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This review article presents a general view of the recent progress in the fast developing area of
surface-enhanced Raman scattering spectroscopy as an analytical tool for the detection and
identification of molecular species in very small concentrations, with a particular focus on
potential applications in the biomedical area. We start with a brief overview of the relevant
concepts related to the choice of plasmonic nanostructures for the design of suitable sub-
strates, their implementation into more complex materials that allow generalization of the
method and detection of a wide variety of (bio)molecules and the strategies that can be
used for both direct and indirect sensing. In relation to indirect sensing, we devote the
final section to a description of SERS-encoded particles, which have found wide application
in biomedicine (among other fields), since they are expected to face challenges such as multi-
plexing and high-throughput screening.
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1. INTRODUCTION

Surface-enhanced Raman scattering (SERS) spec-
troscopy is currently a well-established analytical
technique (Moskovits 2005; Kneipp 2007; Brus 2008;
Stiles et al. 2008), as it offers many advantages over
other spectroscopic or spectrometric techniques such
as Fourier transform infrared (IR) spectroscopy, near
infrared (NIR) absorption, UV-vis absorption, fluor-
escence, nuclear magnetic resonance (NMR), X-ray
diffraction, X-ray photoelectron spectroscopy or mass
spectrometry (Petry et al. 2003; Baena & Lendl 2004;
Alvarez-Puebla & Liz-Marzan 2010). The implemen-
tation of Raman scattering-based techniques for life
science applications is becoming very popular as they
can extract a significant amount of information directly
(with no need for prior sample preparation) from com-
plex environments such as biological fluids, living
tissues and cells (including sensitivity for small
structural changes in macromolecules, non-invasive
correspondence (ramon.alvarez@uvigo.es; lmarzan@

s contributed equally to this work.

tion to a Theme Supplement ‘Scaling the heights–
medical materials: an issue in honour of William

t I. Particles and drug delivery’.

arch 2010
pril 2010 S435
sampling capability, minimum sample preparation and
high spatial resolution). In addition, the most signifi-
cant drawback of normal Raman scattering (RS)
spectroscopy for analytical applications, i.e. the inher-
ently weak cross section, is overcome in SERS by
exciting the sample in contact with a ‘plasmonic’ surface
with an appropriate laser line. Under such conditions,
the Raman cross section and, in turn, the signal intensity
are extraordinarily increased so that levels of detection
down to the single molecule can be reached, while retain-
ing all the structural information provided by RS
(Kneipp et al. 2008; Pieczonka & Aroca 2008). Thus, it
is clear that the advancement in SERS detection is
linked to the progress in synthesis and optical character-
ization of new nanostructured materials.

SERS can be achieved and maximized by carefully
controlling both electronic and chemical effects,
mainly through careful design of the optical substrates,
but also by improving the adsorption of the analytes of
interest. Therefore, the preparation of optical substrates
with optimized properties is a very dynamic field of
research, and, as there is no universal ‘best’ SERS
platform, careful consideration of the analytical pro-
blem is required before choosing/designing a SERS
sensor platform. Regarding the material, SERS
has been obtained on electrodes, solid thin films and
This journal is q 2010 The Royal Society
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colloidal dispersions (Aroca et al. 2005a; Ko et al. 2008;
Tripp et al. 2008). Metal colloids are advantageous for
many reasons. First, single particles have served as a test-
ing model ground for the most thorough theoretical
studies. Second, they permit direct SERS analysis
within the analyte natural solution medium. Further,
their large surface area and their dispersion in liquids
allow for a close adsorbent–adsorbate interaction, so
that the analyte can be naturally retained onto the nano-
particles’ surface. The presence of the solvent and the
Brownian motion of the analyte–particle complexes
minimize damage to the sample, even when using more
energetic laser lines and higher power at the sample for
excitation. On the other hand, the colloidal and optical
stability, which are typically compromised over time, or
the lack of hot spots when the different particles dis-
persed in the solvent do not interact with each other
can be improved and controlled by means of the rational
design of colloidal hybrid materials. Finally, colloidal
metals can also be used for the preparation of thin
films, which add portability and versatility to ‘on-field’
SERS analysis, over the regular physical fabrication tech-
niques such as sputtering, physical vapour deposition or
electron beam lithography, which are extremely difficult
to find in conventional laboratories. In this review, we
present the most recent advances in the optimization of
metal nanoparticles for SERS, their integration into
advanced hybrid systems and their use for direct SERS
and for the design of encoded particles, which are gaining
popularity in bio-related fields such as chemical and mol-
ecular biology, diagnosis, biodetection or bioimaging.
2. DEPENDENCE OF SERS INTENSITY ON
COMPOSITION, SIZE AND SHAPE

Since the first report dealing with SERS on colloids
(Creighton et al. 1979), it has become clear that the
composition of the metallic particles deeply affects the
intensity of the SERS signal. In this respect, the most
important SERS platforms so far have been made of
silver and gold (Banholzer et al. 2008), while research
using other metals (Cu, Pd, Pt, Rh and others) is still
marginal (Tian et al. 2002). In general, it can be
stated that silver is a much more efficient optical
material than gold, giving rise to SERS signals 10- to
100-fold higher than similar gold nanostructures
(Garcia de Abajo 2007). Additionally, silver can be
excited from the UV to the IR while gold is restricted
to the red or IR owing to damping by the interband
transitions (Zhao et al. 2008). As a consequence, silver
nanoparticles are preferred when dealing with practical
applications (Cao et al. 2002; Graham et al. 2006).
However, basic structural studies or applications invol-
ving living organisms are usually carried out using gold
(Kneipp et al. 2006; Qian et al. 2008; Sha et al. 2008),
owing to better control of its particle size and shape as
well as its significantly higher biocompatibility
(Murphy et al. 2008). For example, gold nanostructures
have been widely used as SERS labels for in vivo detec-
tion or as nanosensors for the study of interior organelles
and the composition of prokaryotic and eukaryotic
micro-organisms (Kneipp et al. 2006; Tang et al. 2007).
J. R. Soc. Interface (2010)
Other key factors affecting SERS intensity are the
size and shape of the nanostructures. Several authors
have focused on the study of the dependence of the
SERS signal on size in both silver (Emory et al. 1998;
Seney et al. 2009) and gold (Talley et al. 2005; Njoki
et al. 2007) nanoparticles. As a rule of thumb, it has
been demonstrated that SERS intensity increases with
particle size. This can be explained by taking into
account that the intensity of the electromagnetic field
generated upon excitation with the appropriate light
(localized surface plasmon resonances; LSPRs) is
strongly dependent on the number of electrons excited
and, thus, on the volume of the nanostructure
(figure 1). Notwithstanding, the increase in the enhance-
ment factor as a function of size is limited by the
radiative damping effects, which become increasingly sig-
nificant as particle size is increased. Although for many
years the optimum size was thought to be around 30–
100 nm (Moskovits 2005), it has been recently demon-
strated that strong SERS signals can be obtained from
larger particles up to 200 nm (Rodriguez-Fernandez
et al. 2009). It should be noted that the nanosized gaps
between NPs or within nanosized cavities (so-called
hot spots, see below) are not subject to size-dependent
radiative damping (Genov et al. 2004).

The third main factor affecting SERS intensity, which
is nowadays regarded as the most important one, is
nanoparticle shape (Orenforff et al. 2005; Jana &
Pal 2007). Controlling the morphology provides a
method to tune the optical and spectroscopic response
of nanomaterials (Grzelczak et al. 2008; Lu et al. 2009;
Pastoriza-Santos & Liz-Marzan 2009; Sepúlveda et al.
2009), which is an essential requirement for a wide
range of applications like genetic diagnostics, immuno-
assay labelling and trace amount detection of drugs,
biomolecules and pesticides. The tremendous progress
that has been achieved in both colloid chemistry and
lithographic methods resulted in the possibility of
tuning the optical properties within the whole range
from the UV to the NIR, through careful control over
the morphology of the nanoparticles (Banholzer et al.
2008; Myroshnychenko et al. 2008; Pastoriza-Santos &
Liz-Marzan 2009). This has paved the way towards the
generation of new families of advanced platforms for
SERS ultrasensitive analysis, in particular those related
to biomedicine (Ochsenkühn et al. 2009; Alvarez-
Puebla & Liz-Marzan 2010). The importance of tailoring
the morphology of the nanostructures is also related to
the recently demonstrated observation that, in anisotro-
pic particles, LSPRs are not homogeneously distributed
throughout the whole particle surface but give rise to a
concentration of electromagnetic fields in several specific
regions within the nanoparticle. Such an electromagnetic
field concentration has been observed at the corners of
triangular platelets (Nelayah et al. 2007; figure 2a), the
ends of nanorods (Aizpurua et al. 2005; Bryant et al.
2008; Chen et al. 2009) and the edges and corners of
nanobars and nanocubes (Cobley et al. 2008). In this
respect, it has been recently reported that the electro-
magnetic field can be strongly focalized at sharp apexes
such as those contained in gold ‘nanostars’. Both theor-
etical (boundary element method) and experimental
(electron energy loss spectroscopy) results (Garcia de
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Figure 1. (a) Evolution of extinction spectra over a wide range of particle sizes for gold nanospheres in water, normalized to the
maximum extinction for each value of the diameter, 2R. (b–h) Near-field enhancement maps for dipolar, quadrupolar and octu-
polar modes in particles of different diameters, corresponding to the symbols superimposed in the upper contour plot. Adapted
from Myroshnychenko et al. (2008). Copyright q RSC Publishing (2008).
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Abajo 2010) clearly demonstrate such field concentration
(figure 2b), which results in substantially higher
SERS enhancement for stars than for spheres of similar
dimensions (Rodriguez-Lorenzo et al. 2009, 2010). The
role played by focalization at the tips, regardless of
the morphology of the entire nanostructure, has been
shown through studies on more complex nanostructures,
such as thorn-shaped nanowires (Pazos-Perez et al.
2010a).

Complementary to these latest approaches for electro-
magnetic field concentration, quite impressive progress
has been directed to the controlled fabrication of so-
called hot spots. Hot spots are defined as specific gaps
between particles where the electromagnetic field is
extremely high owing to coupling between their plas-
mon resonances (Brus 2008). Until very recently, hot
spots were obtained only by uncontrolled aggregation
of colloids; for example, by increasing the ionic strength
of a colloidal suspension (Yaffe et al. in press). Carefully
designed hot spots can become much more active and
even enable the possibility of single molecule spec-
troscopy (Kneipp et al. 1997). Recent theoretical and
experimental results indicate that engineered aggre-
gates composed of dimers or trimers offer consistently
higher optical enhancement than fractal aggregates
J. R. Soc. Interface (2010)
(Chu et al. 2009; Laurence et al. 2009). Several
approaches have been reported for the controlled and
homogeneous fabrication of such sphere dimers (Li
et al. 2009; Pallaoro et al. 2010) and trimers (Chen
et al. 2010), not only made of spheres but also compris-
ing nanoparticles with other geometries such as rods (Li
et al. in press) or cages (Rycenga et al. 2010).
3. ADVANCED SERS SENSOR PLATFORMS

The design of efficient and flexible nanostructured sub-
strates for SERS detection is one of the main challenges
to be achieved before the technique can be widely
applied. Although colloidal dispersions of plasmonic
nanoparticles may be (and actually are) used as pre-
pared, their integration into advanced materials for
generating such enhancing platforms, which may offer
flexibility and functionality, is a key aspect in sensor
engineering. One of the main restrictions arises from
the need for the probe molecules to be in close contact
with the metallic surface, so that they ‘feel’ the high
electromagnetic field due to the LSPR. Unfortunately,
many molecular families show very low affinity towards
coinage metal surfaces, and therefore their detection
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Figure 2. High-resolution scanning transmission electron microscopy (STEM) dark-field image, electron energy loss spectroscopy
(EELS) intensity mapping and calculated EELS intensity map of (a) a single Ag triangle and (b) an Au nanostar. Adapted from
(a) Nelayah et al. (2007) and (b) Rodriguez-Lorenzo et al. (2009). Copyright q Nature Publishing Group (2007) and ACS
Publishing (2009).
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has not been possible for a long time. Novel strategies
are thus required to retain such molecular species
close enough to the nanostructured metal, which
requires the rational design of materials for which
specific properties such as electrostatic charge, chemical
affinity and mechanical response can be tailored to
facilitate or even force the retention of the desired
analyte onto the optical enhancer. We describe in this
section some of the main directions in which this line
of research has evolved.

The use of electrostatic attraction is probably one of
the simplest approaches that can be exploited, for
example, by tuning the nanoparticle charge as a func-
tion of solution pH (Alvarez-Puebla et al. 2005). This
strategy has been employed with standard, citrate-
reduced gold or silver colloids, but applicability has
been demonstrated only for the analysis of positively
charged analytes, mainly because of the difficulty in
obtaining metal colloids with a highly positive surface
charge. However, this drawback can be solved by
rational choice of a suitable capping agent, for example
using appropriate amino acids as stabilizers. Thus, as a
function of the amino acid nature (number of amino
groups) and the pH of the medium, the surface charge
on the particles can be tuned from 30 to 250 mV
(Alvarez-Puebla & Aroca 2009). It is, however, impor-
tant to realize that not all amino acids can be used,
since those containing thiol groups can passivate the
gold or silver surface, thereby inhibiting the retention
of the molecules under study. Alternatively, tuning
the dielectric properties (hydrophilic/hydrophobic
nature) of the surface can be a suitable strategy to
enhance the retention of non-polar molecules. In this
case, the metal nanostructures are capped/functiona-
lized with a hydrophobic monolayer that produces a
high affinity for the analyte. Examples include the
J. R. Soc. Interface (2010)
deposition of an aliphatic self-assembled monolayer
(SAM) as a partition interface, which has been success-
fully applied to the analysis of polycyclic aromatic
hydrocarbons (PAHs) (Jones et al. 2009) or polychlori-
nated biphenyls (Bantz & Haynes 2009). Other
hydrophobic molecules, such as calixarenes (Guerrini
et al. 2006), viologen (Guerrini et al. 2009a) or dithio-
carbamates (Guerrini et al. 2009b), have been
extensively used for the detection of PAHs. Unfortu-
nately, many other types of analytes still cannot be
detected using these strategies. For example, metallic
ions cannot be directly detected by Raman, since this
is a molecular spectroscopy. Thus, indirect detection
approaches must be devised, which involve coupling
an appropriate chelating molecule to the gold or silver
surfaces, so that detection of the metal ions can be
achieved through vibrational changes induced on the
ligand upon complexation (Zhao et al. 2009).

Recent and more general methods have been pro-
posed through the design of hybrid materials that can
unspecifically trap molecules from a solution. Mechan-
ical retention and identification of analytes have been
reported using polymers that are responsive to external
stimuli, such as temperature (e.g. poly-N-isopropylacryl-
amide; Alvarez-Puebla et al. 2009) or pH (i.e. lipoic
acid–polyethylene glycol (PEG)–polymethacrylic acid
block copolymer; Qian et al. 2009). Although these
materials do allow detection of otherwise elusive com-
pounds (such as naphthol), the intensities that can be
registered are not very high because they usually com-
prise single nanoparticles coated with the responsive
material, and this coating hinders the interaction
between particles and hot spots (Markel et al. 1999).
An additional advantage of using colloidal substrates
is that they can be used as prepared or assembled into
solid thin films or even in bulk materials, thereby
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providing more flexibility to the sensing process. In line
with this trapping concept, other strategies have been
reported involving the incorporation of colloidal silver
nanoparticles inside exponentially grown layer-by-
layer (LBL) films (polyelectrolyte multilayer films
with thickness exponentially increasing with the
number of deposited layers; Podsiadlo et al. 2008;
Srivastava et al. 2008), generating a high density of
hot spots and allowing the direct, ultrasensitive analysis
of molecules that could not be retained by other
methods (Abalde-Cela et al. 2009). These substrates
were found to provide intense and uniform signals,
even when excited with different laser lines (figure 3).
Trapping substrates can also be prepared by in situ
reduction of silver particles inside bulk polymer gels,
which brings together the benefits of molecular trap-
ping, generation of dynamic hot spots and reusability
(Aldeanueva-Potel et al. 2009).

With regard to plasmonic platforms in solid thin-film
format, research interest is usually related to their capa-
bility of providing a portable substrate, which is easy to
use in the field, with a high enhancing efficiency owing
J. R. Soc. Interface (2010)
to containing a dense collection of hot spots. Such
nanostructured substrates can be easily fabricated by
means of physical methods such as sputtering/physical
vapour deposition (Volpati et al. 2008) or e-beam (Xia
et al. 1999), block copolymer micelle (Sanchez-Iglesias
et al. 2010) and dip-pen (Piner et al. 1999)
lithographies. However, these techniques often require
the use of expensive equipment commonly available in
surface or materials science research laboratories, but
very rarely in spectroscopy or analytical chemistry lab-
oratories. Alternatively, colloidal particles can be easily
prepared and engineered into a thin-film format. The
simplest technique for thin-film fabrication undoubt-
edly comprises casting and air-drying a polymeric
solution containing the relevant metal nanoparticles
(dos Santos et al. 2004). However, this method can sig-
nificantly reduce the enhancing efficiency of the
particles because the concentration of scattering centres
is often too low and most of them are located inside the
polymer film rather than on the surface. Solutions to
overcome this problem involve the application of
modern thin-film fabrication methods such as SAMs
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(Gellner et al. 2009), Langmuir–Blodgett deposition
(Lu et al. 2004), or LBL assembly (Goulet et al. 2005;
Jiang & Tsukruk 2006). Interestingly, similar fabrica-
tion approaches can be exploited for the fabrication of
‘optical accumulators’, to be used for monitoring large
sample volumes in continuous flows, or even for
making discrete hybrid particles with sizes ranging
from below micrometre level to several micrometres.
Although different in nature, both substrates can have
the same function: increasing the detection limit. The
concept of optical accumulators is based on the reten-
tion of the analyte of interest during the continuous
flow of the sample, until sufficient concentration is
reached to enable SERS detection (Ko & Tsukruk
2008). This method has been applied for the simul-
taneous detection of several analytes with
concentrations in the sample fluid as low as 10218 M
(Aldeanueva-Potel et al. 2010). On the other hand,
SAMs, LBL assembly or simply in situ reduction of
adsorbed metal ions can be carried out on the surface
of small particles, typically polymer or silica spheres
(Jiang & Tsukruk 2006; Braun et al. 2007a; Farah
et al. 2009), but also other substrates such as carbon
nanotubes (Sanles-Sobrido et al. 2009b; Taladriz-
Blanco et al. 2009), which provide both optical and col-
loidal stability to the supported gold or silver
nanoparticles. Controlled aggregation of the metal
nanoparticles on the microparticle templates leads to
the formation of stable and reproducible hot spots.
Additionally, if the size of these particles is big
enough to be observed under an optical microscope,
the amount of optical enhancer required for the SERS
J. R. Soc. Interface (2010)
analysis can be reduced, with a subsequent increase in
the detection limit. Unfortunately, ‘looking for the
bead’ under the microscope is a time-consuming pro-
cess. Progress in colloidal synthesis has permitted the
generation of bifunctional materials, in either the nano-
metre (Wei et al. 2009; Pazos-Perez et al. 2010b) or
submicrometre (Spuch-Calvar et al. 2009) range,
which combine optical and magnetic properties within
a single entity, thereby opening up the possibility of
decreasing the required amount of optical substrate,
since it can be concentrated upon application of a
magnetic field (figure 4).
4. DIRECT SERS SENSING

The most common way of using SERS is the direct
detection of the target analyte, i.e. the identification
of the specific SERS spectral fingerprint of the probe
molecule upon direct binding onto a plasmonic metal
nanostructure (Alvarez-Puebla & Liz-Marzan 2010).
Numerous examples have been reported on the appli-
cation of colloidal suspensions for the ultrasensitive
detection and characterization of both small and
macro-biomolecules (nucleic acids or proteins), in vivo
monitoring of metabolites or pathogens or the classifi-
cation of living organisms. Although small
biomolecules can be detected by means of other tech-
niques such as fluorescence, NMR, IR spectroscopy or
mass spectrometry, SERS offers higher detection
limits in conjunction with a complete structural charac-
terization of the sample, it does not require complex
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separation steps and it can be applied in situ under
environmental/biological conditions. SERS ultradetec-
tion on colloids has been successfully reported for
various substances of interest including highly toxic
metal ions such as mercury (Wang et al. 2009), illegal
drugs (Sägmüller et al. 2001; Faulds et al. 2002) and
therapeutic compounds (Farquharson et al. 2008) or
relevant metabolites, such as cancer biomarkers (Sebal-
los et al. 2005), in different biological fluids. The
versatility of SERS acquisition (i.e. backscattering
through a glass or quartz window) can also be exploited
for coupling with other techniques for online measure-
ments such as flow cytometry (Watson et al. 2008;
Sebba et al. 2009) or microfluidics. Recent improve-
ments in microfluidic technology (Christopher &
Anna 2007) paved the way for a variety of chemical
and biochemical analyses using SERS as a transducer
(Yea et al. 2005; Chen & Choo 2008). Direct detection
in microfluidic channels has several advantages over
SERS detection on colloids or hybrid materials, including
the use of small sample volumes, with the subsequent
reduction in waste production, simplicity of use and con-
tinuous flow monitoring in real time. SERS combined
with microfluidics has been, for example, reported for
the online monitoring of promethazine (antihistamine
and sedative drug) or mitoxantrone (anti-cancer agent)
(Ackermann et al. 2007).

Although we have described above the design of
hybrid functional materials to expand the applicability
of SERS as a detection technique, the use of specific
molecular receptors is worth special consideration.
This approach is based on the functionalization of the
metal surface with a selective antibody for the analyte
of interest (the antigen). The hybrid biosensor can
thus be exposed to the sample and SERS spectra are
acquired before and after the formation of the anti-
body–antigen complex, so that the changes induced
in the vibrational pattern of the antibody are registered.
Since certain vibrational peaks remain unaltered, these
can be used as an internal standard and quantitative
data can be extracted upon calibration. Another advan-
tage related to the selectivity of the antibody is the
ability to carry out the test directly in complex fluids.
This method has been successfully applied to the
detection of the cocaine metabolite benzoylecgonine
(Sanles-Sobrido et al. 2009b).

However, SERS spectroscopy is not restricted to the
determination of small analytes, but can also be used
for both characterization and ultradetection of biomacro-
molecules. Methods for biomacromolecule analysis usually
rely on the use of secondary detection labels, which
requires the use of two different selective linkers (anti-
bodies), one for capture and one for detection. This not
only increases the analysis cost but also makes it rather
time consuming, and thus the development of label-free
methods has become a matter of extensive research, in
which SERS has become a viable alternative. Nucleic
acids (DNA and RNA) are the easiest macromolecules
to detect by SERS owing to their molecular structure.
They are constituted by nitrogenous aromatic hetero-
cyclic bases (i.e. purines or pyrimidines) that act as
Lewis bases and can easily coordinate with silver and
gold surfaces while retaining a large SERS cross section.
J. R. Soc. Interface (2010)
While SERS analysis takes advantage of these structural
properties, the large number of nitrogenous functional
groups, with potential to bind the metallic surface, results
in a random orientation of the macromolecule. Therefore,
DNA or RNA SERS spectra are characterized by strong
fluctuations in the relative intensity of their bands, in
agreement with surface selection rules (Moskovits &
Suh 1984). To solve this situation, single- and double-
stranded thiolated DNA or RNA oligomers have been
used, which can direct the adsorption of the macromol-
ecule to be perpendicular to the surface (Barhoumi
et al. 2008). Further, other recent approaches include
the combination of SERS with microfluidic systems for
sequence-specific detection of DNA (Strelau et al. 2010).

On the other hand, although proteins and peptides
also contain amino groups, the SERS analysis of proteins
is not so advanced as that of nucleic acids because their
aromatic character is considerably lower. However, a
number of reports have been recently published regard-
ing the detection, conformation elucidation and
bioreactivity of proteins by means of direct SERS analy-
sis. For example, single-molecule detection has been
reported for the green fluorescent protein (Habuchi
et al. 2003) and the photoactive yellow protein (Singhal
& Kalkan 2009), as well as ultradetection of human insu-
lin, insulin lispro (Drachev et al. 2004), glutathione (Huang
et al. 2009) andvarious others in purified samples.Notably,
Han et al. (2008) recently devised a new analytical pro-
cedure for label-free, multiplex protein detection
comprising electrophoretic sequential protein separation.
Using this method, the detection of myoglobin was
possible within a bovine serum albumin complex sol-
ution. Regarding the conformational elucidation of
proteins and peptides, SERS can be considered as a
good alternative to resonance Raman (Spiro & Czernus-
zewicz 1995) for several reasons. First, SERS is usually
carried out with excitation in the visible–NIR range,
minimizing sample damage. Second, SERS cross sec-
tions are much higher than those for RRS, permitting
conformational characterization at very low concen-
trations and thus removing possible solid-state
artefacts. Further, SERS permits the study of the
native conformation and its natural fate under biologi-
cal conditions, giving rise to direct information that is
easy to extrapolate to real problems (Iafisco et al.
2008; Sengupta et al. 2008). One of the main challenges
that Raman (and also SERS) spectroscopy faces when
dealing with proteins and peptides is the complexity
involved in complete band assignment, which is essen-
tial for structural characterization. However, advances
in theoretical modelling have made possible the calcu-
lation of accurate vibrational patterns for small- and
medium-sized peptides. For example, the theoretical
Raman and SERS spectra of ‘penetratin’ were accu-
rately reproduced and compared with experimental
data (figure 5). Proper reproduction of the SERS spec-
trum involved using the SERS spectra of three aromatic
dipeptides (phenylalanine–cysteine, tyrosine–cysteine
and tryptophan–cysteine) as an empirical ‘basis set’
(Wei et al. 2008). Other alternative approaches for the
detection of biomacromolecules involve the incorporation
of Raman dye labels into the metal nanoparticle–DNA
(or protein) conjugates, so that, by detecting the SERS



Raman shift (cm–1)

600 900 1200

(b)

(a)

(c)

1500

10
03

10
03

10
12

10
12

16
60

16
60

12
45

12
05

12
45

12
05

10
33 10

33

88
0

88
0

76
0

76
0

1800 600

in
te

ns
ity

900 1200 1500 1800

Raman shift (cm–1)

Figure 5. Comparison of empirically predicted (red) and directly measured experimental (black) spectra of penetratin. (a) Mol-
ecular model of penetratin peptide, including one phenylalanine (purple) and two tryptophans (green). (b) Raman spectra.
(c) SERS spectra. (b) Red lines, predicted Raman; black lines, experimental Raman. (c) Black lines, predicted SERS; red
lines, experimental SERS. Adapted from Wei et al. (2008). Copyright q ACS Publishing (2008).

S442 Review. SERS biomedical applications S. Abalde-Cela et al.
signals of the Raman dye, the DNA or protein analytes
can be readily reported, even at very low concentrations
(Braun et al. 2007b; Fabris et al. 2007).

Increasing in complexity, the detection and classifi-
cation of pathogenic micro-organisms (viruses,
bacteria, yeast, fungi and protozoa) (Alexander 2008;
Jarvis & Goodacre 2008; Tripp et al. 2008) and bacteria
(Premasiri et al. 2005; Evanoff et al. 2006), as well as
the study of complex tissues (Pinzaru et al. 2008),
have been largely improved through improvements in
optical spectroscopy (i.e. spectral spatial resolution)
and nanoparticle synthesis. SERS has proved useful
for the identification of micro-organisms in complex
mixtures (so that isolation of single strains is not
required), within a few seconds (Shanmukh et al.
2006). This is due to the powerful combination of con-
focal optical microscopy and the unique vibrational
fingerprints obtained in SERS measurements. The
most common strategy comprises the addition of col-
loidal suspensions to the sample where the micro-
organisms are, so that the nanoparticles adhere to the
bacterial cell walls (figure 6a,b), allowing their identifi-
cation through the specific composition of the
membrane (figure 6c–e). This approach can be
improved by combination of the SERS vibrational spec-
tra with statistical classification methods, such as
principal component analysis, partial least squares or
hierarchical clustering analysis. By using these chemo-
metric pattern recognition algorithms, one can identify
individual species, including the strain, in a populated
sample of different micro-organisms (Pearman &
Fountain 2006; Patel et al. 2008). Equivalent approaches
have been developed for the identification of eukaryotic
cells (Sayin et al. 2009; Sujith et al. 2009).

Two excellent recent reviews by Willets (2009) and
Chourpa et al. (2008) describe the improvements and
challenges in the application of SERS to studies inside
living cells. To date, most of the SERS applications
J. R. Soc. Interface (2010)
inside cells have been related to the incorporation of plas-
monic particles inside micro-organisms, usually by the
addition of the nanoparticles directly to the growth
medium. However, this technique provides only limited
information because the particles mostly accumulate in
the cytosol and the nucleus membrane. Additionally,
the SERS spectra acquired from these particles are ‘con-
taminated’ by the vibrational bands of their coating
molecules (serum albumin), which makes the interpret-
ation of the obtained vibrational pattern extremely
difficult. A final difficulty is related to the need for a
large amount of single particles within the probe area
to obtain high-quality measurements, which has been
partially solved by using controlled aggregates contain-
ing hot spots, but the larger size of the aggregates
subsequently increases the difficulty in particle internal-
ization. Therefore, alternative approaches are required,
such as the functionalization of the plasmonic materials
with appropriate biointerfaces or the use of encoded
particles, as described in the following section.
5. SERS-ENCODED NANOPARTICLES

Rapid and sensitive diagnostic techniques are central to
human health. All the direct methods described above
exploit an intrinsic spectroscopic property of the analyte
of interest or a specific molecular recognition event
such as antibody–antigen, DNA–DNA or receptor–
ligand interactions to carry out the detection (Edelstein
et al. 2000). However, the simultaneous detection of
several components (multiplexing) is difficult to achieve
using direct SERS, owing to the inherent complexity of
biological fluids. These limitations might, however, be
overcome using the so-called encoded particles, which
are labelled materials directly bound to a biointerface,
providing it with a specific signature for indentifying a
recognition event. These detection schemes can be
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termed indirect because the signal does not originate
from the analyte, but from the labelled material instead
(Bake & Walt 2008).

Encoded particles are cost-efficient platforms that
address some of the limitations posed by more conven-
tional substrates, such as: (i) amenability to
high-throughput screening and multiplexing (Raez
et al. 2007), (ii) larger surface area for receptor conju-
gation or solid-phase synthesis, (iii) better accessibility
of the analytes to the entire sample volume for inter-
action with bead-conjugated receptors, and (iv)
greater versatility for sample analysis and data acqui-
sition. In particular, encoded nanoparticles (Bake &
Walt 2008) appear as a fast, reliable and sensitive tool
for multiplexed high-throughput screening (Fenniri &
Alvarez-Puebla 2007), biodiagnosis (Xue et al. 2009)
and bioimaging (Qian et al. 2008).

The challenges associated with multiplex analysis
using encoded particles are related to the encoding pro-
cess, which should retain the assay sensitivity,
specificity and reproducibility. Regarding the fabrica-
tion of encoded particles, several alternatives have
been reported for the introduction of the unique code
into each batch of single particles. For example, the par-
ticles may be intrinsically labelled through shape (Qin
et al. 2007), composition (Raez et al. 2007) or litho-
graphic marks (Pregibon et al. 2007), but they may
also be externally labelled by introducing into their
structures quantum dots (Bruchez et al. 1998; Han
et al. 2001), fluorescent dyes (Stoermer et al. 2006) or
SERS molecular codes (Doering et al. 2007). Since
fluorescence-encoded microbeads (Battersby et al.
2000) can be rapidly processed by conventional flow
cytometry, they have become popular platforms for
multiplexing assays. However, several disadvantages of
using multiple fluorescent signals as encoding tools
include both a limited number of barcodes and possible
interference from the native fluorescence of the analyte.
Notably, SERS-encoded particles can overcome this
drawback because the unique vibrational fingerprints
J. R. Soc. Interface (2010)
of each molecular entity (Aroca et al. 2005b) allow for
an infinite number of encoding molecules that can be
used simultaneously (Faulds et al. 2002). Additionally,
the extremely high SERS cross sections, which may
even permit single-molecule detection, allow for the
identification of the different codes at very low concen-
tration in a time-effective manner (typically ms).

The first generation of SERS tags was reported by
Porter’s group (Rohr et al. 1989; Ni et al. 1999),
based on the co-adsorption of reporter molecules and
targeting ligands onto metal nanoparticles; however,
there were several limitations, such as: (i) the suscepti-
bility of the encoded signal to dramatic changes in the
intensity owing to colloidal aggregation, (ii) possible
side reactions owing to the catalytic activity of the
metal nanoparticles, (iii) signal enhancement of the
analyte overlapping the microparticle barcode, (iv) dif-
ficulty in the functionalization of the particle surface for
biomolecule immobilization, and (v) leaching of the
vibrational label, decreasing the particle signal and pro-
moting toxic reactions. To overcome all these problems,
the optical enhancer needs to be coated with a suitable
protective shell, usually silica (Freeman et al. 2005) or
PEG, so that the Raman code cannot leach out (Qian
et al. 2008) while providing a suitable surface for bio-
functionalization (figure 7a). Several methods have
been reported for controlled silica coating of different
kinds of nanoparticles (Guerrero-Martı́nez et al.
2010), mainly based on the use of coupling agents to
induce the polymerization of silica by hydrolysis and
condensation of organosilanes on the nanoparticle sur-
face (Stöber et al. 1968; Liz-Marzan et al. 1996). The
silica shell not only circumvents the problems discussed
above but also hinders the adsorption of other molecu-
lar systems onto the metallic surfaces (which could
interfere with the vibrational code) while providing
high colloidal stability and allowing conjugation with
antibodies or nucleic acids and stabilization in biologi-
cal media (Cao et al. 2002). Further research along
this direction has led to the fabrication of more efficient
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encoded nanoparticles using hybrid materials composed
of plasmonic nanoparticles protected with either
polymers or silica shells (Mulvaney et al. 2003;
Fernández-López et al. 2009). However, a major limit-
ation of this approach is that single particles usually
do not provide sufficient field enhancement to raise
the SERS signal up to detectable levels. This problem
can however be overcome by encapsulation of controlled
aggregates with either silica or polymer shells (which
leads to heterogeneity in both shape and size; Lutz
et al. 2008; Watson et al. 2008) or by confined epitaxial
growth of gold or silver islands inside homogeneous,
hollow silica capsules (Sanles-Sobrido et al. 2009a).

Regarding practical applicability, these materials
show great versatility. Encoded nanoparticles can be
used either in suspension assays or patterned into
microchips. In a typical suspension assay (figure 7b),
a mixture of different antibodies, each of them pre-
viously labelled with one particular encoded particle,
is added to the fluid of interest. After reaction with
their specific antigens, the particles are separated by
centrifugation, washed and exposed to a detection anti-
body (labelled with a fluorophore), which selectively
binds to those particles that were complexed to the cor-
responding capture antibody. After fluorophore
binding, the particles are centrifuged and washed
again, and a small portion is cast onto a glass slide
and analysed in a micro-Raman system. Positive diag-
nosis of the presence of a pathogen, disease marker,
etc. requires the presence of both fluorescence and
SERS tags on the same particle (Cao et al. 2002).
Although, in principle, this method does not require
J. R. Soc. Interface (2010)
homogeneity in size or shape, if automation by flow
cytometry or microfluidics is to be implemented, size
homogeneity is essential to avoid interference due to
different Rayleigh scattering signals (which are mor-
phology dependent; Sebba et al. 2009). An alternative
route to suspension assays is the generation of micro-
chips (figure 7c) containing encoded particles within
well-defined spatial regions and fixed to a surface,
which allows fast recognition and avoids the need for
washing steps such as centrifugation. On the other
hand, the readout from the chip can be performed
automatically. Notwithstanding, the preparation of
these platforms requires particles with a high homogen-
eity in both size and shape to be used (Raez et al. 2007).

Encoded particles not only pave the way towards the
design of new and fast advanced sensor devices, capable
of monitoring multiple parameters in a single readout,
but can also be applied in bioimaging. Nabiev et al.
(1991) reported the SERS spectra of the anti-tumour
drug doxorubicin, recorded from treated cancer cells incu-
bated with citrate-reduced silver colloids. These spectra
were the first feasibility data demonstrating the promis-
ing perspectives of SERS spectroscopy in bioimaging,
and it has currently become a key topic of research.
SERS bioimaging is based on the functionalization of
encoded particles with bioligands with affinity for specific
receptors of the cell membrane (figure 8). This technique
can be applied to in vivo imaging of cells (Chourpa et al.
2008), tissues and organs (Lutz et al. 2008). The high
intensity provided by SERS-encoded particles and the
possibility of preparing extremely bright, biocompatible
and small capsules (Sanles-Sobrido et al. 2009a)
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constitute a highly competitive alternative to quantum
dots and magnetic nanoparticles. Nie’s group successfully
demonstrated that irradiation of tissues with NIR lasers
allows the SERS fingerprint to be recorded of
PEGylated gold-encoded nanoparticles, functionalized
with an antibody, so as to target tumour biomarkers
such as epidermal growth factor receptors on human
cancer (Qian et al. 2008).
6. CONCLUSIONS AND OUTLOOK

We have shown in this review that SERS has been estab-
lished as a solid and reliable analytical technique for the
detection of extremely low amounts of a wide variety of
molecular species. Although the requirement of a close
contact of the analyte with the enhancing metallic sur-
face has been a limitation, the design of novel hybrid
substrates opened up the possibility of complete general-
ization of SERS detection. Additionally, through the use
of antibodies or other selective receptors that can be
bound to the nanostructured metal surface, recognition
can be made specific and even quantitative. This is extre-
mely important for biomedical applications, since it is
the basis of early diagnosis of important diseases. We
have also shown the great potential of using SERS-
encoded particles for indirect detection and labelling,
which can be implemented on a chip or even inside
living cells, tissues or a variety of micro-organisms.
J. R. Soc. Interface (2010)
However, there are still challenges remaining, mainly
related to the reproducibility of the methods for sub-
strate fabrication, in particular when dealing with the
formation of hot spots, which are responsible for the
highest enhancement factors, but their efficiency is
extremely sensitive towards small geometrical details
within the nanostructure. Additionally, although porta-
ble Raman spectrometers are available, most of the
published reports are based on very sophisticated
instruments that will not find a place in routine analysis
carried out in laboratories or hospitals. Thus, the field
of SERS detection, in particular for biomedical appli-
cations, has great potential, as demonstrated by many
examples, but is open to new developments that will
undoubtedly continue to amaze us in the near future.
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