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Abstract

The brain produces dynamical rhythms at many frequencies that shift in amplitude and phase. To
understand the functional consequences of mixtures of oscillations at the single cell level, we
recorded the spike trains from single rat cortical neurons in vitro in response to two mixed sine wave
currents. The reliability of spike timing was measured as a function of the relative power, phase and
frequencies of the sine wave mixture. Peaks in the reliability were observed at a preferred phase
difference, frequency and relative power. These results have a natural interpretation in terms of spike
train attractors and bifurcations.
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1. Introduction

The responses of individual neurons depend on the ongoing background activity that varies
with the behavioral state of an animal. The electroencephalogram (EEG) contains multiple
rhythms that reflect spatially and temporally coherent neural activity [1]. Slow oscillations
with strong delta rhythms (0.5-2 Hz) are found in slow wave sleep, oscillations dominated by
theta oscillations (4-12 Hz) are related to cognitive processing and cortico-hippocampal
interactions, and gamma oscillations (30-80 Hz) are found in the cortex and other brain
structures under attentive behavioral conditions [1,3]. Power in the gamma and theta bands is
modulated by attention [3]. For example, the responses recorded from a macaque V4 neuron
to the same stimulus were compared with two conditions, with attention inside or outside the
neuron’s receptive field. As attention shifted to the receptive fields of a cluster of neurons,
these became more synchronized at high frequencies (30-70 Hz) and less so at low frequencies
(0-10 Hz) [3]. In a human visual selective attention task, stimulus presentation induced phase
resetting of different frequency components in the EEG [5].
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Institute.
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The reason why the brain exhibits these dynamical rhythms is unknown, but recent experiments
suggest that rapidly changing correlations may reflect internal events and regulate the flow of
neural information, rather than its meaning [7]. The reliability of cortical neurons depends in
part on the frequency content of their input [4,9] and pyramidal cells and interneurons are
reliable in different frequency ranges when injected with pure sinusoidal currents of varying
frequency [2]. The goal is to measure spike time reliability when neurons are stimulated by
synaptic inputs containing the types of correlated and synchronous inputs that are observed in
vivo. Here we report that reliability is greatly affected by the choice of the relative power,
phase and frequencies of two mixed pure sine waves injected into pyramidal cells in vitro.

2. Methods

Experimental protocols were approved by the Salk Institute Animal Care and Use Committee
and they conform to USDA regulations and NIH guidelines for humane care and use of
laboratory animals. Regularly spiking layer five pyramidal neurons in 350 pm-thick coronal
slices of rat pre-limbic and/or infra-limbic cortex were injected with 20 different stimulus
waveforms, over multiple trials. Each stimulus waveform was a sum of two sinusoids:
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I()=Iy+1,sin2r f1t+2nAp)+Lsin(27 f>1). (1)

The relative phase (Ag), the relative frequency (f,) and the relative power (1, and 1) were
varied (see Fig. 1). Whole-cell patch-clamp recordings using glass electrodes (4-10 MQ) were
performed under visual control at room temperature. Data were acquired in current clamp mode
using an Axoclamp 2A amplifier (Axon Instruments, Foster City, CA). Data acquisition and
current injection used standard computer protocols [2]. Programs were written in Labview 6.1
(National Instrument, Austin, TX), and data were acquired with a PCI-16-E1 data acquisition
board (National Instrument, Austin, TX). Data acquisition rate was 10 kHz. Data were analyzed
oPine using MAT-LAB (The Mathworks, Natick, MA).

3. Results

3.1. Experiment 1

Cells were injected with a constant (100 pA) depolarizing current superimposed on the sum of
two sinusoids of equal amplitude (50 pA each) with 20 different phase offsets (ranging from
Agp = 0.0 to 0.95) and fixed frequencies of 5 and 10 Hz, respectively. Fig. 1A shows a few of
the injected waveforms and a typical cell’s response. For Ag =0, the cell exhibited a 1:1 firing
pattern locked to the periodic stimulus, firing regularly at the fundamental frequency of the
stimulus (5 Hz). As the phase offset Ag increased, the cell fired earlier and earlier in the stimulus
cycle. For Ap = 0.30, the cell exhibited a new firing pattern with times interspersed between
the existing one. As Ay varied from 0.30 to 0.55 the two sets of firing times shifted gradually
while the fraction of trials with spikes lying in one versus the other shifted smoothly as well.
At Ap = 0.55, the new pattern dominated, and for larger phase offsets the first pattern no longer
occurred. As the phase offset continued to increase the spike times continued to shift until
Agp =0.95 where they nearly coincided with the spike times in the original pattern at Ap = 0.0.
The reliability of the cell’s response, calculated on a 5 ms time scale using a correlation-based
reliability measure [8], showed a pronounced dip at Ap = 0.45 (Fig. 2A).
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In an integrate-and-fire model neuron driven by the same stimulus, the spike times also varied
smoothly until a critical value of the phase offset at which a spike time bifurcation occurred;
that is, at the critical value of the phase offset, a small change in this parameter caused a
discontinuous change in the resultant pattern of spike times (data not shown). The reliability
is expected to show a minimum in the neighborhood of such a bifurcation point, where two
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alternative spike response patterns coexist. Because of the intrinsic noise of the recorded neuron
from stochastic ion channel fluctuations and other noise sources transitions between the two
coexisting patterns occur over a range of parameters near the critical parameter value.

3.2. Experiment 2

Cells were injected with a constant (100 pA) depolarizing current superimposed on the sum of
two sinusoids of equal amplitudes (50 pA each) and fixed phase offset (Ap = 0.5), at two
different frequencies: f; =5 Hz and f, varied from 10 to 105 Hz in steps of 5 Hz. Fig. 1B shows
some of the injected waveforms and a typical cell response. For f, = 10, 15, 20 Hz most cells
fired two spikes on each fi-cycle. For 25 <, <40 Hz the cell reliably fired triplet bursts, and
for higher values of f, it fired irregularly, with clusters of spikes occurring at the frequency
f1. The reliability had a maximum at f, = 20 Hz (Fig. 2B).

3.3. Experiment 3

Cells were injected with a constant (100 pA) depolarizing current superimposed on the sum of
two sinusoids of frequencies f; =5 Hz (#) and f, = 35 Hz (y). The relative amplitude of the two
components was varied to keep the total stimulus constant, 11 =I cos(#) and I, =1 sin(z), with
I =100 pA. n =ArcTan(l,/l1) took 20 evenly spaced values from 0 to /2. Fig. 1C shows 10 of
the injected waveforms and the response from one cell. The response to this stimulus varied
from cell to cell. For the cell shown here, a single spike occurred in each §-cycle. Once the y
power |, exceeded the @ power |4, the cell fired in one of two alternative y cycles on each
cycle, decreasing reliability.
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Fig. 2C shows the reliability (on the 5 ms time scale) of the cell in Fig. 1C (black line) as well
asasecond cell (gray line). For comparison, the cells were also injected with 6 frequency alone
at varying values of 11, with I, = 0 (dotted lines). Both cells steadily decreased in reliability as
I decreased, for I, = 0. The first cell (black line) had peak reliability for mixtures of 8 and y,
with @ predominating. The second cell (gray line) decreased in reliability upon shift of power
from @to y, and then showed a peak in reliability for a mixture of & and y with y predominating.
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4. Discussion

Cortical activity often contains multiple distinct frequency bands, whose relative phase [5] and
power [3] change dynamically with behavioral state. To understand the effects of varying
phase- and power-relationships between different frequency components on neuronal response,
we studied the behavior of in vitro neurons driven by periodic stimuli containing multiple
superposed frequency components. Our results show that when multiple input frequencies are
present, the reliability and precision of the neuronal response is sensitive not only to the
frequencies (Fig. 2B) but also to their relative phases (Fig. 2A) and power (Fig. 2C). In an
earlier study, the addition of a y-range frequency to a 6-range rhythm increased spike time
precision [6].

Reliability is important for understanding neural coding. The precision of a neural response
governs the amount of information about the stimulus that can be communicated and influences
the flow of information in the network containing the neuron. Just as reliable timing is necessary
for neural codes using the detailed temporal structure of spike-trains, unreliable timing erases
information about the stimulus. The ability to modulate reliability by moving in and out of
resonance with a given frequency component may be an important means of regulating
correlation and gating information flow in cortical networks [7].
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Depending on the relative phase relationships of different frequency components, a pyramidal
cell can support either a precise spike-time code or a rate code in which spike-times show great

Neurocomputing. Author manuscript; available in PMC 2010 September 23.



1dudsnueiy Joyiny [INHH

1dudsnuey Joyiny [INHH

L
L
=
>
=
=
S}
=
Q
>
=
(7]
Q
2

Thomas et al.

Page 4

variability but spike rate is conserved. This transition in behavior may be understood as a
bifurcation between dynamical attractors that occur as the phase-offset varies. The precision
and reliability of neural spike-timing depends on the interplay of synaptic input and the internal
dynamics of a given neuron. When two dynamical attractors or spike patterns are close enough
in phase space that intrinsic neuronal noise can induce transitions between them, then the timing
of individual spikes becomes unpredictable. Thus, bifurcations are a general mechanism for
controlling neural reliability and information flow.
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Sample current stimuli and corresponding cell responses. (A) Variation in relative phase of
two sine waves at 5 and 10 Hz. (B) Variation in the frequency of the second sine wave with a
5 Hz frequency for the first sine wave. (C) Variation in relative power between two sine waves
at 0 (5 Hz) and y (35 Hz). Larger values correspond to more power in the y sine wave. Left
panels show 10 examples of the 20 stimulus waveforms used, the right panels show
corresponding sample rastergrams obtained in response to the injection. Each response (A-C)

was obtained from a different layer 5 pyramidal cell.
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g Fig. 2.
@) Effects of parameter changes on reliability: (A) variation in relative phase of two sine waves
-§ at 5 and 10 Hz; (B) variation in the frequency of the second sine wave (the frequency of the

first sine wave was 5 Hz); (C) variation in relative power between two sine waves at ¢ (5 Hz)
and y (35 Hz). Larger values correspond to more power in the y sine wave. Solid curves
represent reliability for @ and y mixture, dashed curves represent the reliability for  alone, with
the same power as for the mixture. Two cells are shown (dark and grey curves).
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