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Life-threatening cardiac arrhythmias are associated with the existence of stable and
unstable spiral waves. Termination of such complex spatio-temporal patterns by local
control is substantially limited by anchoring of spiral waves at natural heterogeneities.
Far-field pacing (FFP) is a new local control strategy that has been shown to be capable of
unpinning waves from obstacles. In this article, we investigate in detail the FFP unpinning
mechanism for a single rotating wave pinned to a heterogeneity. We identify qualitatively
different phase regimes of the rotating wave showing that the concept of vulnerability is
important but not sufficient to explain the failure of unpinning in all cases. Specifically,
we find that a reduced excitation threshold can lead to the failure of unpinning, even
inside the vulnerable window. The critical value of the excitation threshold (below which
no unpinning is possible) decreases for higher electric field strengths and larger obstacles.
In contrast, for a high excitation threshold, the success of unpinning is determined
solely by vulnerability, allowing for a convenient estimation of the unpinning success
rate. In some cases, we also observe phase resetting in discontinuous phase intervals
of the spiral wave. This effect is important for the application of multiple stimuli
in experiments.
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1. Introduction

Cardiac tissue is a biological excitable medium. Generic activation patterns, such
as plane waves, spiral waves and spiral defect chaos, which are known from many
different excitable media also occur in the heart. Plane waves are associated
with normal activity, when excitation waves generated by specific pacemaker
cells travel through the myocardium resulting in coordinated contraction. During
tachycardias, reentrant waves (spiral or scroll waves) produce increased heart
rate. Effects such as spiral-wave breakup can ultimately lead to a complex
dynamical state, which is composed of many unstable spirals and represents
lethal ventricular fibrillation (Cherry & Fenton 2008; Otani et al. 2008). One
method of terminating this irregular activity is defibrillation: by a high-energy
electric current, the whole medium is excited at once, setting every single cell to
its refractory period and thus ending any activity. Because of the adverse side
effects of defibrillation (such as cardiac lesions that imply a higher probability
of future arrhythmias), there is a search for methods which require less energy.
This article examines a control method known as far-field pacing (FFP), which
exploits natural heterogeneities in the tissue and has been discussed in a number
of studies (Takagi et al. 2004; Pumir et al. 2007). Experimentally, the tissue is
subjected to a weak-pulsed electric field. Although the method is very promising
in providing an alternative approach to even terminate fast arrhythmias and
fibrillation (Fenton et al. 2009), the mechanisms are still not well understood.
However, such understanding is essential in order to successfully and reliably
apply FFP in an experimental (or even clinical) situation. This conceptual
numerical study sheds some new light on the preconditions for the success and
failure of one specific mechanism of FFP control known as unpinning, which is a
specific form of interaction between a single spiral wave and a heterogeneity in
the tissue. The aim is to open a way towards clarifying the potential mechanisms
(and limitations) underlying the complex interaction of waves during FFP.

Both anti-tachycardia pacing (ATP) and FFP are based on the idea that the
local initiation of additional waves could also be an effective means to control
wave dynamics. The energy required by such approaches is much smaller than
for defibrillation because only the local excitation threshold has to be overcome.
However, ATP requires the implantation of an additional pacing electrode.
Emission of pacing waves from this electrode with a frequency higher than the
frequency of arrhythmia should cause any free spiral to drift out of the medium
(Krinsky & Agladze 1983) and thus end the irregular activity. Some implantable
defibrillators use ATP as an alternative control strategy before delivering a
defibrillating shock as a last resort (Exner 2005). The disadvantage of this method
is the fixed location of the pacing electrode. If spirals are pinned to obstacles (such
as blood vessels or scars), the pacing electrode will generally emit waves far away
from the pinning location, which, in most cases, results in no unpinning (and
subsequently neither drift nor termination). If the spiral core is larger than the
obstacle, unpinning by ATP from a distance is possible. This effect is studied in
detail in the work of Pumir et al. (2010). Other cases of success rely on a specific
kind of velocity restitution that is not present in the model used in this article
(Isomura et al. 2008). The limitations of ATP can be overcome by FFP (Bittihn
et al. 2008) because it is able to initiate a pacing wave from the boundary of
the obstacle, to which the spiral is pinned. Pacing from a location near the spiral
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Figure 1. Successful unpinning by FFP. (a) At t = 20 (just after the pulse), the new wave N has
been nucleated. (b) At t = 21, end F has disconnected from the obstacle because its propagation
along the boundary of the obstacle is inhibited by the refractory tail of the spiral wave. (c) End E
forms a pinned wave and collides with the original spiral (t = 22). (d) The result (t = 40) is a free
spiral, formed by the free end F. The new spiral core is indicated by a circular white line. (Adapted
from Bittihn et al. 2008.)

core has been shown to make unpinning possible (Krinsky et al. 1995; Huyet et al.
1998). As the location of a physically implanted electrode is fixed, ATP generally
cannot unpin spirals.

In contrast, FFP locations are those same obstacles to which spirals can also
potentially pin: by the application of an electric field to a whole piece of tissue,
depolarizations and hyperpolarizations (Weidmann zones) are created at abrupt
conductancy changes (as occur at obstacles such as blood vessels and scars).
If the depolarization exceeds the excitation threshold, a wave is created at the
boundary of the obstacle. In this way, obstacles can be used as virtual electrodes
(Sepulveda et al. 1989; Sobie et al. 1997; Fast et al. 1998; Fishler 1998; Woods
et al. 2006). Figure 1 shows one of the mechanisms of detaching a spiral wave
from an obstacle using FFP. Unpinning by means of virtual electrodes has already
been the subject of a number of numerical and experimental studies (Ripplinger
et al. 2006; Pumir et al. 2007), also showing the possibility of failure of the
FFP mechanism (Pumir & Krinsky 1999; Takagi et al. 2004) and comparing
its performance with the performance of ATP in a generic model of an excitable
medium (Bittihn et al. 2008). The main result of the last publication is shown
in figure 2. The details of the numerical simulations performed to obtain this
figure can be found in Bittihn et al. (2008). The figure shows that, for a specific
obstacle radius, FFP can be successful in a much larger parameter region of the
Barkley model (§3) than ATP. This plot raises the following question: why is FFP
only successful for increased excitation threshold (parameter b in the model) and
not in the whole parameter region S? The aim of the following analysis is to look
more closely at the specific conditions that have to be fulfilled for FFP unpinning
to be successful. For computational simplicity, we will restrict this analysis to the
line a = 0.8 in the parameter space of the Barkley model.

2. Vulnerable window and unpinning window

It is commonly thought that the success or failure of FFP is determined by a
well-known phenomenon called vulnerability (Mines 1914; Wiggers & Wégria
1940). Indeed, we can explain the success of the unpinning mechanism sketched
in figure 1 by looking first at a one-dimensional cable.
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Figure 2. Performance of FFP. In the S region (grey), the medium exhibits excitable dynamics and
supports spiral waves. (a) In the shrinking wave (SW) region (black), broken plane waves do not
form spirals but shrink (called subexcitable in the work of Alonso et al. (2003)). The right and
top white domains represent non-excitable dynamics: bistability and no waves, respectively. (b)
The ATP domain represents the model parameters for which ATP can potentially unpin spiral
waves from an obstacle of size R = 3. The FFP domain (which includes the ATP region) marks the
parameter combinations for which unpinning by FFP is successful, if the pulse is delivered at the
right time. FFP is successful in a much larger region than ATP. An increased excitation threshold
(parameter b) facilitates unpinning. (Adapted from Bittihn et al. 2008.)

An excitation placed at any position in a quiescent cable creates two waves
travelling in opposite directions. The situation is different if we place the stimulus
in the refractory tail of a travelling wavefront. Immediately after the wave has
passed the stimulus site, no wave at all will be initiated because the medium is still
too refractory. However, there is a time window (called the vulnerable window)
in which the stimulus creates only one wave because the medium is capable of
producing an action potential, but the wave that would normally travel behind the
original wave is inhibited by the refractory tail. If the cable has periodic boundary
conditions, the two waves (the original wave and the single newly created wave)
annihilate each other. A systematic numerical and analytical characterization of
the vulnerable window in different models of excitable media has been performed
by Starmer et al. (1993).

The vulnerable window is located at the transition from the refractory period
to the state of excitability. In the situation described above (a travelling wave in
a one-dimensional cable of length L), we can define a phase 4 ∈ [0, 1] for every
position of the travelling wavefront. We define 4 = 0 to be the position where the
stimulus will be applied. The result of this stimulus will depend on its spatial
extent l and the phase of the travelling wave in the cable (Starmer et al. 1993).
We define

d = l/L (2.1)

as the normalized stimulus width, where L is the length of the cable. Figure 3
illustrates the spatial parameters and the definition of the phase as they were
implemented in the simulation (see §3 for details). In this scenario, the vulnerable
window is the phase interval [4min, 4max] ⊂ [0, 1], such that a stimulus creates
only one wave, if 4(tpulse) ∈ [4min, 4max]. When the phase of the travelling wave
at the time of the pulse 4(tpulse) ∈ [0, 1] is unknown, the width of this window
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Figure 3. Definition of phase and stimulus application in the one-dimensional cable. A section of
length L in the cable (spatial coordinate x) corresponds to phases 4 ∈ [0, 1]. The values of the fast
variable u are shown at time t = tpulse, when the stimulus S of width l has just been delivered at
phase 4 = 0. The travelling wavefront W (by definition located at phase 4(tpulse)) is propagating
to the right.
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Figure 4. Example dynamics inside and outside the vulnerable window. (a)–(c) show different pulse
phases 4(tpulse). As in figure 3, the grey dashed lines mark the test section of length L in the cable.
(a) 4(tpulse) < 4min: the stimulus S is completely in the refractory period of the travelling wavefront
W and thus is not able to initiate a wave. (b) 4min < 4(tpulse) < 4max: the pulse S is within the
vulnerable window. One direction of propagation is blocked and only one wave S− is created by
the stimulus. (c) 4(tpulse) > 4max: the medium is excitable again, which leads to the creation of
two waves S− and S+ by the stimulus S.

rvw = 4max − 4min is also the probability that the stimulus is inside the vulnerable
window. With the vulnerable window [tv

min, t
v
max] in time, the success rate can also

be calculated as

rvw = tv
max − tv

min

T
, (2.2)

where T is the time for one travelling wave to travel the length L of the cable. The
three cases (pulses (i) before, (ii) during and (iii) after the vulnerable window)
are shown in figure 4.
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This is a simple analogue for the situation along the boundary of the obstacle
shown in figure 1, taken as a one-dimensional cable: the wave created by the
far-field pulse is inside the vulnerable window, because only one end E of the
new wave can travel along the boundary, whereas the other end F is blocked on
this one-dimensional path. Krinsky et al. (1995) showed that a stimulus placed
in the vulnerable area of a spiral creates a semicircular wave with two spiral
defects. One vortex created by the new wave E is pinned to the obstacle, whereas
the other vortex at end F has to detach from the boundary. As in the one-
dimensional case, the two waves on the boundary of the obstacle (‘in the cable’)
then annihilate each other. But the vortex created by the free end F remains
at a distance. Thus, the original spiral has effectively been unpinned by the
far-field pulse.

For a given model and fixed field strength of the electric-field pulse, the success
of FFP critically depends on the timing of the pulse. More specifically, if we
look at an isolated spiral rotating around an obstacle, this spiral exhibits exactly
periodic dynamics, so that we can map every possible position of the spiral to a
phase 4 ∈ [0, 1]. For simplicity, we define 4 = 0 to be the point on the obstacle
boundary where a far-field pulse initiates a new wave. The unpinning window
is defined as the largest continuous interval [4min, 4max] ⊂ [0, 1], such that a far-
field pulse produces successful unpinning if 4(tpulse) ∈ [4min, 4max]. We call ruw =
4max − 4min the normalized unpinning window width (not to be confused with the
vulnerable window width rvw). If [4min, 4max] is the only phase interval producing
successful unpinning, ruw is also a success rate, i.e. the probability that a pulse
at an arbitrary time is successful in unpinning the wave from the obstacle. With
the largest success interval in time [tu

min, t
u
max], the normalized unpinning window

width can also be calculated as

ruw = tu
max − tu

min

T
, (2.3)

where T is the spiral rotation period. In figure 2, the FFP region covers those
parameters where ruw > 0 for a rectangular far-field pulse of field strength
E = 7 unit u amplitude/unit length applied for 0.1 time units at an obstacle
of radius R = 3.

Because of the similar definitions of (2.2) and (2.3) and their close relationship
through the FFP unpinning mechanism, one might be tempted to identify the
two success rates rvw and ruw with each other. Pumir & Krinsky (1999) mention
the vulnerable window as a fundamental mechanism similar to unpinning.
However, they observe that a too small distance of the spiral tip from the
obstacle after wave detachment can cause unpinning to fail. Takagi et al. (2004)
state that the vulnerable window sets the limits for the unpinning mechanism
considered here without relating both windows directly. Furthermore, in both
studies, only models with fixed parameters are considered. This study aims at
generalizing these results and clarifying the limitations of this specific unpinning
mechanism by looking at the relation of the unpinning window and the vulnerable
window. As we will show, the position and the extension of the unpinning
window within the vulnerable window can be qualitatively different for varying
model parameters.
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3. Simulations

All the simulations in this article are carried out using the Barkley model (Barkley
et al. 1990) with the reaction–diffusion equations,

vu
vt

= 3−1u(1 − u)
(

u − v + b
a

)
+ V2u and

vv

vt
= u − v. (3.1)

The model consists of a fast activator u, a slow inhibitory variable v and three
parameters 3 (determining the time scale of the fast variable), a and b. All
simulations were carried out with a constant spatial resolution of Dx = 1/6 and
a simple Euler time step of Dt = 1/400. 3 is fixed to 0.02. For our purposes,
using a simple generic model of excitable media has several advantages compared
with more detailed cardiac (or even ionic) models: the two parameters a and
b determine the excitation threshold (b/a) and the action potential duration (a
function of a). Thus, by exploring the parameter space of the model, effects can be
related to generic properties of any excitable medium in contrast to model-specific
parameters in a large parameter space. Additionally, computational simplicity
facilitates the investigation in this paper because it requires numerically intensive
calculations.

FFP simulations were performed exactly as described in Bittihn et al. (2008).
Similar simulations were carried out for the vulnerable window in a one-
dimensional cable, sufficiently larger than the length L described in §2 to
avoid boundary effects. To connect these simulations to the specific geometric
arrangement used for the FFP simulations, we chose L = 2pR, where R = 3 is
the radius of the obstacle used to calculate figure 2. From one end of the cable, a
travelling wave was started in order to determine the time T for the wave to travel
a section of length L (in the middle of the cable, far away from any boundaries).
A stimulus was placed at the beginning of this section a time span T · n/N after
the travelling wave had entered it, where n = 0, 1, . . . , N − 1 (i.e. N simulations
were performed). This was done by setting the values of u to 0.9 in an interval
of length l = d · L, where d is the normalized stimulus width as defined in §2 (see
figure 3). From these simulations, the normalized vulnerable window width or
vulnerable window success rate rvw can be determined to an accuracy of ±1/N
with N = 128 in our case.1

4. Results

(a) Outside the unpinning window

Figure 5 shows the normalized unpinning window width ruw along a line of
constant a = 0.8. As one might expect, ruw is generally larger for higher field
strengths at a constant obstacle size. One reason for this could be the increased
size of the area depolarized by the far-field pulse. The range of the model
parameter b, in which unpinning is possible (i.e. where ruw > 0) increases with
increasing field strength and obstacle size. In the one-dimensional analogy, this
1The simulations for determining the unpinning window were similar to those described here for
the vulnerable window. For these simulations, the number of unpinning trials (thus determining
the accuracy of ruw) was N = 96. Details can be found in the previous study (Bittihn et al. 2008).
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Figure 5. Parameter dependence of unpinning window width. (a) For a = 0.8, the normalized
unpinning window width ruw is plotted against the model parameter b (in steps of Db = 0.005). The
lines represent ruw for different obstacle radii and electric-field strengths. Error bars are not shown,
as (owing to the algorithm) accuracy is constantly ±1/96 T . For R = 3 and E = 7 at b = 0.06 := b�

this means that ruw < T/96. (b) The same data, but plotted against the spiral rotation period
T , normalized by the maximum rotation period Tmax at b = 0.14. For each configuration (R, E),
there is a critical spiral rotation frequency, above which unpinning by FFP is not possible. Empty
square on a solid line, R = 3, E = 4; solid line, R = 3, E = 7; empty circle on a solid line, R = 3,
E = 14; empty square on a dashed line, R = 4.5, E = 4; dashed line, R = 4.5, E = 7; empty circle
on a dashed line, R = 4.5, E = 14.

can also be explained by an increased depolarized area at the boundary of the
obstacle, which corresponds to an increased stimulus width (compare to §4b).
For stronger electric fields and larger obstacles, there seems to be a saturation:
the datasets for (R, E) = (3, 7), (3, 14), (4.5, 7) and (4.5, 14) show a transition to
ruw = 0 between b = 0.065 and b = 0.06.

Figure 6 shows one of the datasets (for R = 3 and E = 7) in more detail, also
resolving the position of the unpinning window in phase for each value of b.
The lines of 4min and 4max approach each other as b → 0.06 from above, which
explains why ruw → 0. From this plot, we can determine the phases at which to
deliver a pulse if we want to analyse the unpinning window and its boundaries in
more detail.

Figure 7 shows a series of snapshots taken from FFP simulations at a = 0.8 and
b = 0.09, i.e. parameters at which a large unpinning window exists. Figure 7a–c
shows the effect of a pulse before, during and after the unpinning window
(compare to asterisks in figure 6). As can be seen from the snapshots, the
finite boundaries of the unpinning window can be fully explained by the one-
dimensional vulnerable window mechanism introduced in §2: in figure 7a, the
pulse is delivered before the vulnerable window (defined in the cable that
represents the boundary of the obstacle), i.e. in the refractory tail of the wave.
The pulse does not initiate a wave. In figure 7b, the propagation of the newly
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Figure 6. Unpinning window in detail for a = 0.8. For the same parameters as in figure 5,
the minimum and maximum phase at which unpinning is possible are shown. Consequently, in
the shaded region between the two lines, unpinning by FFP is possible. The markers show the
parameters used to produce the snapshots in figures 7 (asterisk), 8 (cross) and 9 (empty circle).
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t = 18 t = 19 t = 20 t = 21

Figure 7. Inside and outside the unpinning window (a = 0.8 and b = 0.09). Pulse times for (a)–(c)
are indicated by asterisks in figure 6. (a) Early pulse. The area depolarized by the electric field
is still too refractory. No wave is initiated. (b) Pulse within the unpinning window. Unpinning
mechanism according to figure 1. (c) Late pulse. Both ends of the newly initiated wave can travel
along the boundary of the obstacle. Because of the annihilation of one end with the original spiral,
the result is a topologically unchanged situation.

initiated wave is prohibited in one direction by the refractory tail of the spiral,
meaning that the pulse was inside the vulnerable window. In figure 7c, the new
wave travels along the boundary of the obstacle in both directions, leading to
unsuccessful unpinning, and indicating that the pulse was delivered outside the
vulnerable window.
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Figure 8. Inside and outside the unpinning window (a = 0.8 and b = 0.065). Pulse times for (a–c)
are indicated by crosses in figure 6. (a,c) Both early and late pulses create a wave that briefly
detaches from the obstacle and then reattaches. (b) The pulse within the unpinning window is
able to create a free end slightly further away from the obstacle as in (a) or (c), which leads
to successful unpinning. The small distance between the unpinned spiral and the obstacle for
this lower value of b already indicates that the unpinning window will completely vanish for
even lower b.

To date, there is still no contradiction if we identify the vulnerable window
rvw with the unpinning window ruw. The importance of the second dimension is
revealed if we look at lower values of the model parameter b, when ruw approaches
zero. Figure 8a–c shows pulse times before, during and after the unpinning
window as in figure 7, but for b = 0.065. The corresponding phases, at which the
pulses are delivered, are indicated by crosses in figure 6. Clearly, figure 8b shows
the case of successful unpinning because the pulse phase is inside the unpinning
window, which, as we have seen, implies (at least for this unpinning mechanism)
that it also lies inside the vulnerable window. Already from these snapshots, it
can be seen that the unpinning window is about to vanish if b is further reduced
because the distance of the detached spiral from the obstacle is just large enough
to prevent it from reattaching. That this effect takes place at a certain distance
from the obstacle boundary (i.e. in the ‘second dimension’) is already a hint
that it cannot be covered by the one-dimensional vulnerable window mechanism.
This can be clearly seen from figure 8a,c. Both before and after the unpinning
window, the pulse is still delivered in the vulnerable window, as in both cases a
new wave can be initiated that is blocked in one direction (compare to figure 7a,c,
where one pulse is delivered in the refractory tail and the other is not blocked
along the boundary). The reason why the pulses fail to unpin the spiral is not
that they miss the vulnerable window, but rather that the initiated wave uses
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Figure 9. Temporary wave detachment (a = 0.8 and b = 0.06). According to figure 5 (with R = 3
and E = 7), there is (to accuracy ±T/96) no unpinning window for these parameters. But there
are pulse times for which one end of the FFP wave temporarily detaches from the obstacle. One
of these cases is shown here. Its timing is indicated by a circle in figure 6. The time evolution
looks similar to figure 8a,c. Apparently, these cases have converged and eliminated the unpinning
window in between.

the additional degrees of freedom in the second dimension to make a detour
and finally connect to the obstacle boundary, which has, by then, recovered
its excitability.

Having seen this mechanism, it is not surprising that, even for b = 0.06,
where the unpinning window is already zero, pulses can still detach spiral waves
temporarily from the obstacle by being placed inside the vulnerable window, as
shown in figure 9.

(b) Comparison with the vulnerable window

The above analysis suggests that the vulnerable window itself is not sufficient
to predict the size of the unpinning window for specific values of the excitation
threshold b. Although the unpinning window always lies within the vulnerable
window, the vanishing unpinning window as shown above cannot be explained
by a shrinking vulnerable window. To confirm this result directly, we determined
the normalized vulnerable window width rvw for the same model parameters as in
figure 5 using the algorithm described in §3. The results for different normalized
stimulus widths d can be seen in figure 10. The value b� below which no unpinning
window ruw > 0 at all was observed (see figure 5) is marked by vertical dashed lines
in figures 5 and 10. For none of the different stimulus widths does rvw show any
extraordinary behaviour at b = b�. rvw displays an almost linear behaviour over
the whole range of the parameter b shown in figure 10. Additionally, we have seen
in §4a that, in the two-dimensional setting, the vulnerable window does not vanish
at the same value of b as the unpinning window, which rules out an insufficient
stimulus width as a reason for the sharp transitions to ruw = 0 in figure 5. Of
course, the model parameter b does not only influence the FFP mechanism by
changing the vulnerable window width rvw, but may also alter the depolarization
dynamics induced by the electric field. Therefore, there is a possibility that the
effective depolarization area (as opposed to the stimulus width along the boundary
of the obstacle) created by the electric field is reduced by decreasing b, resulting in
the observed effects of reattachment within the vulnerable window. However, the
saturation of the limiting value of b in figure 5 for higher field strengths (and thus
a larger depolarization area) suggests that the reason for the failure of unpinning
below b� is an even more fundamental limitation.
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Figure 10. Vulnerable window width for a = 0.8 (numerical step Db = 0.005). (a) For the values of
b inside the region S (compare to figure 5), the normalized vulnerable window width rvw is plotted
for five different stimulus widths d. (b) The same data as in (a). Here, rvw − d is plotted instead
of rvw. The results for different d are very similar, with increased deviation only for the smallest
value d = 0.05. The almost identical curves in (b) can be explained by the linear dependence of
the rvw found analytically by Starmer et al. (1993). Plus symbols on a solid line, d = 0.25; empty
squares on a solid line, d = 0.2; dot-dashed line, d = 0.15; dashed line, d = 0.1; solid line, d = 0.05.

From these results, we can conclude that the reduced one-dimensional view
generally taken to analyse the interaction of waves at obstacle boundaries lacks
the ability to explain a very robust mechanism which leads to unpinning failure,
even in this simple model of an excitable medium. In this study, there has been no
systematic analysis of FFP parameters showing the universality of the limiting
value b�. However, the sharp transitions to ruw = 0 shown in figure 5 and the
comparison with the vulnerable window yield the conjecture that this limitation
is due to the spiral’s spatial structure and the two-dimensional spatial extent of
the induced depolarizations and not only to the part of the wave travelling along
the boundary of the obstacle.

(c) Consequences for the application of multiple far-field pacing stimuli

From the above analysis, we can deduce the qualitative structure of the spiral’s
reaction to an FFP pulse applied at an arbitrary phase 4. As we have seen, the
vulnerable window and the unpinning window are two different concepts that
are nevertheless connected by the fact that successful unpinning according to the
mechanism in figure 1 is only possible inside the vulnerable window. Considering
also the refractory period before and the excitable time after the vulnerable
window, the complete qualitative picture can be described as in figure 11. A
pulse delivered at phase A is in the refractory period and does not initiate a
wave. The existing spiral is not influenced. Pulses B and D are in the vulnerable
window but not in the unpinning window. This leads to temporary detachment of
the wave, but results in no unpinning and (after some further wave interaction)
an unchanged topological situation of one spiral pinned to the obstacle. In these
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Figure 11. Schematic view of the unpinning window. The unpinning window is contained in the
vulnerable window but does not necessarily span its whole width. A–E mark different FFP pulse
times. A leads to no phase resetting, whereas B, D and E cause the phase to reset. C corresponds
to successful unpinning.

cases, however, the pulse has an effect: with the pulse, a new spiral with phase
4 ≈ 0 is initiated (see the definition of 4 in §2). Apart from a delay caused by
the temporary detachment and possibly a reduced propagation velocity, this
spiral then evolves into the remaining spiral at the obstacle. Thus, neglecting
the transient state of multiple spirals at the obstacle, the phase of the spiral is
effectively reset to 4 ≈ 0 at the time of the pulse. The most surprising thing about
this is the fact that such a region can exist between the refractory period and the
unpinning window. Phase resetting also occurs with pulse E, only without the
temporary detachment of the wave.

The kind of phase resetting found here is different from other studies such as
Gray & Chattipakorn (2005). In their study, a spatially distributed phase q(x)
was defined throughout the domain and its shift, induced by global defibrillating
shocks, was investigated. Type 0 resetting was able to alter the phase distribution
around phase singularities in such a way that the spiral wave is destroyed (i.e.
topological charge conservation is violated). In contrast, we have only defined
the phase 4 for ‘macroscopic’ spiral waves as a position around an obstacle. It
is possible to condense information in this way because FFP only creates spiral
waves that are captured by this global definition.2

The mechanism of phase resetting must be taken into account when considering
pulse trains instead of single stimuli. As mentioned in §2, ruw can be thought of as
a success rate for hitting the unpinning window with a randomly timed pulse (as
would be done in experiments where only the frequency, and not the phase, of the
spiral is known). By choosing a suitable inter-pulse interval Tpacing (different from
the spiral period Tspiral), one would try to distribute the pulses over the spiral
phase and thus increase the success rate. With every pulse, the stimulus moves
with respect to the spiral phase by D4 = (Tpacing − Tspiral)/Tspiral. However, we
have seen that 4 does not necessarily evolve uniformly during the application of
2In a way, this is also an effect of the low-energy approach via FFP: a defibrillating shock, because
of its high energy, can change topology in the system so strongly that even phase singularities are
destroyed, whereas a more subtle (sufficiently weak) FFP stimulus has to obey topological charge
conservation and can only create two new defects with opposite charge.
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unsuccessful pulses. Rather, these pulses are potentially able to create a scenario
of defined phase, namely 4 ≈ 0. In this way, an unsuccessful pulse, by resetting
the phase, may imply the failure of the following stimulus.

Seen from a different angle, phase resetting may present an advantageous
opportunity: in contrast to the usual experimental situation where at most the
spiral frequency (most prominent frequency of the arrhythmia) is known, but
not the phase, this mechanism could open a way to set the phase to a defined
value as a basis for a more sophisticated, now phase-resolved, pacing algorithm.
However, as seen in figure 11, the intervals in which phase resetting takes place
can be fragmented across the possible stimulus phases, if the unpinning window
does not span the whole vulnerable window.

5. Conclusion

We have demonstrated that, in the Barkley model, the vanishing unpinning
window effect is a fundamental limitation of FFP. A comparison with the well-
known vulnerable window reveals that this is a genuinely two-dimensional effect.
We have found that spiral waves detach from the obstacle when the stimulus is
inside the vulnerable window, but that they can reattach after a short time if
the stimulus is outside the unpinning window. The one-dimensional view that is
generally taken cannot account for the interaction of the detached vortex with
the refractory tail of the spiral wave. The exact mechanism that determines the
distance of detached waves from the obstacle boundary after an FFP stimulus
still has to be understood. It may be that the model parameters alter the spatial
structure (curvature, propagation velocity) of the spiral as well as the spatio-
temporal dynamics of the depolarization induced by the FFP pulse such as to
prevent the detached wave from moving far enough away from the obstacle.
However, the confinement of the unpinning window to a phase interval smaller
than the vulnerable window is not present for all parameters. For high excitation
thresholds, the unpinning window spans the whole vulnerable window and thus
the one-dimensional analogy is perfectly able to predict the size of the unpinning
window. Interestingly, the behaviour at both ends of the unpinning window may be
affected by the additional distance restriction (of the spiral tip from the obstacle)
on the unpinning window, leading to scattered phase intervals in which phase
resetting takes place.

Not unexpectedly, we found that higher field strengths and larger obstacles
extend the range of excitability thresholds b in which unpinning is possible and
widen the unpinning window ruw.

The relationship of the unpinning window to the vulnerable window and the
surrounding refractory and excitable periods on the obstacle’s boundary has been
clarified, including possible consequences for controlling the phase of the spiral.
Even in this simple model, the time intervals at which phase resetting takes place
are not necessarily continuous. Further research is needed in order to deal with
the positive and negative effects of phase resetting.
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