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Abstract
Status epilepticus (SE) is the most common neurological emergency of childhood. Experimental
models parallel several clinical features of SE including: (1) treatment is complicated by an increasing
probability that benzodiazepines will fail with increasing seizure duration and (2) outcome varies
with age and etiology. Studies using these models demonstrated that the activity-dependent
trafficking of GABAA receptors contributes, in part, to the progressive decline in GABA-mediated
inhibition and the failure of the benzodiazepines. Furthermore, laboratory studies have provided
evidence that age and inciting stimulus interact to determine the neuronal circuits activated during
SE (i.e. functional anatomy), and that differences in functional anatomy can partially account for
variations in SE outcome. Future laboratory studies are likely to provide an additional understanding
of the cellular and molecular mechanisms that underlie SE and its consequences. Such studies are
necessary in the development of rational emergent therapy for SE and its long term outcomes.

The majority of seizures stop spontaneously. However, when the mechanisms that terminate
a seizure fail, the result is a prolonged, self-sustaining seizure that can be refractory to
treatment. This condition, which has been termed status epilepticus (SE), represents the most
common neurological emergency of childhood with an estimated incidence of 10–27/100,000/
year for children between the ages of 1 month and 15 years with the majority of episodes
occurring in children <4 years.1–5 Fortunately for many children, SE occurs without apparent
consequences; however, for others, SE results in death or long term neurological dysfunction
or potentially epilepsy1, 6–14

The intent of translational research focused on the pathogenesis and long term outcome of SE
is to gain a better understanding of the mechanisms that underlie this childhood emergency
with the goal of reducing its associated mortality and morbidity to even lower levels. The ethical
and practical limitations of performing such studies in children are well known.15 Furthermore,
current clinical techniques do not yet provide the resolution required to completely address
questions at the cellular and molecular levels in human studies. Therefore, many questions
regarding basic mechanisms are still best addressed using in vivo animal models that, for the
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purposes of SE, also provide the ability to precisely determine the onset and duration of the
prolonged seizure in a stable genetic background and developmental state of the central nervous
system. Further, the shorter developmental time scale of the central nervous system in murine
animal models16–18 (Table 1) permits the prospective study of long term outcomes to be
addressed in an efficient time period.

Murine Models of SE
Acute prolonged seizures can be triggered in the laboratory by a number of varied techniques.
The systemic injection of a convulsant substance (i.e. chemoconvulsant) into rodents tends to
be favored for its ease as well as the tendency of prolonged seizures in adult animals induced
using these substances to consistently trigger long term changes, i.e. epileptogenesis, that
results in the development of spontaneous recurrent seizures (SRS), i.e. epilepsy.19–22

Of the chemoconvulsant models, the two most commonly used have been the broad spectrum
glutamatergic agonist kainic acid (KA model)23 and the muscarinic agonist pilocarpine (Pilo
model).19 Frequently pilocarpine is preceded by the administration of lithium (LiPilo model)
which allows for the dosage of pilocarpine to be reduced.20, 24–27 A less commonly used
chemoconvulsant is pentylenetetrazol (PTZ model),28 a tetrazol derivative that acts by
antagonizing GABAergic inhibition.29

Recognizing that it may be difficult to separate the direct toxic effects of the chemoconvulsants
from the changes that occur as the result of the seizure, recurrent electrical stimulation models
(ES) were developed with the hypothesis that the effects observed following stimulation-
induced SE were more likely to be the direct result of the seizure. Although electrical
stimulation resulting in self-sustaining SE has been utilized frequently in studies of SE in the
developed brain,30, 31 it has received less attention in the developing brain due to its relative
resistance to stimulation-induced SE.31, 32

Febrile SE accounts for nearly 25% of SE during childhood and is typically associated with a
better outcome and a lower risk of developing epilepsy.33 To model this condition, rodents
have been exposed to a steady stream of air heated to 41.5 °C. This exposure produces a seizure
that involves the limbic system including the amygdala and hippocampal formation.34, 35

However, unlike the models described above in which the SE is self-sustaining, induction of
a prolonged seizure in this model requires that the animal be maintained in the hyperthermic
environment for the duration of the seizure. As with febrile seizures, there is a unique age-
specificity as these events are most readily induced in rats when they are approximately
postnatal day (P) 10.

Age- and model-dependent differences are observed with respect to seizure induction and
mortality (table 1). For example, pilocarpine largely fails to induce seizures in animals <P10
36, 37 whereas KA at low doses induced robust seizures in these animals.38 In addition, the
behavior and electrographic characterization of SE has also been observed to vary with age
and model.36, 39–44

SE Pathogenesis: Altered trafficking of GABAA receptors
Murine models have demonstrated that an important component of the pathogenesis of SE is
a progressive reduction in GABA-mediated inhibition.45, 46 Clinically, this progressive
reduction in GABA-mediated inhibition complicates the treatment of SE as medications that
are effective in the early treatment of SE often fail to treat SE in its later stages.47–51 Treiman
and colleagues52 and others 53–55 demonstrated that the GABAA receptor modulator diazepam
also fails to terminate SE in its late stages in both the developed and developing animal. Given
the parallel between the human condition and the murine models, the majority of the recent
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animal studies investigating the pathogenesis of SE have focused on the changes that occur in
GABA-mediated inhibition during SE.

The interaction of the neurotransmitter GABA with the postsynaptic GABAA receptors is the
predominant mediator of inhibitory transmission within the central nervous system. The
GABAA receptor is a heteropentameric structure formed from 16 subunit subtypes.56, 57 The
current consensus is that the majority of native receptors are assembled from two copies of an
α, two copies of a β, and one single copy of a γ, δ, or ε subunit. When GABA binds to the
receptor, it undergoes a conformational change that results in a chloride conductance.
Synaptically-located receptors contain a γ2 subunit in their assembly and are sensitive to
benzodiazepines. In contrast, receptors that contain a δ subunit are extrasynaptically-located,
are insensitive to benzodiazepines but sensitive to anesthetics, and modulate a persistent (tonic)
background inhibition.

Kapur and colleagues53, 58 provided evidence that a rapid modification in the population of
postsynaptic GABAA receptors occurs during SE. Subsequent studies demonstrated that during
SE the reduction observed in GABA-mediated inhibition correlated with a reduction in the
surface expression of the benzodiazepine-sensitive GABAA receptors but not the
benzodiazepine-insensitive GABAA receptors.59–61 For example, we used a biotinylation pull-
down assay to measure the surface expression of benzodiazepine-sensitive γ2-containing and
benzodiazepine-insensitive δ-containing GABAA receptors in hippocampal slices acutely
obtained from adolescent animals (P30 and older) in SE (SE-treated) and from age-matched
naïve controls.61 The surface expression of the γ2 subunit in the SE-treated slices was
approximately 50% that observed in controls whereas no significant change in the surface
expression of the δ subunit was observed. Complementary whole-cell patch clamp recordings
from dentate granule cells in SE-treated slices demonstrated a reduction in GABA-mediated
synaptic currents but not tonic inhibition. Moss and colleagues 60 demonstrated that this
activity-dependent reduction in the GABAA receptor surface expression corresponded to a
reduction in the phosphorylation of the β3 subunit. Dephosphorylation of this subunit unmasks
a patch-binding motif for the clathrin adaptor AP2 protein allowing for clathrin-mediated
endocytosis of the receptor.

It has been posited that this activity-dependent decrease in benzodiazepine-sensitive receptors
is a potential mechanism to explain the failure of benzodiazepines to treat SE in its late stages.
Furthermore, these findings provide a biological rationalization to support recent
recommendations that SE protocols be modified to provide for the earlier initiation of
anesthetics62 as the δ subunit-containing benzodiazepine-insensitive GABAA receptors are
sensitive to general anesthetics such as propofol and pentobarbital.63–65

Early in development, activation of postsynaptic GABAA receptors can result in neuronal
depolarization (i.e. excitation) via relative overexpression of a Na-K-Cl cotransporter
(NKCC1). 66–68 To-date, studies of activity-dependent trafficking of GABAA receptors during
SE have been limited to those animals in which GABA is hyperpolarizing (i.e. inhibitory).
Whether a similar reduction in the surface expression of these receptors occurs in these younger
animals is not known. However, it has been demonstrated that hypoxia-induced seizures 69

caused the downregulation of GABAA receptors on the CA1 pyramidal neurons of immature
animals (P10-P11), a change that was reversed by calcineurin inhibitors. This finding
demonstrates that altered receptor trafficking may play a role in the pathogenesis of seizures
at this younger developmental age as well.

SE Outcome: An interaction between age and inciting stimulus
Independent of age and etiology, what the prolonged seizures of SE share in common, what
distinguishes them from other seizure types, is that they are self-sustaining and the probability
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of spontaneous termination in the absence of treatment is low. However, what the prolonged
seizures of SE do not share in common is a single outcome at either the neuropathological or
behavioral level. In the classic study of Aicardi and Chevrie 6 cataloging the outcome of
children ≤ 15 years old following an episode of SE ≥ 1 hour in duration, the number of children
with sequelae was approximately 50%. Therefore, almost 50% of children had no obvious
sequelae one year after their prolonged seizure. These investigators made the important
observation that outcome varied with age and etiology. Subsequent clinical studies (as
reviewed by 13) have confirmed their conclusion.

Although the number of studies in which murine models have been used to study the outcome
of early life SE is relatively small when compared to studies performed using adult animals
(as reviewed by 18), it is evident that outcome at the neuropathological and behavioral levels
in these models also reflects a unique interaction between developmental stage and model (as
reviewed by 70–73). A summation of age and model dependence of the long term outcomes
of SE based on a representative sample of the published literature is provided in Table 2. In
general, with advancing age, the probability of observing permanent neuropathologic,
cognitive and emotional deficits in adulthood and the development of spontaneous recurrent
seizures increases.

However, there are variations on this theme. For example, Sankar et al.32 compared the
development of spontaneous recurrent seizures at P21 following SE-induced by either electrical
stimulation (ES) or lithium-pilocarpine and P35 animals following SE-induced by ES. They
observed that following ES-induced SE, only a single P21 animal (11%; n=1/9) developed
spontaneous recurrent seizures compared to 73% (n= 8/11) of the P21 animals in which SE
had been induced by lithium-pilocarpine and 100% (n=6/6) of the P35 animals after ES.
Similarly, although Pilo, LiPilo, and KA-induced SE between P15 and P20 have been shown
to result in cognitive deficits, no long term adverse effects were observed following PTZ-
induced SE in this age group.74

The functional anatomy of SE - the neuronal circuits recruited during the prolonged seizures
of SE - can be determined using several techniques. Common methods include the
determination of changes in the local cerebral metabolic rate of glucose utilization using 2-
Deoxyglucose (2-DG) method75, 76 and the mapping of the expression of early intermediate
genes, e.g. c-fos and c-jun, as a marker for neuronal activation.32, 77

There is good evidence that the functional anatomy of SE is determined by an interaction
between developmental stage and inciting stimulus, and that these differences in functional
anatomy can partially influence outcome. Multiple studies confirm age-dependent changes in
the functional anatomy of SE.28, 39,41–43, 78–81 A summation of the recruitment of several
anatomical regions based the expression of early immediate genes at different ages and using
different models is shown in Table 3. This summation demonstrates that not only do age-
dependent changes occur within any single model but that there are differences in functional
anatomy that occur between models. For example, Nehlig and colleagues42 induced SE in
animals aged P10, P21, and P60-70 using LiPilo and mapped the functional anatomy by
characterizing the expression of the immediate early gene c-fos in multiple brain regions 2
hours after the start of SE. They observed widespread c-fos expression throughout the brain
with very little variation with age with the exception of the substantia nigra where no activation
was observed at P10 but was present at P21 and P60-70. In contrast, Holmes and colleagues
43 mapped the expression of c-fos 2 hours after the start of KA-induced SE in P7, P13, P20,
and P60 animals. The activation of c-fos after KA-induced SE in the youngest animals was
present in the substantia nigra and isolated to the CA3 region of the hippocampus as well as
the central nucleus of the amygdala. In the P20 animals, induction of c-fos was not observed
in the substantia nigra, but was observed throughout the entire hippocampus and amygdala.
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In an elegant group of studies, Ben-Ari and colleagues39, 78 provided an explanation for the
age-dependent variation of SE within a single model by demonstrating that developmental
changes in the expression of KA binding sites mirrored the changes in the functional anatomy
of KA-induced SE. It is likely that developmental changes in other neurotransmitter systems
82 result in the age and model dependent differences that occur with other SE-inducing stimuli.

Ben-Ari and colleagues83 also made the observation that the functional anatomy correlated
with the neuropathological findings. Even severe SE did not cause significant neuropathology
in animals younger than the third week of life, after which there was an age dependent increase
in the severity of pathological changes in various limbic regions as well as the hippocampal
formation, amygdala, and thalamus among other regions. This age-dependent change in
outcome reflected the age at which the amygdala was recruited into the neuronal circuit as
reflected by metabolic activation. In addition, these authors, and others,84 found that SE
induced during prepubescence (P30 - 35) caused acute damage to the CA3 region of the
hippocampus whereas the pathology was restricted to the hilar cells before this time, suggesting
that SE-induced damage to CA3 was a function of the developmental maturation of the
connectivity of the region with the dentate gyrus.

Variations in functional anatomy also partially account for the Sankar and colleagues’ finding
of the differences in the rates of spontaneous recurrent seizures after ES-induced and LiPilo-
induced SE at different ages as described above.32 It may also explain the failure of PTZ-
induced SE between P16 to P20 to result in deficits in the performance of an elevated T-maze
or result in permanent changes in behavior.74, 85

However, although age- and model-dependent differences in the functional anatomy of SE may
partially account for some of the variation in outcome, activation of a region during SE as
evidenced by expression of an early immediate gene does not necessarily predestine that region
to neuropathological changes.41, 81 For example, despite involvement of the hippocampus in
the P10 animal in LiPilo-induced SE,41 LiPilo-induced SE at this age does not result in obvious
hippocampal injury, cognitive deficits or the development of spontaneous recurrent seizures.
Therefore, murine models provide evidence that outcome is the result of a multifactorial
process that depends on the functional anatomy of the seizure as well as the inherent
vulnerability of a region to injury and plasticity at specific ages.86–88

Conclusions
The murine models of SE have provided an improved understanding of the cellular and
molecular mechanisms that underlie the pathogenesis and long term outcomes of SE. Studies
of pathogenesis have suggested that an activity-dependent trafficking of GABAA receptors
contributes to the self-sustaining nature of this neurological emergency. The trafficking of these
receptors offers a potential explanation for why benzodiazepine pharmacoresistance develops,
as well as providing a basis on which to modify current protocols and to develop future
therapies. Studies of long term outcome of SE using the murine models suggest that the
functional anatomy of SE as determined by an interaction of the developmental stage and
inciting stimulus is one of the factors that determines the long term outcome of SE. Future
studies using these models are likely to provide further insights into these mechanisms and
serve as a basis for future rational therapies for not only the treatment of status epilepticus but
to also the prevention of its long term neurological consequences.
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