directly have used qualitative techniques such
as immunostaining, which, without quantification, yield re-
sults that are difficult to compare between studies. Expanded
use of appropriate (semi)quantitative techniques for asses-
sing markers of contractile SMC phenotype, including
quantitative polymerase chain reaction (qPCR), Western blot,
enzyme-linked immunosorbent assay, and flow cytometry,
will aid in the comparison of tissue engineering strategies to
promote the formation of contractile smooth muscle tissue.
Marker expression relative to cultured, synthetic control
SMCs and, where possible, functional assessment of SMC
contractility can improve the overall assessment of contrac-
tile phenotype promoting approaches. Expanded analysis of
the transcriptional regulation of marker gene expression142

will lend further insight into mechanisms by which novel
scaffold designs are capable of modulating SMC phenotype.
Future work that utilizes quantitative methods to study
scaffold systems with well-defined cell–material interactions,
soluble signals, and mechanical stimulation will likely suc-
ceed in devising systems that are capable of inducing re-
expression of true contractile SMC phenotype.
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