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ABSTRACT

Previous studies have shown that the translation
level of in vitro transcribed messenger RNA
(mRNA) is enhanced when its uridines are replaced
with pseudouridines; however, the reason for this
enhancement has not been identified. Here, we
demonstrate that in vitro transcripts containing
uridine activate RNA-dependent protein kinase
(PKR), which then phosphorylates translation initi-
ation factor 2-alpha (eIF-2a), and inhibits translation.
In contrast, in vitro transcribed mRNAs containing
pseudouridine activate PKR to a lesser degree, and
translation of pseudouridine-containing mRNAs is
not repressed. RNA pull-down assays demonstrate
that mRNA containing uridine is bound by PKR more
efficiently than mRNA with pseudouridine. Finally,
the role of PKR is validated by showing that pseudo-
uridine- and uridine-containing RNAs were
translated equally in PKR knockout cells. These
results indicate that the enhanced translation of
mRNAs containing pseudouridine, compared to
those containing uridine, is mediated by decreased
activation of PKR.

INTRODUCTION

In vitro transcribed messenger RNA (mRNA) has many
advantages as a vehicle for gene delivery. Transfection of
mRNA is very efficient (1), and rapid expression of the
encoded protein can be achieved. Unlike viral vectors or
plasmid DNA, cell-delivered mRNA does not introduce
the risk of insertional mutagenesis (2,3). Previous studies
have shown that RNA can activate a number of innate
immune receptors, including Toll-like receptor (TLR)3,
TLR7, TLR8 and retinoic acid-inducible gene I (RIG-I).
However, activation of these receptors can be avoided by

incorporating modified nucleosides, e.g. pseudouridine
(�) or 2-thiouridine (s2U), into the RNA (4,5).

RNA-dependent protein kinase (PKR) is a ubiquitous
mammalian enzyme with a variety of cellular functions,
including regulation of translation during conditions of
cell stress. During viral infection, PKR binds viral
double-stranded (ds)RNA, autophosphorylates and sub-
sequently phosphorylates the alpha subunit of translation
initiation factor 2 (eIF-2a), thus repressing translation
(6,7). Originally, potent activation of PKR was thought
to require >30-bp-long dsRNA (8). It has subsequently
been shown that PKR can be activated by a variety of
RNA structures that include single-stranded (ss)RNA
forming hairpins (9,10), imperfect dsRNA containing
mismatches (10), short dsRNA with ss tails (11), stem–
loop structures with 50-triphosphates (12,13), and unique
elements present in interferon gamma (IFN-g) and tumor
necrosis factor-alpha mRNAs (14). Viral (15,16) and
cellular RNAs (17–20) transcribed as ssRNA but contain-
ing secondary structure can also be potent PKR activa-
tors. PKR activation by short dsRNA, such as siRNA,
has also been demonstrated (21–26). These reports
indicate that a wide variety of RNA structures can
activate PKR, provided they contain some dsRNA
element. Modified nucleosides present in homopolymeric
RNAs (27–30) or in short transcripts (25,31,32) can influ-
ence activation of PKR. However, it has not been
investigated whether modified nucleosides present in
long, protein-encoding mRNAs impact activation of
PKR.

Previously, we demonstrated that in vitro transcribed
mRNAs containing � are translated at significantly
higher levels than those containing unmodified uridines
(33). However, the molecular mechanism underlying this
enhancement has not been identified. Here, we show that
one cause of this translational difference is that
�-containing mRNA activates PKR less efficiently than
uridine-containing mRNA. This reduced PKR activation
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also mitigates general translational inhibition of cellular
proteins that is induced when unmodified in vitro
transcribed mRNAs are delivered to cells. Since replacing
uridines with pseudouridines also abrogates innate
immune activation by RNA, �-modified mRNAs are at-
tractive vectors for gene delivery or replacement, vaccine
antigen delivery or other RNA-based therapeutic
applications.

MATERIALS AND METHODS

Cells and reagents

Human embryonic kidney (HEK) 293T cells were
obtained from the American Type Culture Collection
and were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 2mM L-glutamine
(Life Technologies), 100U/ml penicillin and 100mg/ml
streptomycin (Invitrogen) and 10% fetal calf serum
(HyClone). Immortalized wild-type (WT) and PKR
knockout (PKR�/–) mouse embryonic fibroblasts
(MEFs) were generously provided by Robert Silverman
(Cleveland Clinic Foundation) and were maintained in
RPMI medium supplemented with 2mM L-glutamine,
100U/ml penicillin, 100 mg/ml streptomycin and 10%
fetal calf serum. Polyinosinic:polycytidylic acid
(poly(I:C)) was purchased from Sigma and polydeoxy-
cytidylic acid (poly(dC)) was purchased from Midland
Certified Reagent Co.

mRNA synthesis

RNAs were transcribed as previously described (4), using
linearized plasmids encoding firefly luciferase (pT7TS-
fLuc and pTEVluc) or Renilla luciferase (pT7TS-Ren)
and T7 RNA polymerase (Megascript, Ambion). Except
where otherwise specified, capped mRNA was generated
by performing transcription in the presence of cap analog
30-O-Me-m7G(50)ppp(50)G (New England Biolabs). All
mRNAs were transcribed to contain 30 or 50-nt-long 30

poly(A) tails. Triphosphate-derivatives of �, s2U, m5C,
m6A and m5U (TriLink) were used in place of their
cognate unmodified NTP to generate modified
nucleoside-containing RNA. Following transcription, the
template plasmids were digested with Turbo DNase and
RNAs were precipitated with 2.5M lithium chloride at
�20�C for 4 h. RNAs were pelleted by centrifugation,
washed with 75% ethanol and then reconstituted in
nuclease-free water. The concentration of RNA was
determined by measuring the optical density at 260 nm.
All RNA samples were analyzed by denaturing agarose
gel electrophoresis for quality assurance. Each RNA
type was synthesized in 4–10 independently performed
transcription experiments and all experiments were per-
formed with at least two different batches of mRNA.
Enzymatic capping was performed using ScriptCap m7G
capping kit (Epicentre) on mRNA transcribed with
guanosine 50-[g-32P]-triphosphate (GE Healthcare).
Efficiency of capping was verified by monitoring the elim-
ination of g-32P from the mRNA. Biotinylated mRNA
was transcribed with the addition of 1:5 biotinylated

CTP (Roche Applied Sciences) in the transcription
reaction.

Detection of reporter proteins in RNA-transfected cells

Cells were seeded into 96-well plates at a density of
5.0� 104 cells/well 1 day prior to transfection. RNA was
complexed with lipofectin (Invitrogen) as described previ-
ously (4). Cells were exposed to 50 ml DMEM containing
lipofectin-complexed RNA (0.25 mg) for 1 h, which was
then replaced with complete medium and further
cultured. Cells were lysed in 25 ml firefly, Renilla, or
dual-luciferase specific lysis reagents (Promega). Aliquots
of 2 ml were assayed with the corresponding enzyme sub-
strates and a LUMAT LB 950 luminometer (Berthold) at
a 10-s measuring time.

Assessment of total protein synthesis

HEK293T cells were seeded into 96-well plates at a density
of 5.0� 104 cells/well with 1000U/ml interferon-aA/D
(Sigma) 1 day prior to transfection. Cells were incubated
in methionine/cysteine-free medium (Invitrogen) for 1 h,
then pulsed with complete medium supplemented with
35S-methionine/cysteine (140 mCi/ml) (PerkinElmer) for
1–3 h. Cells were lysed in RIPA lysis buffer supplemented
with protease inhibitor cocktail (Sigma). Lysate was
diluted in 0.1% bovine serum albumin (BSA), and macro-
molecules were precipitated by the addition of trichloro-
acetic acid (TCA) and 30min incubation on ice.
Precipitates were filtered onto glass microfiber filters
(Whatman) and washed with 10% TCA and 100%
ethanol. Incorporated 35S-methionine/cysteine was
quantified using Ecolite(+) scintillation cocktail (MP
Biomedicals) and a Beckman LS 6000IC scintillation
counter.

PKR activation in vitro

Purified PKR prepared as described (11) was
dephosphorylated using lambda protein phosphatase
(New England Biolabs). Final concentrations of 0.75 mM
dephosphorylated PKR, 0.1mM ATP and 0.15mCi/ml ad-
enosine 50-[g-32P]-triphosphate (g-32P-ATP) (PerkinElmer)
were mixed with the indicated concentration of RNA for
10min at 30�C in a buffer consisting of 4mM MgCl2,
100mM KCl and 20mM HEPES, pH 7.5. The reaction
was stopped by the addition of NuPage LDS sample
buffer and reducing agent (Invitrogen) and heating for
10min at 70�C. Unincorporated g-32P-ATP was separated
from radiolabeled PKR by running samples on a 12%
sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS–PAGE) gel. Phosphorylated PKR was imaged in
dried gels using a phosphor storage screen (Molecular
Dynamics) and detected using Storm or Typhoon
Phosphorimagers (GE Healthcare). Band densities were
quantified using ImageQuant software (GE Healthcare).

Western blotting

HEK293T cells were seeded into 96-well plates at a density
of 5.0� 104 cells/well, with 1000U/ml interferon-aA/D 1
day prior to transfection. At the indicated time following
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RNA transfection, cells were lysed in RIPA lysis buffer
supplemented with protease inhibitor cocktail and
HALT phosphatase inhibitor (Pierce). Equal mass of
protein (10�30 mg per sample) was loaded onto a 12%
SDS–PAGE gel. Proteins were subsequently transferred
to a Hybond-P polyvinylidene fluoride (PVDF)
membrane (GE Amersham), blocked with 2.5% non-fat
milk in TBS containing 0.05% Tween-20, and probed with
antibodies for PKR-pT446 and PKR (Epitomics),
eIF-2a-pS51 and eIF-2a (Cell Signaling Technologies),
or PABP (Abcam). Membranes were stripped by agitating
gently in a buffer of 2% SDS, 100mM b-mercaptoethanol,
62.5mM Tris pH 6.7 for 30min at 50�C, then subsequent-
ly re-blocked and re-probed. Image was captured using the
Fujifilm LAS1000 digital imaging system. Linear bright-
ness and contrast were adjusted using GIMP 2.6 software.

Biotinylated RNA pull-down

HEK293T cells were lysed in RIPA lysis buffer supple-
mented with protease inhibitor cocktail and RNase inhibi-
tor (RNasin, Promega). Biotinylated mRNA (2 mg) was
added to 25 ml lysate and incubated on ice for 2 h.
Subsequently, 50 ml of streptavidin-agarose bead 50%
slurry (Invitrogen) was added and incubated on ice for
1 h. Beads with bound RNA and proteins were centrifuged
and washed, and proteins were released from RNA by
heating samples at 70�C for 10min in the presence of
NuPage LDS sample buffer and reducing agent. Samples
were separated by 10% SDS–PAGE and transferred to
PVDF membranes. PKR and poly(A)-binding protein
(PABP) were detected by western blotting.

Statistical analysis

All data are reported as mean±standard error of the
mean (SEM). Statistical differences between treatment
groups were calculated by the Student’s t-test using
Microsoft Excel. For all statistical testing, a P-value
<0.05 was considered significant.

RESULTS

Conventional in vitro transcribed mRNA induces
translational repression

We previously reported that mRNA transcribed in vitro
containing � in place of uridine is translated more effi-
ciently than mRNA containing unmodified nucleosides
(33). In order to determine whether the translational en-
hancement exerted by � incorporated into RNA is re-
stricted to the modified transcript or also extends to
unmodified transcripts, we performed co-transfection ex-
periments delivering equal amounts of Renilla and firefly
luciferase-encoding mRNAs to cells. As expected, the
mRNAs were translated much more efficiently when
both contained � as compared to when both were un-
modified (Figure 1A). However, when only one of the
mRNAs contained � modification, the translation level
of the �-containing RNA decreased (�50%) relative to
the level measured when both contained �. One explan-
ation for these findings could be that unmodified RNA

inhibits the translation of the co-delivered RNA, while
�-containing RNA has no such inhibitory effect. To
explore whether translation of endogenous cellular
mRNAs are similarly influenced by exogenously delivered
in vitro transcribed mRNAs, total cellular protein synthe-
sis was monitored in cells transfected with mRNA con-
taining � modification or no modification. Both types of
mRNA reduced cellular protein translation; however, the
suppression of protein synthesis was greater with unmodi-
fied RNA than with �-containing RNA (Figure 1B).
PKR-activating poly(I:C) and non-activating poly(dC)
were used as controls. Mock transfected cells were
treated with the transfection reagent (lipofectin) only,
without nucleic acid.

Conventional in vitro transcribed mRNA activates PKR

To determine whether the inhibition of translation by un-
modified mRNA is mediated by PKR, in vitro transcribed

Figure 1. Translational inhibition by unmodified in vitro transcribed
mRNA. (A) In vitro transcribed mRNAs encoding Renilla luciferase
(Ren) and firefly luciferase (Luc) were synthesized with and without
� modifications then mixed (1 : 1 mass ratio) as indicated. The mixed
mRNA was complexed with lipofectin and added to HEK293T cells
seeded in 96-well plates (0.25 mg RNA/well). Cells were lysed 4 h after
transfection and dual luciferase measurements were performed in
aliquots (1/20th) of the lysates. Values presented are normalized to
cells transfected with Ren and Luc mRNAs when both contained �
modifications. Error bars indicate the standard error of n=3 samples.
(B) Unmodified or pseudouridine-containing RNA was delivered to
HEK293T cells by lipofection. Cells were subsequently incubated
with 35S-methionine/cysteine supplemented medium, lysed, and
proteins were TCA precipitated. Data are presented as percentage of
counts obtained from mock transfected cells. Data shown are mean
values from three independent experiments±SEM.
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mRNAs were first analyzed in a cell-free system using
purified PKR. Four different mRNAs were tested: un-
modified and �-modified mRNA, each with either a cap
or a triphosphate at their 50-end (50ppp). In vitro
transcribed mRNA with 50ppp and containing uridines
activated PKR to a greater extent than those containing
� (Figure 2). This reduced activation of PKR by
�-containing transcripts is consistent with the previously
observed enhancement of in vitro translation from
�-containing RNA in rabbit reticulocyte lysates (33).
Since the presence of 50ppp on short RNAs has previously
been shown to enhance the activation of PKR (12,13), it
was important to determine whether the 50ppp present on
long mRNAs also contributed to PKR activation. To
remove 50ppp, in vitro transcripts were capped
enzymatically (Supplementary Figure S1), which com-
pletely removed the 50ppp, and then tested. As Figure 2
demonstrates, the presence or absence of 50ppp on un-
modified and �-modified transcripts did not significantly
alter their ability to activate PKR. It has been shown that
a variety of nucleoside modifications in RNA can influ-
ence the activation of RNA sensors (4,5,32); therefore, the
effect of incorporating the modified nucleosides s2U,
5-methylcytidine (m5C), 6-methyladenosine (m6A) or
5-methyluridine (m5U) into mRNA was also analyzed.
mRNA containing s2U, m5C or m6A activated PKR to
a lesser extent than unmodified RNA, while RNA with
m5U activated PKR to the greatest extent
(Supplementary Figure S2).

Pseudouridine-containing mRNA does not
activate PKR in cells

Next, we investigated the impact of �-containing mRNA
on PKR activation in the complex cellular environment.

Following control studies demonstrating that RNAs with
or without nucleoside modification can be delivered to
cells with the same efficiency (data not shown), unmodified
or �-containing mRNA was complexed with lipofectin
and delivered into HEK293T cells. PKR activation was
assessed by western blot using an antibody specific for
PKR phosphorylated on Thr446, a site at which phos-
phorylation is requisite for PKR activation (34).
Consistent with the results observed using purified PKR,
transfection of unmodified transcript induced PKR phos-
phorylation, which was dramatically reduced if the trans-
fected RNA contained � (Figure 3A). Similarly,
incorporation of s2U or m5C into RNA reduced the
level of PKR phosphorylation relative to that induced
by unmodified RNA, while m5U incorporation into
RNA enhanced PKR phosphorylation (Supplementary
Figure S3A). Incorporation of m6A into RNA also
enhanced PKR phosphorylation in cells, despite
reducing PKR activation in vitro.
Phosphorylation of eIF-2a, a substrate of PKR, was

induced in HEK293T cells by transfection with unmodi-
fied RNA but not with �-containing RNA (Figure 3B).
Incorporation of modified nucleosides other than � into
mRNA altered the phosphorylation of eIF-2a in direct
parallel to their alterations of PKR phosphorylation
(Supplementary Figure S3B).

Translation of unmodified mRNA is enhanced upon
inhibiting or eliminating PKR

Viral proteins C8L of swinepox and K3L of vaccinia are
inhibitors of PKR and have been shown to reverse
PKR-mediated inhibition of translation in mammalian
cells (35). Thus, to confirm the role of PKR in the trans-
lational differences observed between uridine- and

Figure 2. Activation of purified PKR by in vitro transcribed RNA. Purified PKR was incubated with g-32P-ATP and in vitro transcribed mRNA for
10min. Reaction products were separated by SDS–PAGE and imaged using phosphor storage radiography. Unmodified or �-containing mRNAs
encoding firefly luciferase contained triphosphates (ppp) or cap at their 50-ends. Complete capping of RNA was achieved post-transcriptionally using
vaccinia capping enzyme. Concentration of mRNA in reactions was 3.1, 6.2, 12.5 and 25 mg/ml. Quantified phosphorylation is presented as a bar
graph below each band. Values were normalized to those obtained with 25 mg/ml uncapped, unmodified RNA. No RNA (�) and 79 bp dsRNA were
used as negative and positive controls.
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�-containing transcripts, we utilized C8L, K3L and two
K3L mutants: hyperactive K3L-H47R and inactive
K3L-Y76A (35,36). Based on the premise that PKR is
activated by in vitro transcribed mRNAs that contain
uridine but not by those with �, inhibition of PKR
would be expected to increase the translation of unmodi-
fied mRNA but to have no effect on the translation of
�-containing RNA. Indeed, in the presence of PKR in-
hibitors, the amount of translation increased from un-
modified transcripts but not from �-modified transcripts
(Figure 4A).
Further evidence confirming the role of PKR in sup-

pressing translation of unmodified mRNAs was obtaining
using mouse embryonic fibroblasts (MEFs) derived from
PKR-knockout animals. In wild-type MEFs, translation
of �-containing transcripts was 4–5-fold greater than that
of unmodified transcripts (Figure 4B). In PKR-deficient
MEFs, however, the extent of translation of �-modified
mRNA was not different from that of unmodified mRNA.
Additionally, RNA transfection does not induce phos-
phorylation of eIF-2a in PKR-deficient MEFs, as it does
in WT cells (Figure 4C). These results demonstrate that
the activity of PKR is necessary for the decreased trans-
lation of unmodified transcripts relative to �-containing
transcripts.

Pseudouridine-containing mRNA is not bound by PKR

To test whether �-modified mRNA is a competitive in-
hibitor of PKR, a 200-bp dsRNA known to activate PKR
was mixed with a 5–125-fold mass excess of �-modified

RNA. All concentrations of �-modified RNA tested failed
to inhibit the activation of PKR by the 200-bp dsRNA
(Figure 5). Similarly, a 125-fold mass excess of mRNA
containing s2U, m5C or m6A did not inhibit PKR activa-
tion by dsRNA (Figure S4). The results were the same
using lower mass excess, equal mass or equal molar
mixes (data not shown), demonstrating that RNAs con-
taining modified nucleosides are not competitive inhibitors
of PKR. The lack of PKR inhibition by transcripts con-
taining modified nucleosides suggests a lack of binding
between PKR and modified RNAs. To directly test
binding, biotinylated transcripts having 30-nt-long
poly(A) tails and containing either � or uridines were
mixed with HEK293T cell lysates, and complexes were
then precipitated using streptavidin-agarose beads.
Western blots of the precipitates indicated that PKR
bound to unmodified RNA, but bound poorly to
�-modified RNA (Figure 6), consistent with reduced ac-
tivation of PKR by �-containing RNA. By contrast,
poly(A)-binding protein (PABP) bound equally well to
both transcripts. These results indicate that unmodified
RNA, but not �-modified RNA, binds to and activates
PKR.

DISCUSSION

We demonstrate that modified nucleosides in mRNA
reduce PKR activation and identify a mechanism by
which �-incorporation in mRNA enhances translation
of the encoded protein. Our data show that conventional
in vitro transcribed RNA inhibits translation of reporter
and cellular mRNAs, in part through the activation of
PKR. However, this inhibitory activity is not induced by
�-containing mRNA. Using multiple lines of investiga-
tion, our studies demonstrate that unmodified in vitro
transcribed mRNA activates PKR, resulting in phosphor-
ylation of eIF-2a and inhibition of translation.
Replacement of 50ppp with 50cap structure on the
mRNA does not substantially alter this PKR activation.
Examining translation in the context of PKR inhibitors
and in PKR-deficient cells confirmed that enhanced trans-
lation of �-containing mRNA is a consequence of dimin-
ished PKR activation. Mechanistically, modified
nucleoside incorporation reduces RNA recognition by
PKR. This is supported by data demonstrating that
RNAs containing modified nucleosides do not inhibit
PKR activation by dsRNA and that PKR binds poorly
to �-containing RNA.

PKR activation by unmodified RNA has a more
pronounced impact on translation of the transfected
reporter mRNA than on total cellular translation
(Figure 1). A similar local translation effect has been
observed with PKR activation by IFN-g mRNA (19,37).
The pronounced local inhibition is likely due to the
kinetics of phosphorylation and dephosphorylation of
PKR. Activated PKR most dramatically inhibits local
translation because rapid dephosphorylation of PKR
limits the impact on more distant translation. Therefore,
translation of a PKR-activating mRNA is more severely
impacted than total cellular translation. Furthermore, the

Figure 3. PKR activation by in vitro transcribed mRNA in cells.
Unmodified or �-containing in vitro transcribed firefly luciferase
mRNA was delivered to cells by lipofection. Following RNA transfec-
tion, cells were lysed at 4 h (A) or at the indicated time (B), proteins
were separated by SDS–PAGE, and assayed for phosphorylation of
PKR (A) or eIF-2a (B) by western blotting. No RNA (�), poly(dC)
and poly(I:C) were used as controls. Relative phosphorylation is
indicated below each gel lane, calculated as phosphorylated band
density divided by total band density and then normalized to the phos-
phorylation induced by unmodified RNA.
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observation that �-containing RNA also causes some re-
duction in total protein synthesis suggests that there are
additional effects on cellular translation which are not
mediated by PKR.

�-containing RNA activates PKR more effectively
in vitro as compared to in vivo (Figures 2 and 3). One
possible reason for this difference is that PKR activation
in vivo occurs in the presence of competing factors such as
phosphatases, components of the translational system and
other proteins affecting the structure and accessibility of
the RNA to PKR. In contrast, in vitro assays lack such
competing factors that would limit or reverse PKR
phosphorylation.

Figure 4. Translation of in vitro transcribed mRNA in the absence of PKR activity. (A) HEK293T cells were transfected with plasmids encoding
protein inhibitors of PKR: swinepox C8L protein, wt vaccinia K3L, hyperactive K3L-H47R, inactive K3L-Y76A, or pG5 empty vector. Twenty-four
hours later, unmodified or �-modified in vitro transcribed mRNAs encoding firefly luciferase were delivered by lipofection, and luciferase activity was
measured 4 h later. Data were normalized to values obtained when cells were first transfected with empty vector then with unmodified RNA.
Presented data are mean values from three replicates±SEM. (B) MEF cell lines derived from wild-type (WT) or transgenic mice that do not
express functional PKR (PKR�/�) were transfected with unmodified or �-containing in vitro transcribed mRNAs encoding firefly luciferase. Data
were normalized to values obtained when cells were transfected with unmodified RNA and expressed as fold increase in translation of �-containing
mRNA over unmodified RNA. Values are from three replicate wells±SEM, and are representative of at least three independently performed
experiments. (C) WT and PKR�/– MEF cells were transfected with unmodified or �-containing in vitro transcribed mRNAs encoding firefly
luciferase, or mock transfected with no RNA (–). Cells were lysed 2 h following RNA transfection; proteins were then separated by SDS–PAGE
and assayed for eIF-2a phosphorylation by western blotting. Relative phosphorylation is indicated above each gel lane, calculated as phosphorylated
band density divided by total band density and then normalized to the phosphorylation induced by unmodified RNA in wild-type cells. Absence of
PKR was also confirmed by western blotting.

Figure 5. �-containing mRNA does not inhibit PKR activation. An
activating 200 bp dsRNA was mixed with a 5–125-fold mass excess
of �-containing in vitro transcribed firefly luciferase mRNA prior to
incubation with purified PKR. Reaction products were separated by
SDS–PAGE. Relative band densities are presented below each gel
lane and normalized to dsRNA only. Data shown are representative
of three independent experiments.
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Although mRNA is normally transcribed without a
complementary antisense transcript or long stretches
of self-complementarity, it contains many short ds
regions and other intramolecular secondary structures
(Figure S5). In addition to long perfectly dsRNA, PKR
is activated by RNA that contains either hairpins (9),
bulges, mismatched base-pairing (10), short internal
dsRNA regions (11) or unique structures naturally
present in selected cellular mRNAs (17–20). As previously
demonstrated for TLR3 (38), it is likely that the activation
of PKR by in vitro transcribed mRNA is due to the for-
mation of intra- and intermolecular secondary structures.
PKR is then activated upon binding to these structures,
similar to the classical dsRNA-mediated mechanism of
PKR activation. Nucleoside modifications influence base
pairing and secondary structure formation (39–46), which
likely contribute to their effects on PKR activation.
Alterations to the shape of the helix formed and interrup-
tions to the minor groove, which is presumed to be the
principal location of PKR interaction with RNA
(32,47,48), are also likely to play significant roles in
determining how each modified nucleoside will impact
RNA-mediated PKR activation.
Unlike short ssRNAs (12), PKR activation by long

in vitro transcribed mRNA is not dependent on the
presence of a 50-triphosphate, as mRNA containing
complete replacement of 50ppp with cap structure also ac-
tivates PKR (Figures 2 and S1). The difference between
these findings might reflect the amount of 50ppp in the
RNAs being compared. Forty-seven nucleotide-long
ssRNA induced 100-fold more PKR activation when the
50-end contained triphosphates (12), while our data did
not show any significant effect of removing the 50ppp
from 1976-nt-long mRNA, which contains �40-fold less
50ppp. Our finding is more consistent with the result
reported for 47-bp-long dsRNA wherein PKR activation
did not depend on 50ppp (12).
Previous reports indicate that PKR activation is altered

by the presence of modified nucleosides in homopolymeric
RNA (27,28,30) and short ssRNA and dsRNA (32). Our
data extend these findings by demonstrating that

incorporation of modified nucleosides into long in vitro
transcribed mRNA also alters activation of PKR, and
subsequent translation of the RNA. We observe substan-
tial PKR activation by in vitro transcribed mRNA, which
is reduced by incorporation of �. Additionally, our
studies show reduced PKR activation by mRNA that
contains m5C, enhanced PKR activation by mRNA con-
taining m5U and elimination of PKR activation by
s2U-containing mRNAs. These results vary from those
obtained when testing PKR activation by short 47 nt
ssRNA: a low level of PKR activation by unmodified
RNA, which was dependent on the presence of a
50-triphosphate, and near-complete elimination of PKR
activation by incorporation of modified nucleosides (32).
However, when testing short 47-bp dsRNA, the effects
observed were similar to those reported here: PKR acti-
vation by unmodified RNA, which is reduced by � incorp-
oration, increased by m5U incorporation, and eliminated
by s2U incorporation. This similarity to short dsRNA,
and dissimilarity to ssRNA, supports our model that
PKR activation by long in vitro transcribed mRNA is
due to regions of secondary structure formed within the
RNA and is independent of the 50-end.

Unlike the other nucleoside modifications tested, the
presence of m6A in mRNA impacted PKR activation dif-
ferently in vivo than in vitro. In vitro, mRNA containing
m6A activated PKR only moderately (Figure S2) whereas
in vivo, m6A-containing mRNA activated PKR more
potently than unmodified RNA (Figure S3). Although
the significance of this observation is not fully understood,
the discrepancy may be explained by the presence of add-
itional factors in cells that facilitate increased ds formation
in m6A-containing mRNA in vivo.

Nucleic acids containing modified nucleosides can act as
antagonists of nucleic acid-sensing TLRs (49–52).
Therefore, we asked whether mRNAs containing
modified nucleosides inhibit activation of PKR by its
cognate ligand, dsRNA. PKR is still activated by
dsRNA in the presence of a 125-fold excess of mRNA
containing � or other modified nucleosides (s2U, m5C
or m6A), indicating that mRNAs containing modified nu-
cleosides are not inhibitors of PKR (Figures 5 and S4).
This extends previous data demonstrating that short
ssRNAs containing modified nucleosides do not inhibit
PKR (32). Furthermore, in cell lysates, RNA containing
� pulls down less PKR than RNA containing uridine
(Figure 6). This reduction in PKR binding is consistent
with prior in vitro data demonstrating small reductions in
PKR binding to short dsRNA and ssRNA that contain
modified nucleosides (32). From these data we conclude
that the mechanism of reduced PKR activation is reduced
recognition and binding to RNA containing modified
nucleosides.

It is possible that mRNAs with different nucleoside
modifications have different optimal concentrations for
activating PKR. Figures S2 and S3 indicate that none of
the modified nucleosides tested, with the exception of s2U,
completely eliminate PKR activation. Rather, each
modified nucleoside might alter the ability of RNA to
bind and activate PKR (Figure 6).

Figure 6. �-containing mRNA does not pull-down PKR. Biotinylated
in vitro transcribed unmodified or �-containing RNAs were incubated
with HEK293T cell lysates for 2 h. The RNA and bound proteins were
pulled down using streptavidin-agarose beads. An aliquot of lysate that
was incubated only with beads but without RNA (�) was also pro-
cessed. Aliquots of pull-down proteins as well as the supernatants were
separated by SDS–PAGE. PKR and PABP were detected by western
blotting. Relative band densities of PKR divided by PABP compared to
unmodified RNA are presented below each gel lane.
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PKR plays an integral part in the cellular response to
viral RNA. However, mechanisms to avoid PKR activa-
tion by cellular RNAs are required, as constitutive PKR
activation and translational inhibition would obstruct
normal cellular function. Here, our data show that PKR
activation is reduced when RNAs contain nucleoside
modifications that are naturally present in many cellular
RNAs, including piRNA (53), snRNA, tRNA, mRNA
and rRNA (54). Activation of TLRs (4) and RIG-I (5)
is also influenced by modified nucleosides in RNA, and
most commonly RNA modifications decrease the im-
munogenicity of RNA. Together, these data support a
general interpretation that modified nucleosides supply a
pattern for differential recognition by RNA-binding
proteins. One purpose of common natural modifications
may be avoiding activation of PKR and other RNA
sensors by self-RNA.

Using mRNA for gene delivery has the benefits of effi-
cient transfection and rapid protein expression without the
risk of insertional mutagenesis. The potential of mRNA as
a delivery vehicle is enhanced further by incorporating
modified nucleosides that reduce host defense responses
initiated by PKR, TLRs, and RIG-I (4,5,32). We
recently reported the additional benefit of increased trans-
lation from �-containing mRNA (33). In vitro transcribed
mRNA is regularly delivered to cells in a research setting
and has entered clinical trials as a cancer vaccine. As the
interest in non-coding RNA continues, the delivery of
RNA is likely to continue expanding. In most cases,
activating PKR is an unwanted side effect. High transla-
tion and low immunogenicity make mRNA containing �
or m5C applicable to express therapeutic proteins,
whereas s2U-modified RNA is best suited for applications
where avoiding nonspecific immunogenicity is desirable
but where translation is unnecessary (33), such as deliver-
ing antisense RNA (55) or stimulating RNA interference.
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