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Modern model-based control theory has led to transformative improvements in our ability
to track the nonlinear dynamics of systems that we observe, and to engineer control
systems of unprecedented efficacy. In parallel with these developments, our ability to
build computational models to embody our expanding knowledge of the biophysics of
neurons and their networks is maturing at a rapid rate. In the treatment of human
dynamical disease, our employment of deep brain stimulators for the treatment of
Parkinson’s disease is gaining increasing acceptance. Thus, the confluence of these three
developments—control theory, computational neuroscience and deep brain stimulation—
offers a unique opportunity to create novel approaches to the treatment of this
disease. This paper explores the relevant state of the art of science, medicine and
engineering, and proposes a strategy for model-based control of Parkinson’s disease.
We present a set of preliminary calculations employing basal ganglia computational
models, structured within an unscented Kalman filter for tracking observations and
prescribing control. Based upon these findings, we will offer suggestions for future research
and development.
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1. Model-based control and neuroscience

This morning, you awoke to a not unreasonable weather forecast. The most recent
aeroplane you flew on may well have autolanded by a control system without
pilot intervention. Both of these seemingly disparate activities are examples
of the revolution created by modern control theory to observe (weather) and
control (airframes) complex systems. In both of these cases, a computational
model, embodying our a priori knowledge of the system at hand, was the key to
the success.

It seems incredible that the tremendous body of skill and knowledge of
model-based control engineering has had so little impact on modern medicine.
Dynamical diseases are diseases characterized by the operation of a biological
control system in a region of physiological parameters that produces pathological
behaviour (Mackey & Glass 1977). Dynamical diseases of the brain are those
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where the symptoms are created by abnormal patterns of activity within neuronal
networks (Milton & Jung 2003). The timing is now propitious to propose
fusing control theory with neural stimulation for the treatment of dynamical
brain disease.

There were some good reasons for this lack of intersection of these disciplines
in the past. Modern control engineering uses computational models of a system
(the airframe’s equations of motion, or the convection physics of the atmosphere
in the case of weather prediction) to perform the assimilation of observable data,
the reconstruction of unobservable variables in the system state, the estimation of
parameters (constant or slowly changing variables) and the short-term prediction
of the system state. This sequence is then followed by the next iteration of data
assimilation, and so forth. Biology and medicine were cut out of interacting with
such control engineering until computational models were developed of sufficient
applicability to warrant use. In 2010, our sophistication in computational biology
is certainly now at hand. But the other issue impeding the application of
control theory to biology was the nature of biological dynamics—most are
floridly nonlinear.

Modern (model-based) control engineering had its roots in the control of
linear (or linearizable) systems. In parallel with the development of the early
US space programme, Kalman (1960) devised a filter, which for linear systems
is a maximum-likelihood estimator, that gives optimal tracking of the system
state and optimal calculation of control signals to change such states. The dual
theorems of observability and reachability for such systems have been considered
one of the most useful developments in mathematics of the twentieth century
(Casti 2000). Observability and reachability theorems essentially state that if
you can observe a system’s state variables, you can optimally control it (to reach
a given state).

Kalman’s original filter was fast, but had its limits. Nonlinear models were
handled for several decades by linearizing equations about the operating points
of the system state using an extended Kalman filter (EKF). Such linearization is
notoriously unreliable in many systems, often dramatically shown in the simple
conversion of polar to Cartesian coordinates in range-locating systems (sines and
cosines do not linearize well). Biology often regulates its systems far removed from
the simple homeostasis of the early twentieth century work of Walter Cannon
(Cannon 1932)—witness the pulsatile secretion of parathormone (Schiff & Deftos
1995), the contractility of the heart or the firing of a neuronal action potential.
Prior to the late 1990s, the only solution to such serious nonlinearities would be
to employ Monte Carlo techniques (such as particle filters) to iterate an ensemble
of system states by one-by-one iterating each point in an estimated distribution
of states through the nonlinear equations (see Spiller et al. (2008) for detailed
discussion of particle filtering versus the EKF in nonlinear systems). Particle
filters have been explored to some degree in biological systems, but their inherent
inefficiency renders them, at present, almost entirely inapplicable to real-time
observation and control.

In the late 1990s, Julier & Uhlman (1997a,b) published a highly efficient
method of parameterizing state uncertainty for nonlinear systems that they
termed the unscented Kalman filter (UKF). Within a decade, it has become a
mainstay of the robotics scientist (Thrun et al. 2005). In parallel, from within
an almost completely separate literature, numerical meteorology developed their
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ensemble Kalman filter (EnKF) and its variants (Evensen 1994; Evensen &
van Leeuwen 2000). Both UKFs and EnKFs do the same thing. They permit
us to fly an aeroplane in real time, and to iterate huge convection models of the
atmosphere several times per day, using nonlinear models with unprecedented
efficiency and accuracy.

In 2004, towards the end of an obscure physics paper, Voss et al. (2004)
demonstrated that action-potential dynamics of single neurons might be amenable
to tracking with such a nonlinear UKF.

We have now spent several years exploring the implications of the Voss et al.
work. We first extended Voss’s approach to a framework for the analysis of
spatio-temporal data from cortical voltage-sensitive-dye imaging experiments.
We showed that such an approach was not only feasible, but that it was also
robust to large amounts of measurement noise. By using an observer system run
in parallel with the experimental system, we could very significantly reduce the
energy required to control such a system with electrical feedback (Schiff & Sauer
2008). Voss, as did we, employed reduced simplified models of neurons (either
Fitzhugh–Nagumo or Wilson–Cowan equations).

Would this strategy work with biophysically realistic models of neurons?
We recently showed that not only could the foundational Hodgkin–Huxley
ionic equations be incorporated into such a control framework, but also that
a UKF strategy was rather striking in its ability to accurately reconstruct
the entire set of Hodgkin–Huxley conductance and rate variables given only
voltage measurements (Ullah & Schiff 2009). Our guess is that such success must
be related to the intrinsic independence of ionic currents and time constants
present in these equations, and of course in the real neurons upon which
they are based—the symmetries (discussed in §8) are insufficient to impair the
reconstruction.

Hodgkin and Huxley left out that these neuronal dynamics were intimately
coupled to complex metabolic ion dynamics, both extracellularly and coupled to
glia. We have recently worked out a comprehensive computational framework to
account for the dynamics of potassium flux into and out of neurons and glia, as
well as the effect of such flux dynamics on the excitability of neuronal networks
(Cressman et al. 2009; Ullah et al. 2009). We demonstrated in our models that
such ionic dynamics could account for major components of the phenomenology
that we observe experimentally in the dynamics of epileptic seizures.

We then demonstrated that our control framework could readily incorporate
such ionic dynamics as well. We showed a powerful way to perform dynamic
clamp, using a more complete reconstruction of the cellular dynamics, rather than
the more isolated conductance relationships customarily used (Ullah & Schiff
2009). We also showed how to potentially incorporate this ionic framework to
modulate seizure dynamics (Ullah & Schiff 2009).

We recognize that variability is profound in biology, whether from the
genome, proteome or species level (Kirschner & Gerhart 2005). Compounding the
difficulties with variability, the complexity of all biological systems far surpasses
the details in our models. All models are bad to some degree (even that of a
simple pendulum), but our models of biological cell, network and organismal
dynamics are terrible by comparison with, for instance, our models of airframes.
We therefore began to develop a comprehensive strategy to directly deal with
model inadequacy in such biological systems. We showed that we can, as part
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of our control frameworks, construct a locally optimized set of mean parameters
that we term the consensus set. We have recently demonstrated our ability to
track the dynamics from real spatio-temporal data from our brain experiments,
using a local consensus set, and have shown that our tracking errors converge
to unexpected accuracy (Sauer & Schiff 2009). Such a strategy can be broken
up to local tessellations of networks when complexity demands this, and there
are new rigorous EnKF tessellation methods in the numerical weather-prediction
literature (Ott et al. 2004) ideal for such use.

The implications of the consensus set are that we are now able to use a model
network of sufficient complexity and connectivity to accurately observe a real
brain network despite uncertainties in cell dynamics and connection topology. Our
short-term prediction accuracy appears sufficient for control. This is a completely
different situation from the customary strategy of model validation—where one
assumes that the model is correct, and that only the parameters need to be
fitted. The identical situation was found in a recent physics application of local
EnKFs to fluid dynamics—the best parameters to use in a simplified model are
not the most physical, but in recognition of model inadequacy are the optimal
ones to best track observed dynamics (Cornick et al. 2009). To be blunt, the
best parameters to use for such tracking and control work can be (bio)physically
meaningless. But the model dynamics are not meaningless. Our conjecture is
that, for much of biology, seeking model validation in control scenarios may be
the wrong goal. Seeking models of sufficient complexity to accurately emulate
and track the dynamics of the state of a biological system may be a more
relevant strategy.

This is not just a matter of making better control devices for biological systems.
We often consider that if we simply amass sufficient computer hardware and
software, we will be able to create large-scale models that would be faithful
replicas of structures such as the brain. Were such a thing possible, we would
have much trouble gaining insight into how it worked, but access to all relevant
variables would be a valuable feature that we could never have in a real brain.
Most important is the sheer mass of parts and components to model—this is
a fundamental ‘limits to knowledge’ problem, as eloquently discussed by Scott
(1995). All of us, whether modelling for an underpowered implantable device, or
for the world’s most powerful supercomputer, need to deal with serious model
inadequacy when faced with real biology and disease.

All control filters, whether linear Kalman or nonlinear UKF/EnKFs, are at
their essence synchronization problems (Duane et al. 2006; Yang et al. 2006).
That is, a suitable control filter will synchronize to the natural system it is
observing when its performance is good. It is now well established that nonlinear
systems can synchronize, and when not identical can nonlinearly synchronize—
generalized synchronization (Schiff et al. 1996). Our techniques of establishing
such synchronization often have made use of knowing the equations from the
systems involved, except for a special case—when auxiliary systems are used. It
turns out that, when identical model systems, with different initial conditions,
are driven by the same signal from a potentially unknown system, at a certain
level of driving they can ‘forget’ their initial conditions and synchronize (Pyragas
1996). If you perturb one of the driven systems, it exponentially dissipates its
perturbation and re-synchronizes with the other driven system. This means that
if we use biological models of sufficient complexity, and perturb one of the
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identical copies intermittently, we can both infer the presence of synchronization
with the inadequately modelled biological system, and furthermore quantify the
model inadequacy in real time. Such model inadequacy leads us to adjust our
uncertainty in the tracking systems, through the so-called covariance inflation
(Danforth & Yorke 2006; Yang et al. 2006). This gives us the ability to probe a
complex biological system using synchronizing controllers—the closer we get to
the underlying dynamics, the closer the synchronization.

All of the above suggests that we are at the verge of a transformation in our
capabilities of tracking and controlling brain dynamics in health and disease.
This paper will discuss the prospects for applying such knowledge to Parkinson’s
disease. In §2, we will present an overview of Parkinson’s disease, in §3, discuss
the networks of Parkinson’s disease, in §4, describe the thalamus, in §5, describe
compounds that can cause a Parkinson’s disease-like state, in §6, discuss the
dynamics of Parkinson’s disease networks, in §7, describe a deep brain stimulation
(DBS) paradox, in §8, describe a reductionist approach to this paradox, in §9,
discuss control cost functions, in §10, discuss fusing data with models, in §11,
describe building a control framework for Parkinson’s disease dynamics and
in §12, summarize and discuss future directions. The goal of this paper is to
serve as a prelude to more comprehensive model-based control and experimental
applications in the future.

2. Overview of Parkinson’s disease

Parkinson’s disease was first described by James Parkinson in a monograph
published in 1817 (Parkinson 1817). It is a degenerative neurological condition,
and we attempt to digest the neurological manifestations of this disease into four
key signs: tremor, rigidity, bradykinesia (slowness of movement) and postural
instability. But a far better sense of the signs of this condition was captured by
the short description by William Gowers in his 1901 textbook (Gowers 1901) that
flanked his famous sketch of a typical patient walking (reproduced in figure 1)

… the aspect of the patient is very characteristic. The head is bent forward, and the
expression of the face is anxious and fixed, unchanged by any play of emotion. The arms
are slightly flexed at all joints from muscular rigidity, and (the hands especially) are in
constant rhythmical movement, which continues when the limbs are at rest so far as the will
is concerned. The tremor is usually more marked on one side than on the other. Voluntary
movements are performed slowly and with little power. The patient often walks with short
quick steps, leaning forward as if about to run.

(Gowers 1901, p. 639)

We have learned a considerable amount about the neurobiology of Parkinson’s
disease since the nineteenth century, but we do not know how to prevent it,
and all of our present-day treatments remain palliative (Lees et al. 2009). The
discovery by Carlsson et al. (1957) that a precursor to dopamine in the brain could
ameliorate the effects of dopamine depletion led to successful medical therapy of
Parkinson’s disease with L-3,4-dihydroxyphenylalanine (L-DOPA). Early on in the
disease, L-DOPA provides the chemical precursor to produce more of the waning
dopamine neurotransmitter, but gradually there are fewer of these cells remaining
that can benefit from such a boost in chemical processing. Furthermore, there are
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Figure 1. A well-marked case of this disease, as described by William Gowers. (Adapted from
Gowers (1901).)

two side effects that patients find disturbing: (i) the symptoms that return during
the wearing-off phase after taking a dose, producing more radical on–off swings
in motor symptoms and (ii) the gradual development of involuntary movements
termed dyskinesias (Schapira et al. 2009). Although drug therapy remains the
first-line standard of treatment for patients with Parkinson’s disease, the long-
term medical side effects of phamacological therapy have kept the surgical
treatment options for pharmacologically intractable Parkinson’s disease alive.

There are three surgical lesion targets in the brain that have been found
to reduce the symptomatology of Parkinson’s disease effectively: the ventral
intermediate nucleus (VIM) of the thalamus, the internal segment of the globus
pallidus (GPi) and the subthalamic nucleus (STN). Because patients with
Parkinson’s disease generally require treatment on both sides of the brain, the
efficacy of single-sided lesion treatment was often tempered by the complications
of bilateral therapy. One never wants to lesion a brain symmetrically. So, lesions
can be administered assymetrically. One is also hesitant to use too large a lesion
at any one sitting, so there was a frequency of having to return to surgery to
enlarge a lesion that was not effective enough.

Parkinson’s disease has become the disease most widely treated so far by
DBS (Kringelbach et al. 2007). DBS appeared to be effective when used
bilaterally, without the symmetrical lesion complications. In 1997, the US Food
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Figure 2. An extremely simplified schematic of network imbalance in Parkinson’s disease. Excitation
in red and inhibition in blue. The contrast with normal in the Parkinson’s disease state is shown
on the right, where thickened (thinned) lines indicate an increase (decrease) in excitation (red)
or inhibition (blue). St, striatum; GPe, globus pallidus externa; GPi, globus pallidus interna; Th,
Thalamus; STN, subthalamic nucleus; and SN, substantia nigra. I have made no distinction between
indirect and direct pathways, and customized this for the purposes of the discussion within this
paper. For a more complete and detailed description of this anatomy, see Obeso et al. (2008).

and Drug Administration approved the use of DBS in Parkinson’s disease.
Stimulation of the same targets that were lesioned produced palliative effects
(Koller et al. 1999). VIM lesions and stimulation were well characterized to
reduce tremor, but although tremor is a hallmark of the disease, it is not the most
disabling symptom for most patients. To better deal with the bradykinesia and
rigidity, stimulation of the GPi and STN became the preferred targets. Although
the STN is now the dominant DBS target, it is unclear whether the GPi, with
a less burdensome set of cognitive side effects, might be better for some patients
(Anderson et al. 2005). As our experience with DBS has progressed, a direct
comparison of pharmacological versus DBS (bilateral GPi or STN stimulation)
for Parkinson’s disease found DBS to have advantages in quality-of-life outcomes
in comparison with pharmacological therapy, despite the risks inherent in surgical
treatment (Deuschl et al. 2006; Weaver et al. 2009). Nevertheless, there remains
interest in lesions, whose effectiveness versus pharmacological therapy has also

Phil. Trans. R. Soc. A (2010)



2276 S. J. Schiff

been shown (Vitek et al. 2003), and whose long-term medical management and
costs are considerably less than for patients who require lifelong maintenance
of DBS systems (Blomstedt & Hariz 2006). An especially compelling study of
bilateral subthalmotomy argues the rationale for lesions and demonstrates the
apparent safety and risk assessment of symmetric STN lesions (Alvarez et al.
2005). The issue requires continued debate, as the majority of patients with
Parkinson’s disease on the planet, and their healthcare systems, do not have
the resources to consider DBS therapy.

The lesion debate notwithstanding, there is no more fruitful arena to
consider a radical new approach to neural systems control than DBS
technologies for Parkinson’s disease. Our present approach has been to
focus on high-frequency stimulation (130 Hz) delivered in open loop without
feedback sensing. Along with the rise of such empirical DBS therapy, we have
developed increasingly sophisticated computational models of the fundamental
networks involved in the pathophysiology of Parkinson’s disease. And we have
developed increasingly sophisticated models of the physics of DBS stimulation
to help us understand how DBS interacts with neurons. Let us examine this
in detail.

3. The networks of Parkinson’s disease

A great deal of the brain, especially the regions beneath the cortex, is heavily
involved with movement regulation. Such areas include the connected set of basal
ganglia, portions of the thalamus and the cerebellum. The cerebellum may well
contain as many neurons as the rest of the brain. Coordination and movement
require a lot of mind.

In Parkinson’s disease, there is degeneration of neurons that use dopamine as
a neurotransmitter, which have their cell bodies in the substantia nigra at the
upper edge of the midbrain. The decrease in neural output from the substantia
nigra causes a disturbance in the network balance of excitation and inhibition, as
schematized in figure 2. The result is a net increase in inhibition from the GPi to
thalamus (for a much more detailed discussion of the circuitry, see Obeso et al.
(2008)). But the lines and arrows in these static diagrams refer to average firing
rate or activity, and do not reflect the dynamics that is critical to understand
what is happening. In Parkinson’s disease, the inhibition to the thalamus becomes
phasic and oscillates.

If, in figure 2, you place a thin probe and burn a small hole in the GPi
or STN, the symptoms of tremor, bradykinesia and rigidity decrease.1 We
have understood the improvement in symptoms from the schematic in that
the excessive amount of inhibition streaming out of the GPi and into the
thalamus will be decreased. If you instead place a thin electrode into these same
structures, and stimulate at 130 Hz, you will get an almost identical decrease in
the symptoms of tremor, bradykinesia and rigidity. And this paradox requires
explanation.

1This is done by image- and micro-electrode-guided stereotactic placement of a thin probe to the
target nucleus within the brain, and the use of a calibrated radio-frequency thermal lesion.
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4. The thalamus—its not a simple relay anymore

The thalamus (latin for inner chamber) is a walnut-sized piece of very-high-end
real estate in the centre of the brain. We used to view it predominantly as a
relay centre for things such as sensory information. The thalamus has a variety of
relay stations re-synapsing touch, vibration, sound and visual information onto
a fresh set of neurons coursing to their respective cortical targets (see schematic
in Guillery & Sherman 2002). If substantial damage is caused to the thalamus,
such as from a stroke, the brain will lose consciousnes (Posner & Plum 2007).
Neuroscientists, evolutionary biologists, epileptologists and philosophers have
always gravitated to the human cortex as the object of their fascination. But
gradually, the reality of a cortex heavily interconnected with a series of relay
loops to the deep thalamus has emerged, substantially complicating the older
views (Guillery & Sherman 2002).

Transmission within the cortex tends to be slow, with local conductance
velocities in the range of centimetres per second, in contrast to the fast long-range
neural connections where many tens of metres per second are commonly observed.
We think that the thalamus forms an essential transcortical relay system to
help integrate information processing across cortical areas where local conduction
speeds would otherwise render us far dimmer.

It is the reliability of this relaying of motor information through the thalamus
that will be a focus of the following computational theory. Nevertheless, one must
ask why, if there is such an intimate relationship between cortex and thalamus,
is so much of the medical treatment focusing on the lesioning or stimulation of
targets many inches into the brain? Recent clinical trials have explored this issue,
but so far the results of these early efforts at superficial cortical stimulation have
not been as effective as DBS or lesions (Gutiérrez et al. 2009).

5. The contribution of China White

The study of the dynamics of Parkinson’s disease was immeasurably helped
by the seemingly inherent cravings of humans for narcotics. In the late 1970s,
synthesizing heroin-like compounds such as 1-methyl-4-phenyl-4-proprionoxy-
piperidine (MPPP) could produce a byproduct, perhaps with a bit too
much heat or acid in the reaction, of the related 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP). A solitary report of poisoning in this manner quietly
appeared in Davis et al. (1979). By 1982, a clandestine drug chemist in California
was selling this product under the name China White, until a bad batch started
producing profound Parkinson’s disease symptoms in a group of young addicts
(Langston et al. 1983). It was quickly discovered that this compound could
produce the same symptoms in non-human primates (Burns et al. 1983). It was
shown from both the human and animal data that MPTP was very selective
in destroying the dopamine containing neurons in the pars compacta of the
substantia nigra—the same substructure that prominently degenerated in human
Parkinson’s disease. The symptoms and signs of the drug-induced and natural
disease were nearly identical, and both diseases responded to treatment with
dopamine precursor drugs (L-DOPA). The full story of these events is remarkable
(Langston & Palfreman 1995; Factor & Weiner 2002).
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The critical benefit from these events was the proof that loss of a small group
of neurons in the substantia nigra could produce the triad of tremor, rigidity and
bradykinesia. The primate animal model provided us with a way to dramatically
increase both our knowledge of the electrophysiology of the neuronal networks
involved and their potential electrical modulation, to the extent that the following
can be described.

6. Dynamics of Parkinson’s networks

Prior to 2002, most models of Parkinson’s disease were displayed as static
diagrams (as in figure 2). Nevertheless, the advent of the MPTP primate
model (Raz et al. 2001; Wichmann & DeLong 2003), and increasingly the
recording of neurons from human Parkinson’s patients during deep brain surgery
(Magnin et al. 2000; Brown et al. 2001), revealed that the neurons within
the Parkinsonian networks were strongly oscillatory (thalamus, GPi and the
external segment of the globus pallidus, GPe). In a fundamental experiment,
Plenz & Kital (1999) observed that if they mixed bits of the GPe and STN
in tissue culture that the cells would spontaneously connect and generate
oscillations.

In the schematic of the basal ganglia, there are fundamental features of central
pattern generators seen in the connectivity of the GPe and STN. GPe cells inhibit
each other as well as the STN. The STN excites the GPe. When STN cells
are inhibited, they also demonstrate an exaggerated rebound excitation (Bevan
et al. 2002). Any simple neuronal membrane will spike if released suddenly from
an inhibitory input—anode break excitation (Hodgkin & Huxley 1952). Some
of the neurons critical to Parkinsonian dynamics have additional currents that
exaggerate such inhibition-induced rebound excitation.

Terman et al. (2002) set out to explain these network effects on the
basis of the biophysical properties of the individual neuronal types and their
synaptic connectivity. They focused on the essence of what appeared to be the
rhythm generating circuitry, which turns out to also be the targets for both
lesioning and stimulation in surgical therapy (their schematic is reproduced
in figure 3).

Applying typical experimental techniques in brain studies, we can record from
single cells. But only in exceptional circumstances do we survey enough pairs
of connected cells to develop strong characterizations about the details of the
connectivity. There have been heroic experiments where investigators spent years
carefully sticking micro-electrodes into pairs of neurons to directly sample such
connectivity (Traub & Miles 1991), but such efforts remain rare. To make up
for the paucity of connectivity data, Terman et al. (2002) explored a range of
connectivities. Terman et al. (2002) had a great deal of intracellular data from
networks from brain-slice experiments that preserved native network architecture
and connectivity (see Hallworth & Bevan 2005 and references therein) to
draw upon.

Three types of network topologies were constructed by Terman et al.
(2002): random and sparsely connected, structured and sparsely connected, and
structured and tightly connected, as shown in figure 4.
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Figure 3. Schematic of rhythm generating structures in Parkinson’s disease. Striatal input refers
to the outer segments of the basal ganglia that send input to these deeper segments. Excitatory
input refers to sensorimotor input to the thalamus that needs to be relayed to cortex. Excitation,
+; inhibition, −. (Adapted from Rubin & Terman (2004).)
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Figure 4. (a) Sparse random network. Each STN neuron excites a single random GPe cell, and
each GPe neuron inhibits three random STN cells. GPe cells inhibit each other through all-to-
all coupling. (b) Sparse structured network. Although more structured than the random sparse
network of (a), it is designed to avoid direct reciprocal connections between STN and GPe cells.
Each STN neuron excites the single closest GPe cell, and each GPe neuron inhibits two STN cells,
skipping the three closest. GPe cells inhibit two immediate neighbouring GPe cells. (c) Tightly
connected structured network. Each STN neuron excites three closest GPe cells, and each GPe
neuron inhibits the five closest STN cells. GPe cells inhibit each other through all-to-all coupling.
Spatially periodic boundary conditions are applied (the network wraps around on itself). (Adapted
from Terman et al. (2002).)

To model the STN neurons, and bring out their rebound excitability, Terman
et al. (2002) model the STN membrane current as a combination of

Cm
dv

dt
= IL − IK − INa − IT − ICa − IAHP − IG→S, (6.1)

where Cm is membrane capacitance.
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The first three currents (IL − IK − INa) are the Hodgkin–Huxley leak,
rectifying potassium and fast sodium that evolution elected to conserve from
cephalopods to mammals (Hodgkin & Huxley 1952). In this case, these
currents had parameters tailored to the mammalian neurons rather than the
squid axon. IG→S represents the current injected into these cells from the
GPe synapses. And now three special currents will be described: IAHP, ICa
and IT.

The afterhyperpolarization current, IAHP, is a potassium channel that opens
in response to increasing amounts of intracellular calcium. While it is on,
it prevents the cell from firing another spike, so it takes an important role
in turning off excitation, as well as regulating firing frequency. It is a good
way to create resonance-frequency ranges within which a cell would prefer
to fire. And it is a good way to generate a pacemaker. It is prominent in
motoneurons in the spinal cord, where the frequency of discharge must be
matched to the characteristics of the muscle fibres they connect to (fast or
slow) (Kernell et al. 1999). IAHP is prominent in the suprachiasmatic nucleus,
where it helps translate the molecular clock of our circadian rhythms into
neuronal firing frequency (Cloues & Sather 2003). And IAHP is important in
the STN, helping to make the neurons more sensitive to inputs at motor
frequencies (Bevan & Wilson 1999), and helping to create an oscillatory central
pattern generator out of the network it is embedded within in the basal ganglia
(Bevan et al. 2002).

The high-threshold calcium current, ICa, is a representation of what are
probably several high-threshold calcium channels in such cells (Song et al. 2000).
High threshold means that they are activated with depolarization. Because
the calcium Nernst reversal potential is very positive (even more positive
than sodium), these channels in general support regenerative potentials (i.e.
they boost depolarization already in progress). Bursting cells tend to have
such channels.

The low-threshold calcium current, IT, is prominently seen in thalamic neurons
where, following inhibition, such neurons rebound burst fire (McCormick & Bal
1997). This current activates upon hyperpolarization, and then deactivates more
slowly than INa deactivates as the neuron depolarizes. As the reversal potential
for calcium is positive, activating such a current gives the neuron a boost to
bring its membrane potential away from rest and accentuate the tendency of
any neuron to rebound a bit (as anode break excitation). IT plays a role in the
prominent post-inhibitory rebound spiking seen in STN cells (Bevan et al. 2002).
Interestingly, the same T-type calcium currents play a role in the automaticity
and pacemaker function in heart cells, and can play a role in certain cardiac
arrhythmias (Vassort et al. 2006).

Terman et al. (2002) used the same currents as equation (6.1) for modelling
GPe neurons, but changed their proportions so that they better matched the
firing properties seen in a variety of experimental studies.

In the sparse random network (figure 4a), the strength of connectivity
(maximal synaptic conductance) was varied from the STN to GPe, and within
the GPe to GPe network. Increasing the STN to GPe coupling produced
a range of behaviours from sparse irregular firing, to episodic bursting, to
continuous firing. The episodic regime was qualitatively similar to that reported
in the classic study by DeLong (1971) for cells in the normal primate
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GPe. One of the counterintuitive features of increasing the GPe to GPe
inhibition is that it can increase the spread of activity through rebound. In
the modelling of Terman et al. (2002), the episodic burst firing is terminated
by IAHP as calcium is built up in GPe cells during the high-frequency
firing episodes.

In the sparse structured network (figure 4b), there was more temporal
clustering in the interactions among these cells, reflecting an increase in the
topological spatial clustering of the neuronal connections.

In the tightly connected structured network (figure 4c), they also wrapped the
network around on itself (periodic boundary conditions). This network generated
waves that travelled. Initiating such waves required symmetry breaking in the
STN-to-GPe and GPe-to-STN footprints. To form a solitary travelling wave, the
GPe-to-GPe inhibitory footprint had to be spatially larger than the STN-to-GPe
footprint (supporting a Turing instability; Murray 2003). Key here was that, for a
wave to be propagated, the STN and GPe cells had to have structured footprints
so as to orderly spread activity to cells ahead of the leading edge of the wave
(Terman et al. 2002).

Travelling waves have been experimentally observed in thalamic slices,
generating what are called spindle oscillations (Kim et al. 1995). Spindle waves
have been related to sleep physiology, but the relationship to Parkinson’s disease
is not presently clear. Nevertheless, whenever there is evidence of temporal
oscillations in a neural network, it is worth considering what the spatial structure
of those oscillations are (Huang et al. 2004). Especially when networks are sparsely
connected (as opposed to all-to-all connected where there is no meaningful
spatial structure), considering whether waves might underlie such rhythms is a
reasonable question.

Strong oscillations emerge in the GPe–STN network in Parkinson’s disease and
in dopamine depletion in experimental animals. Nevertheless, there is a body of
experimental evidence, in both human patients and MPTP primates (see Terman
et al. 2002), that fails to find the sort of highly correlated and synchronized firing
that would support the coherent waves predicted in the most structured networks
of figure 4. The picture emerging from this work is that, among the more sparse
networks, the conversion from normal to Parkinsonian dynamics fits well with the
schematic in figure 5. This schematic illustrates that, following a loss of dopamine
input to the striatum, a strengthening of striatal input to the GPe, perhaps with
a concurrent weakening of recurring inhibitory connections within the GPe, could
create a Parkinsonian state.

Now, go back to the standard firing-rate model of Parkinson’s disease from
figure 2. In this static model, a decrease in inhibition to the striatum led to
an increased activity of the STN, which increased excitation to the GPe and
GPi, which increased the inhibition to the thalamus. No oscillations arise in
the static model, in a disease whose hallmark are the oscillations both within
and outside the brain. In the world view of Terman et al. (2002), the level of
striatal input (inhibitory) is a major regulator of whether oscillations arise from
within this network that is naturally wired and poised to oscillate. Increased
striatal inhibition effectively strengthened the coupling from the STN to the GPe.
Decreasing intra-GPe inhibition would promote clustered activity within the GPe.
And inhibition, as is found in other dynamic phenomena in the nervous system
such as seizures, plays multi-faceted and complex roles (Ziburkus et al. 2006;
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Figure 5. Schematic of Terman et al. (2002) suggesting how an increase in striatal input and
decrease in GPe internal connections would generate the oscillations of a Parkinsonian state.
(Adapted from Terman et al. (2002).)

Mann & Mody 2008). Inhibition in neuronal systems, similar to inhibitory
reactants in reaction diffusion systems, is crucial in organizing patterns into
clustered as opposed to homogeneous patterns (Murray 2003).

7. The deep brain stimulation paradox

DBS of the GPi or STN has almost identical effects on the symptoms of
Parkinson’s disease as do lesions of the GPi or STN. We have evidence of excessive
activity of the GPi in Parkinson’s disease, but stimulation of the STN should
further increase the GPi activity.

For several years, it was therefore assumed that stimulation at the DBS
frequencies being used (typically 130 Hz) must have been suppressing activity
within the nuclei. This was supported by data showing that recording in
the vicinity of the cell bodies within the STN when stimulating the STN
(Benazzouz et al. 2000), or recording within the GPi with the GPi stimulation
(Boraud et al. 1996), demonstrated a decrease in apparent cell firing following
nearby high-frequency stimulation. Helping to make further sense of this were
the findings, in neurons different from the basal ganglia, that synaptic depression
could occur at modest stimulation frequencies while the synapses ploddingly
worked to repackage neurotransmitters within synaptic vesicles for release
(Staley et al. 1998). These findings were all consistent in explaining why DBS had
the same effects as ablative lesions. This assumption was unfortunately wrong.
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Figure 6. Demonstration that 130 Hz stimulation of the STN in an MPTP primate increased the
GPi cell firing rates. (a) Pre-stimulation, (b) during 136 Hz stimulation and (c) post-stimulation.
(Adapted from Hashimoto et al. (2003).)

In computational modelling, McIntyre et al. (2004) demonstrated that such
DBS close to cell bodies and axons might preferentially initiate action potentials
further out along the axons of such neurons than we have appreciated previously,
and furthermore that the cell bodies might not reflect these action potentials.
Such findings also remind one of the differing requirements in the curvature of a
stimulating electrical potential field needed to initiate firing at the terminal end
of a neuron process membrane, as opposed to the middle of a membrane such
as an axon coursing near an electrode en passage (Warman et al. 1992). More
recently, optical imaging has also confirmed that action potential initiation may
be well beyond the axon hillock in contrast with what we have previously assumed
(Bikson et al. 2004).

The definitive experimental evidence that laid to rest the hypothesis that DBS
worked by suppressing neuronal activity and creating a reversible lesion was
the demonstration that such stimulation led to an increase in firing frequency
in the nucleus receiving the efferent activity from the nucleus being stimulated
(Hashimoto et al. 2003), as shown in figure 6.

So, if increasing the frequency of GPi activity through stimulation of the STN
had the same effect as burning a hole in the GPi, the reason had to lie in the
dynamics of the effect of increasing the firing rate of the GPi. Note two things
about the effect of stimulation on the GPi activity in figure 6: (i) the frequency is
increased and (ii) the neural response becomes less episodic and more continuous.
The rest of this paper seeks to understand and exploit this finding.

Increasingly, we run into examples such as this where you cannot possibly
understand the raw data recorded from the nervous system without forming a
computational model. The model is necessary to create the equations of motion
for the network involved. As with Newton’s laws, it does not take very much
of a complex system before even the simplest of nonlinear interactions between
elements, whether planets through gravity or neurons through synapses, becomes
impossible to put together from visual inspection and guessing.
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Rubin & Terman (2004) set out to ask whether the apparent stimulation
paradox outlined here was explainable on the basis of the biophysical properties
of the neurons within these networks. Their goal was

… to demonstrate, with a computational model, why this is actually not contradictory, but
rather is a natural consequence of the properties of the cells involved.

(Rubin & Terman 2004, p. 212)

Fitting empirical models to Parkinson’s data might produce an effective
controller, but would be no more insightful than proving that you could fit a
model to prove that the neurons did what you had observed them to do. The
power of model-based control approaches is that we take the insights from what
we have learned about these pieces of brain we are working with, and use those
fundamental models to guide our observations and control.

8. Reductionist cracking the deep brain stimulation paradox

We will now extend our model, from the oscillations between the GPe and the
STN (Terman et al. 2002), to the effect of these oscillations on the thalamus
through the intermediary way station of the GPi. The motor structures within
the thalamus, with apology to the vast complexity of this organ (Guillery &
Sherman 2002), will be viewed as a structure whose task is to faithfully
relay information. The thalamus will have two inputs: GPi and sensorimotor
signals (figure 3).

Rubin & Terman (2004) distilled the essence of Parkinson’s disease symptoms
within the output of the GPi. In the normal state, these cells fire irregularly and do
not interfere with thalamic information relay. In Parkinson’s disease, GPi cells fire
bursts of action potentials at the frequency of tremor (3–8 Hz). Rubin & Terman
(2004) assumed that these burst firing cells will exhibit some degree of synchrony
in the pathological state. Their hypothesis is that such clustered firing in bursts
would impair the sensorimotor relay properties of the thalamic cells.

The sparse structured network (figure 4b) from Terman et al. (2002) will be
chosen based on the results with the various topologies illustrated in figure 4.

Thalamic cells were modelled with

Cm
dvTh

dt
= −IL − INa − IK − IT − IGi→Th + ISM, (8.1)

where IGi→Th represents synaptic current from the GPi to thalamus and ISM
represents sensorimotor input to thalamus. They are of opposite sign because
one is inhibitory and the other excitatory.

The specific structure of these currents is of interest to us now, as we will
shortly reduce them as a prelude to our control framework.

The leak current is simple,

IL = gL · (vTh − EL),

where gL is the maximal leak conductance, vTh is the transmembrane voltage on
the thalamic cell and EL is the reversal potential at which there would be no leak
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current when vTh = EL. The sodium current is from Hodgkin & Huxley (1952),

INa = gNa · m3
∞(vTh) · hTh · (vTh − ENa),

except for the use of Rinzel’s (1985) approximation, substituting m∞ for m in
the sodium gating variable, and in the following potassium current equation,
substituting 1 − hTh for n for the potassium gating variable (h is the sodium
inactivation gating variable):

IK = gK · [0.75(1 − hTh)4] · (vTh − EK).

The T-type calcium current equation is

IT = gT · p2
∞(vTh) · wTh · (vTh − ET), (8.2)

where p∞(vTh) is the T-current gating variable, and wTh is the T-current
inactivation variable. In these equations, the reversal potentials for leak, sodium,
potassium and T-current are EL, ENa, EK and ET, respectively. The inactivation
variables follow the Hodgkin–Huxley formalism for first-order kinetics,

dhTh

dt
= (h∞(vTh) − hTh)

th(vTh)

and
dwTh

dt
= (w∞(vTh) − wTh)

tw(vTh)
. (8.3)

The sensorimotor current, ISM, was prescribed to be either periodic or at
times random. The symmetry introduced in this equation by the cancelling
currents −IGi→Th + ISM will cause us difficulties that we will address in §11
(a more complete discussion of symmetries in reconstruction can be found in
Sauer & Schiff 2009).

These thalamocortical (TC) cells are silent if unstimulated. If stimulated with
depolarizing current, they fire progressively faster. However, if hyperpolarized,
one sees progressively more and more intense rebound activity owing to
the T-current.

We can provide an analogue to sensorimotor stimulation to this TC cell by
periodically stimulating it. This is a signal that we hope the cell can relay. In
figure 7a, we start with slow stimulation. The signal is reliably relayed. Now,
simultaneously provide the cell with excessive inhibition, such as in Parkinson’s
disease, from an overactive GPi. In figure 7b, the baseline membrane potential is
now more hyperpolarized. With each sensorimotor pulse, the cell rebound spikes
because the T-current is deinactivated. This is because hyperpolarization removes
IT inactivation, just as in the sodium inactivation in the Hodgkin–Huxley gating
variable h (Hodgkin & Huxley 1952). But removing inactivation is also relatively
slow. In figure 7b, there is sufficient time for this variable to be fully deinactivated.
Contrast this with higher stimulation frequencies. In figure 7c, the TC cell is
reliable, and it remains so in the setting of additional inhibition in figure 7d
because there is insufficient time for the inactivation to deinactivate.
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Figure 7. (a,b) Stimulation of TC-cell model at 10 Hz and (c,d) 40 Hz, (a,c) at low and (b,d) high
levels of tonic inhibition. (Adapted from Rubin & Terman (2004).)

STN cells were modelled with

Cm
dvSn

dt
= −IL − INa − IK − IT − ICa − IAHP − IGe→Sn + IDBS. (8.4)

Here, Rubin & Terman (2004) added a high-threshold calcium current, ICa, and
the synaptic current is now from the GPe to the STN, IGe→Sn. There is also a DBS
current, IDBS. The parameters on the STN cells were adjusted so that the cell was
spontaneously active, fired at high frequencies when depolarized and had a less
prominent rebound than the TC cell. All of these adjustments were to preserve
as much of the qualitative distinction between the firing properties of these cells
as observed in prior experiments.

GPe cells were modelled with

Cm
dvGe

dt
= −IL − INa − IK − IT − ICa − IAHP − ISn→Ge − IGe→Ge + Iapp. (8.5)

Input from the striatum was modelled with Iapp. The GPe cells would continuously
fire, initially decrease their firing rate with inhibition, and with more inhibition,
cluster fire consistent with results in Terman et al. (2002). The GPi cells
were similarly modelled, except the parameters were adjusted to account for
the experimental evidence that these cells tended to fire faster than GPe cells
(DeLong 1971).2

2Some further discussion about the applicability of DeLong (1971) to the classification of human
Parkinsonian cellular activity can be found in Schiff et al. (2005).
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Figure 8. (i) Model of the TC, (ii) GPi and (iii) STN cells to periodic sensorimotor stimulation (i)
in the (a) normal and (b) Parkinsonian states. (Adapted from Rubin & Terman (2004).)

Following the schematic in figure 5, the Parkinsonian state is recreated by
increasing the striatal input to the GPe, and decreasing the amount of internal
recurrent inhibition within the GPe. The result is that the normal reliability of
the TC cell to transmit sensorimotor information, illustrated in figure 8, becomes
impaired in the Parkinsonian state. The key quantity here is the error rate of
transmitting sensorimotor input into TC spikes. An error index can be created as

error index = missed spikes + bad spikes
total inputs

= false negative + false positive
total inputs

.

Rubin & Terman (2004) showed that the error rate was significantly elevated
in the Parkinsonian3 state in comparison with the normal state, and that the
error rate could be normalized by simulating DBS using a constant level of high-
frequency stimulation of the STN. The key to understand these results is to know
what the TC cell is receiving. In the Parkinsonian state, the amount of inhibition
is fluctuating more than normal. This induces sequential excess suppression and
3It is semantically sensible to designate dynamics similar to those seen in Parkinson’s disease as
‘Parkinsonian’, and to similarly term analogous models as Parkinsonian.
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rebound bursting in the TC cell, which destroys reliability. By applying DBS, the
fluctuations that the TC cell receives are decreased, despite an overall increase
in GPi-cell firing.

A key insight of Rubin & Terman (2004) was that the qualitative features of
the above could be preserved in the TC cell without the fast dynamics.4 They
take their TC-membrane model and remove the fast Hodgkin–Huxley currents
for sodium, INa, and potassium, IK, and create a two-variable description of TC-
cell-membrane dynamics,

dv

dt
= −(IL + IT)

CTh
− IGi→Th + ISM

and

dw
dt

= 4 · (w∞(v) − w)
th(v)

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8.6)

In equations (8.6), v represents membrane voltage, 4 serves as a relative
rate constant between the two differential equations, w represents T-current
inactivation, and the availability of T-current IT will be the key to reliability.

The current IGi→Th will be modelled as a true synaptic inhibitory input onto
the TC cell as

IGi→Th = gGi→Th · sGi · (v − EGi→Th), (8.7)

where sGi will be a small positive constant in normal conditions, a periodic square
wave in Parkinsonian conditions and a larger positive constant under conditions
of DBS. But because there is a reversal potential attached to all synaptic ionic
channels, EGi→Th, the current IGi→Th will fluctuate with voltage v, even when sGi
is a constant. The equations for the T-current, IT, are as given in equations (8.2)
and (8.3).5

The beauty of the two-variable reduction of the TC cell is that the nullclines
can be plotted in two dimensions and visualized,6 and further insight into the
dynamics gained. It is also a simpler system to fit where one is interested
in observing actual data, or developing control laws, than by using the
full model.

The nullclines for v and w are shown in figure 9a. In excitatory cells and their
models, there is almost always a cubic or N-shaped nullcline for the fast excitatory
variable, the voltage v in this case. Keep in mind that, in this reduced model,
there are no true action potential spikes (no INa or IK currents). These phase-space
plots show us the slow dance between voltage changes, v and IT inactivation,
w. In figure 9b, we see the effect of DBS. Increasing the synaptic current from

4This is only one example of a case where slow excitability dynamics may be more important than
the faster spiking dynamics in determining pathological activities in dynamical disease. In recent
work, we have shown that, in models of epileptic seizures, relatively slow fluctuations in potassium
dynamics may underlie the more complex spike dynamics seen in individual cells (Cressman et al.
2009; Ullah et al. 2009).
5The square on p∞ can be dropped in the reduced model. See Rubin & Terman (2004) appendix
for all equation details.
6Nullclines are the curves where the rate of change of the variables is equal to zero. The intersection
of more than one nullcline gives us the solutions, stable or unstable, of the system variables.
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Figure 9. Nullclines for v̇ = 0 and ẇ = 0. (a) The heavy line is a trajectory initiated by depolarizing
the rest state at the intersection of the nullclines from −65 to −25 mV, and the subsequent
trajectory in the phase plane closely tracks the faster equilibrating v nullcline and slowly works its
way up along the direction of increasing w as the T-current deinactivates (i.e. the availability of T-
current, w, increases). (b) The effect of DBS, elevating the v nullcline. (c) The effect of sensorimotor
stimulation, SM, which lowers the v nullcline. (Adapted from Rubin & Terman (2004).)

the GPi, sGi, as the DBS parameter in equation (8.7) literally adds the IGi→Th
current term in equation (8.7) to the solution of the v nullcline.7 This has a
qualitatively opposite effect as increasing excitatory sensorimotor stimulation ISM
in equation (8.6), which decreases the height of the v nullcline. The point where
these nullclines intersect is the resting steady state for v and for w. The T-current
inactivation, w, is a key factor in whether this system will respond with a rebound
burst, respond reliably to a sensorimotor input or be inactive and unreliable by
not responding at all.

When the intersection is brought lower on this phase plot, the system requires
enough T-current, by having high enough w, to be able to push over the peak
in the v̇ nullcline, the knee of this curve (the upgoing bump). As sensorimotor
stimulus steadily increases, the value of w gradually decreases and the system is
set up for trouble.

What this means is that, if the position of the intersection of the nullclines
is such that a stimulus (ISM) comes when the value of w is above the knee of
the v̇ nulcline, then the cell can fire a spike. If the system were subjected to
episodic bursts of inhibition through a Parkinsonian GPi input to TC, then when
the intense inhibition were released the cell would rebound. But hit the cell with
an intense enough steady DBS input, the cell will maintain sufficient T-current
and has no opportunity to rebound (there is no abrupt turnoff of inhibition).
Because in the Parkinsonian state, the T-current availability fluctuates on and off,

7The reason is that when dv/dt = 0, the solution of v is

v = IL − IGi→Th + ISM

gCap∞(v − ECa)
,

where the very high positive reversal potential for calcium, ECa, always makes (v − ECa) negative.
Because of the negative reversal potential EGi→Th for the inhibitory synapses, (v − EGi→Th) is
almost always positive in equation (8.7). So, the net effect is that increasing IGi→Th leads to an
increase in the v nullcline.
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Figure 10. Normal response of the TC cell to periodic sensorimotor stimulation. (a) Voltage in
reduced TC-cell model (thin black line), with substantial added noise to serve as a noisy observable
(blue markers), and (b) sensorimotor input (red pulses). Each time a sensorimotor pulse is reliably
transmitted, a marker (green) is placed above the successfully transmitted spike. This cell is
100% reliable.

the result is tremor at this fluctuation frequency. DBS can level this out and
simultaneously keep the cell in a state ready to fire reliably to excitatory inputs
by keeping w moderately high.

Now let us look deeper into these reduced dynamics in normal, DBS and
Parkinsonian states. In figure 10, we see a normal state. The input to the reduced
TC cell from the GPi is a modest constant, which represents a state where
there is asynchrony among the GPi cells, and there results a modest steady
level of inhibition to the TC cells. There is periodic sensorimotor stimulation
represented by brief square-wave excitatory inputs (figure 10b). A substantial
amount of random measurement noise is added to the actual TC voltage. These
noisy measurements are what we record from in these models as our observable
variable. Note that for each sensorimotor stimulus, a ‘spike’ is transmitted from
the TC cell. This is reliable transmission (100% reliable in this case).

The DBS state is modelled as increased tonic inhibition on the TC cell. The
Parkinsonian case can be idealized as a periodic fluctuation in the GPi input
onto the TC cells. In Rubin & Terman (2004), such an effect can be shown
as a slow on and off square-wave modulation of GPi output. Using the reduced
model, when excess inhibition turns on, w gradually increases, T-current becomes
more available and spiking becomes more reliable after an initial suppression
by the inhibition. When inhibition suddenly stops, w remains too high, and an
excessive response with a period of rebound excitation occurs. During the trough
of the Parkinsonian inhibition fluctuations, spikes are reliably transmitted but
w gradually inactivates, and when the next inhibitory pulse hits, there is spike
failure. This sequence of recurrent spike failure and rebound creates unreliability.
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Recall that in the reduced model, there are no fast sodium spikes—the slow spikes
are periods of increased excitability; if we had INa and IK, we would get a burst of
fast sodium spikes riding on the excitability rebound event, and this would also
reflect unreliable information transmission. Steady DBS, literally taking out the
troughs in the Parkinsonian fluctuations, can restore reliability as we will shortly
examine in more detail.

9. A cost function for deep brain stimulation

Feng et al. (2007a,b) sought to further explore the work of Rubin & Terman
(2004) by introducing optimization principles. They, like Rubin & Terman (2004),
employed the sparse-structured network of Terman et al. (2002).

Why not just use the high-frequency stimulation that presently demonstrates
efficacy in clinical use? For one thing, the more energy we apply per day, the
sooner the batteries of the stimulators wear out and the devices need to be
surgically replaced.

But beyond batteries, as stimulation intensities increase, so will negative
cognitive side effects (Alberts et al. 2008).8 I would pose a general principle that,
in the treatment of any dynamical disease of the brain, one needs to optimize
the beneficial effects of symptom relief (e.g. tremor), with the inherent effects of
increasing cognitive dysfunction with increasing DBS energy.

In addition, it is not trivial at all to make clinical adjustments to a patient’s
stimulation parameters. Once set, the parameter space of stimulation intensity
and frequency, along with duty cycle, is enormous. Making changes, waiting
several days or weeks to see the steady-state effect and trying to optimize settings
are difficult in patients. So, if a stimulator is working and showing benefit,
optimizing in this ad hoc fashion is generally avoided. Nevertheless, there is
evidence that there are patients whose symptoms can be improved at frequencies
different from the standard starting frequency of 130 Hz (Moreau et al. 2008).
And who is to say that a more complex non-periodic stimulus delivered in open
loop might not be more beneficial than the standard periodic ones?

Lastly, the beneficial effect of DBS over the long term in a patient with
a neurodegenerative disease (and perhaps those without degeneration) is a
moving target. Patients with DBS treatment of Parkinson’s disease continue to
deteriorate within the tempo of progression of Parkinson’s disease (Krack et al.
2003). Neural networks learn and change in response to stimulation. A means
to automatically adapt and optimize such stimulation over time will be a very
valuable advance in our stimulation technology.

One requires metrics for optimization. Feng et al. introduced a reliability
measure similar to Rubin & Terman (2004), as well as a GPi-cell correlation
metric. Neither metric has a clear route to practical application in human subjects
using our present optimization done by hand. But these tools can be immediately
8There are recent reports that steady low-amplitude DC stimulation to some parts of the brain
might improve cognitive capabilities in certain paradigms (Marshall et al. 2006). But this is a
polarization effect on certain parts of the cortex. To the author’s knowledge, all pulse stimulation
of deep brain structures will have negative effects on cognitive information processing as stimulation
is increased. This will probably apply to DBS treatment of cognitive disorders, such as depression
and obsessive compulsive disorder, as well as to Parkinson’s disease.
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Figure 11. Exploration of the parameter space of period and amplitude focusing on reliability.
(a,b) Normal; (c,d) Parkinson’s disease (PD); and (e,f ) DBS in PD. (g) Optimization of reliability
(Rel) as a function of period and amplitude. (h) Slower DBS frequency at 80 ms reliability peak.
(Adapted from Feng et al. (2007a).)

applied if we construct a customized computational model for an average or
specific patient. And this model-based approach that can be employed in future
automated closed-loop optimization.

The structure of their cost function was (Feng et al. 2007a)

J i = xi + wR,

xi = criterion i (reliability or correlation)

and R = energy required,

where w is a weighting parameter. They employed a genetic algorithm to search
their parameter space and accomplish optimization.

One way of implementing such a cost function is to integrate the current coming
out of the stimulator, IDBS, and subtract this weighted integral from the reliability,
Rel, as

J = Rel − w
∫T

t=0
IDBS dt.

So, starting from a sparse structured network, with two TC cells, they replicate
the fundamental findings of Rubin & Terman (2004) in figure 11a–f .
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They then use their genetic algorithm to explore the parameter space of
frequency and amplitude as shown in figure 11g. In the far rear corner of
figure 11g lies the high-frequency and high-amplitude parameter regime typically
employed in clinical use, and the reliability there is high. But notice the other
peaks. The most prominent secondary peak is between 40 and 50 Hz, and indeed
there is some clinical evidence that this frequency range might be therapeutic
(Moreau et al. 2008). In figure 11h, they show the results of a minor peak at a
period of 80 ms (12.5 Hz); there is actually some clinical study of stimulation in
the range of 5–20 Hz, which was (unfortunately) singularly unimpressive (Eusebio
et al. 2008). We note that another exploration of frequency in an extended model
of Rubin & Terman (2004) demonstrated that the frequencies greater than 100 Hz
were most effective (Pirini et al. 2008).

Reliability is an interesting measure. There seems no way to directly measure,
in real life, the quantities needed to calculate reliability: sensorimotor inputs and
thalamic relay cell output in response to this input. But such inputs can be
readily modelled using a data assimilation framework. Feng et al. (2007a) also
employ a correlation measure, which was a combination of autocorrelation and
cross-correlation among GPi cells. This would require a micro-electrode array
to be placed within the GPi. Such micro-array technology is now becoming
available on the shafts of clinical DBS electrodes. A simpler way to infer such
correlation in practice would be to estimate spectral concentration in GPi local
field potentials, and this is directly observable from an ordinary DBS electrode
placed within the GPi.

An important contribution of Feng et al. (2007a) is that they demonstrated
in this computational model that both stochastic stimulation and complex
waveforms can demonstrate potential efficacy.

10. Fusing experimental globus pallidus recordings with deep brain
stimulation models

A creative next step was performed by Guo et al. (2008). They took recordings
of GPi spike timings from normal and MPTP primates, with and without DBS.
They applied a structure function to these spike timings to re-create an estimate
of the synaptic currents produced in the thalamic relay cells from such spiking.
They used the model from Rubin & Terman (2004) to estimate the reliability of
the transmission of spikes through the thalamus. Their results demonstrate that
the error index (described above) is higher for the MPTP monkeys without DBS
or with subtherapeutic DBS, and consistently lowest for normal monkeys and
those MPTP monkeys with therapeutic levels of DBS.

This is another example of how we can apply models in real-life applications
to Parkinson’s disease treatment. One would require the recording of an array of
GPi cells. One could then follow the prescription of Guo et al. (2008) to estimate
ongoing reliability, and potentially perform closed-loop optimization.

A very interesting insight from Guo et al. (2008) was to reverse correlate
what the inhibitory current drive from the GPi was prior to a spike. Spikes
can be faithful in following a sensorimotor input, can miss their chance
to follow or multiple bad spikes can ensue. Guo et al. (2008) found that
missed spikes correspond to a relatively rapid rise in inhibition, and bad
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spikes correspond to a relatively rapid decrease in inhibition. This is exactly
what one might have expected from the reduced model effects illustrated
in figure 9.

11. Towards a control framework for Parkinson’s disease

Parkinson’s disease will be the first dynamical disease (Mackey & Glass 1977)
amenable to management through model-based feedback control systems.

First, examine the schematic in figure 3. We can now relatively safely place
electrodes in the STN, GPi or thalamus.9

What about the small amount of damage that we get from just passing a
1–2 mm thick depth electrode? Recall that in Parkinson’s disease, making a lesion
in these small structures is clinically beneficial. Amazingly, we observe that in
the course of placing DBS electrodes in Parkinson’s disease patients, there is an
immediate clinical improvement in about half of patients at the conclusion of
electrode placement, before the electrode is connected to the stimulator (Tasker
1998). This has been termed the micro-thalamotomy effect (Tasker 1998). A
nearly identical experience has been reported in the placement of DBS electrodes
in small thalamic targets for epileptic seizure suppression (Hodaie et al. 2002).
Our DBS treatments are probably a combination of small lesions overlain with
chronic electrical stimulations.

Despite the beneficial effect of some of the microlesions created by electrode
insertion, the best clinical strategy is almost certainly to keep the number of
electrodes inserted to the absolute minimum.10 But the network that is important
in Parkinson’s disease control is spread out over at least four separate structures:
the STN, GPe, GPi and thalamus.

From a clinical perspective, the GPi would probably be an easier and safer
target than the smaller STN or thalamic targets. A small haemorrhage or lesion
effect in the GPi has a reasonable chance of actually benefitting some of the
Parkinson’s disease symptoms. But with a superb animal model in the MPTP
primates, exploring which nuclei are optimal to record data from, and work
out the control algorithms, offers a valuable way to learn how to build such
systems prior to their implantation in human patients. Nevertheless, given that
our clinical opportunities with routine implantation in patients are ongoing, the
chance to take advantage of existing STN or GPi human placements in algorithm
development is highly attractive.

9The best current data, from A. Benabid (2007, personal communication), suggests an 8 per cent
risk of a complication per depth electrode pass. Half of these events (such as small haemorrhages)
are asymptomatic. Half of the remaining give transient effects. A reasonable estimate is that 2
per cent of electrode passes into the brain using modern stereotactic techniques will result in a
significant neurological complication (Lozano et al. 2009).
10This is a conjecture by the author, and one can argue in the abstract that we are accumulating
a tremendous body of data showing that microlesions plus electrical stimulation through single
electrodes is efficacious. But we have no such body of data suggesting that multiple microlesions
in separate unilateral structures will be beneficial. And from a surgical standpoint, every electrode
insertion increases operative time, increases the risk of haemorrhage and neurological deficit and
increases the risk of infection. Surgical minimalism should be a guiding principle in the absence of
evidence strongly supporting the contrary.
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The models we have just discussed permit us to sample from a single nucleus
within this network and reconstruct what the remainder of the network is doing.
Our present state-of-the-art models appear sophisticated enough to consider using
these models in a data assimilation framework. And the technology to perform
chronic real-time sampling from these structures is presently available and in
clinical use.

So let us begin to outline a control theoretical framework from what we have
discussed above.

The first issue with parameter estimation for equation (8.6) is to notice that
there is a symmetry with the terms (−IGi→Th + ISM). The tracking algorithm will
simply apportion such current equally between these two sources. One option is
to combine the currents into one sum, which physically is what is happening
to the TC cells. But this defeats our purpose here, where we would like to
estimate quantities such as (−IGi→Th) in isolation. A more extensive discussion
of symmetries in such equations can be found in Sauer & Schiff (2009).

When faced with such symmetries, it is best to get rid of them (Sauer &
Schiff 2009). If that is not feasible, then an empirical rule of thumb seems to
be to set process noise in rough proportions to the average magnitudes of the
corresponding variables. One could adaptively tune these process noises over time
by tracking innovation error.11 Process noise, Q, is uncertainty commonly added
to the model of the process (the plant in control jargon) in analogous applications.
In this particular instance of ensemble Kalman filtering, we will use several Q
values as the assumed variance in the respective parameters to be tracked. In
addition to apportioning variance to the respective parameters, this also has the
benefit of preventing a Kalman filter from driving the parameter covariance to
zero.12 In figure 12a, the Q for (−IGi→Th) is 30, while the Q for ISM is 0.01. Note
that the rhythmicity of (−IGi→Th) is resolved, while none of the features of ISM
are picked up (figure 12a). Now reverse the situation, setting Q for (−IGi→Th)
to 0.01 and the Q for ISM to 30; the (−IGi→Th) will be poorly tracked, but the
sensorimotor inputs ISM are better tracked (figure 12b). A more balanced set of
process noises, where Q for (−IGi→Th) is 10, and Q for ISM is 0.01, yields a more
optimal tracking of (−IGi→Th).

We can calculate a running reliability index over the past 10 ms (ignoring
for now having to objectively define ‘bad’ spikes unrelated to sensorimotor
inputs) as

reliability = number of spikes that got through (within 10 ms)
total number of impulses

.

Let us now focus on the heart of the dynamics critical for the Parkinsonian
state—the T-current inactivation w. This is a rather independent variable, in
time scale and with respect to symmetry, and lies at the heart of the issues of
unreliability.

In figure 13a, I employ the reduced TC-cell model from Rubin & Terman
(2004) in a data assimilation framework. The observable will be noisy voltage
from the TC cell in figure 13a(i),b(i). Below that is shown the reconstructed
estimated T-current inactivation, w, and the reconstruction of estimated GPi and
11Innovation errors are the differences between what your model predicts you should observe in
the next measurement, and what is actually measured.
12A detailed discussion of process noise can be found in Simon (2006).
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Figure 14. Nullclines for w (thick line) and v (dotted line). (a) With increased GPi inhibition onto
the reduced TC cell, the v nullcline is elevated with respect to the w nullcline. (b) Reconstruction
estimates of the nullclines from noisy measurements.

sensorimotor activity ((ii)–(iv), respectively). The techniques used to accomplish
this reconstruction are detailed in Schiff & Sauer (2008), Sauer & Schiff (2009)
and Ullah & Schiff (2009), and a code archive for the basics of such data
assimilation can be found in the electronic supplementary material with Schiff &
Sauer (2008).

One could similarly record the average GPi output from a DBS electrode in
GPi and reconstruct the estimated TC-cell activity.

The sensorimotor input, in the figure 13a(iv),b(iv), causes the model TC cell
to generate or fail to generate reliable spike activity in the figure 13a(i),b(i),
I build up a reliability index by averaging the last 10 sensorimotor spike responses,
and plot this at the very top of the figure 13a(i),b(i).

It is tempting to examine and consider control from the nullclines. There is
an extensive literature in control theory on what is generally termed variable
structure control. First described by Utkin in the 1970s (Utkin 1977), this control
law strategy is now more commonly referred to as sliding-mode control (DeCarlo
et al. 1988; Young et al. 1999). We could use such nullclines to generate control
functions that we seek to target the system towards. In figure 14a, we see the
actual nullcline intersection of our simulation of the reduced TC cell as the GPi
current switches from off to on (refer to figure 9). The w nullcline does not change
here as the GPi input fluctuates. In figure 14b, I show an estimation of these
nullclines from a reconstruction of these curves using a UKF. There is a great
deal of uncertainty in the v nullcline. So, estimating a control surface in this phase
space is not a trivial problem that we know how to solve at present.

But recall that, as discussed by Rubin & Terman (2004), it is not the nullcline
intersection, so much as the value of w, that is the most valuable single feature
that helps explain the dynamical response of the TC cell. So, let us estimate w
by itself.

In the second figure 13a(ii) is the estimate of the reconstructed T-current
availability w (red line). Note that w increases when the GPi current increases
in figure 13a(iii) (solid black line). I have deliberately adjusted the ratios of the
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process noises so that the sensorimotor input is not tracked well (figure 13a(iv)),
in order to minimize the symmetry of this current in the voltage equation.
Figure 13a(v),b(v) shows the running plot of control energy, which is zero for
this example without feedback.
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markers) spikes transmitted are shown. The running reliability of the TC cell is plotted as a
piecewise continuous line for uncontrolled (blue line) and controlled (red line) scenarios.

Now, let us use perfect DBS. We will, in the sense of Rubin & Terman (2004),
fill in the gaps of the fluctuating synaptic current from the GPi, and show these
results in figure 13b. Providing a steady level of DBS increases the amount of
inhibition arriving on the TC cell. This has the effect of removing the fluctuations
in inhibition creating the gaps in reliability shown in figure 13a, but it also
dampens down the responsiveness of the TC cell. Only about half of the incident
sensorimotor spikes get reliably through. And the cost in terms of control energy
is high (8000 on an arbitrary scale). On the other hand, the fluctuations in w are
reduced, and we maintain an overall high level of w (figure 13b(v)).

Now, let us use adaptive feedback based upon the estimated w. In figure 15a,
the effect of an optimal amount of proportional feedback gain based on a moving
average (35 ms) of the estimate of w is shown. This feedback is very effective
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in restoring most of the unreliable (missing) spikes. The total cost in control
energy is about half of the perfect DBS case shown in figure 13b. Now, let us
present a more realistic DBS scenario than in figure 13b, one in which a constant
stimulation (open loop) will be added to the fluctuating Parkinsonian GPi signal.
In figure 15b, the largest (and most effective) additive current that is stable in
this model is shown. We are here limited by the relatively large peak fluctuating
GPi currents being applied already in the Parkinsonian state, as the dynamics
of the TC cell become unstable if the impinging currents become excessive. The
figure shows that such constant DBS does not appear capable of achieving the
reliability possible with feedback control.13

It is important to note that in this simple scenario, there is a range
of additional adjustable parameters which are important. First, there is the
ever present issue of covariance inflation (Anderson & Anderson 1999).14 In
figure 16a, we see that adjusting the small covariance inflation parameter has a
substantial effect on the reliability of the adaptive system. Similarly, the gain
on the feedback control is important. In figure 16b, we see that optimizing
gain readily reveals a region where spike throughput is best. Both of these
functions are not smooth, and implementing such an algorithm should be done
with continual adaptation of such parameters based upon the monitoring of the
system performance.

Another alternative is to generate a control signal based upon the estimated
GPi output, shown in figure 17. As we know the control signal added, we can
subtract this to follow just the underlying estimated GPi input to the thalamus.
As the estimates of GPi input to thalamus are noisy (dotted blue line in figure 17),
it is helpful to create a moving average filter of this estimate (solid blue line)
to prevent the controller from turning on and off too often. As at the heart
of Parkinson’s disease physiology are the large-scale slower fluctuations, we can
create a long-term running average of the GPi output, much longer than the
noise reducing short-term moving average, and let this serve as an adapting
threshold (magenta line). Control is turned on whenever the short-term moving
average (blue solid line) falls below the long-term moving average (magenta
line). The control is applied in this case by turning on the stimulator with
the same constant amplitude, shown as the red lines. The underlying true GPi
output fluctuations are shown as a black line for comparison. Note that a control
reliability can be calculated as the fraction of time that the control signal (red)
is on or off in correct reflection of the peaks and valleys in the true GPi signal
(black). In this example, the control reliability is 67 per cent. But the effect on
the neuronal reliability in the TC cell, our goal, is not very impressive (there
are a few additional transmitted spikes in the controlled case, but also some
missed spikes).

13In real life, such model instability would not arise. So long as we stay within the safety limit of
the electrical stimulation, we might be able to deliver more GPi current to the TC cell. But the
reliability steadily decreases in this scenario as this type of additive DBS increases in the model,
as too much inhibition shuts off the TC cells. We find no inference that such open-loop stimulation
is going to be as effective as an intelligent adaptive approach as illustrated in figure 15a.
14In fact, Julier & Uhlmann (1997a) had an adjustable inflation parameter that they required to
tune their original unscented filter. As in so many of these recursive filter designs, there is a trade-off
between tracking accuracy versus stability with greater uncertainty. One also needs to counter the
tendency of these filters to recursively drive the uncertainty to zero, which ruins tracking ability.
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Figure 18. Control of TC-reduced-cell model using reliability as a control parameter. (a) A
threshold of turning on GPi stimulation when reliability less than 0.9 is shown. (b) A different
strategy, using an inverse approach is shown. In (b) control is turned on when reliability is greater
than 0.5. Note that the relevant reliability in both examples is the controlled (red) piecewise
continuous line in (i) (the blue reliability line is the uncontrolled state shown for comparison).
The inherent delays in employing the moving average of reliability can be exploited so that inverse
reliability control can be more reliable than using a more intuitive strategy based on turning on
stimulation when reliability falls.

As reliability is our goal, and as we are estimating it, why not use it as
the control parameter? Recognize that the way I have been calculating TC-cell
reliability in figures 14–17 employed a moving average of relatively infrequent
events (the incoming spikes are on a time scale significantly slower than membrane
dynamics such as w). So, this formulation of reliability is substantially delayed
with respect to the dynamics of the system. This delay creates the type of
results seen in figure 18a for control based upon turning the stimulator on when
estimated reliability is too low.

On the other hand, what is delayed for the past is predictive of the future. If
you use low reliability as a control variable, by the time the moving average
of reliability decreases to an arbitrary threshold, turning on stimulation will
probably come too late. But for periodic fluctuations, for which Parkinson’s
disease abounds, you can invert your control variable. This uses high reliability
as a control threshold. By the time reliability becomes high enough, the lack
of inhibition will be drawing to a close, and the incipient upturn in inhibition
will be imminent. Such results can be interesting, as shown in the improved
control in figure 18b. In these examples attempting to use estimated reliability
as a control variable, the control reliability with respect to GPi output never
rose above 46–50%. On the other hand, our goal is to treat thalamic reliability,
not the waveform of GPi output, and calculating control through running
estimates of thalamic reliability is something we are presently exploring in more
complete models.
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To summarize this section, we have explored a variety of dynamics for
controlling the thalamic cells. These examples envision direct stimulation of GPi,
and our results are consistent with those of Pirini et al. (2008) demonstrating that
open-loop stimulation of GPi can be a strong suppressor of thalamic activity
(figure 13). Control through estimation of nullclines is not a trivial problem
(figure 14), but we have not approached this with the addition of nullcline
constraints and inertia that would further improve this strategy. It is interesting
that a direct estimation of the synaptic currents bombarding the thalamus
(figure 17) was not as effective as an estimation of the T-current activation
(figure 15) in these proportional control algorithms. Similarly, control from
reliability estimates (figure 18) was not as effective as the estimation of T-current
activation. One reason why T-current may have been so effective is that the time
constant on the T-current activation equation is intermediate between the rapid
estimation of GPi input currents and the relatively slow reliability estimates. This
intermediate time constant may help damp out the relatively high levels of noise
that we have imposed on this system, but still offer suitable responsiveness for an
essential component of the pathological dynamics. Whether more instantaneous
estimates of reliability would serve to improve this situation is unclear (the
reliability uncertainty would increase with less averaging). Nevertheless, in
principle, and in full model simulations (not shown), reliability is a compelling
control variable at the heart of the control problem in Parkinson’s disease.
Lastly, regardless of method chosen, adaptively adjusting covariance inflation and
control gain (figure 16) are fundamental necessities to optimize such algorithms
over time.

12. Looking foward

I have here just touched upon the potential strategies for the use of computational
models in Parkinson’s disease control. For purposes of illustration, I have used an
idealized thalamic cell to gain intuition for what is possible in designing future
device controllers.

Sketching out the unstudied issues is worthwhile. The calculations in figures 14–
18 assume that there are two electrodes inserted—a recording electrode in the
thalamus and a stimulating electrode in the GPi or STN. The ideal Parkinson’s
controller would work off a single electrode, albeit one with multiple contacts,
inserted into just one nucleus. We can employ separate contacts for recording
and stimulation along the electrode shaft. Perhaps, picking up the oscillatory
rhythms from the GPi or STN would be sufficient for feedback control of those
same nuclei. On the other hand, the models presented here give us the freedom to
take such oscillatory dynamics from the GPi or STN and estimate the reliability
of the thalamus. We might never be able to record a good estimate of sensorimotor
input to the actual thalamus, but we can provide such signals, or a range of such
signals, to a model thalamus that is functioning as an observer model system
when only the GPi or STN serves as the recording site.

The reduced model of the TC cell is valuable for gaining intuition. Adding back
the fast Hodgkin–Huxley sodium and potassium currents may be helpful in using
such a model to track the thalamic dynamics, as might using an ensemble of such
cells. But one of the appeals of such reduced models is that they can represent
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Figure 19. The extended Rubin–Terman model as proposed by Pirini et al. (2008). (Adapted from
Pirini et al. (2008).)

ensemble activity. Using a scaled-up version of this reduced TC cell, renormalized
to represent an ensemble of such cells, might well be an effective way to track
thalamic dynamics in real brains.

We are presently using the full model of Rubin & Terman (2004) to explore
setting up a control system by working with the more complete computational
Parkinsonian brain. All of the same principles mentioned above for the reduced
model tracking are applicable in the full model. But one of the interesting facets
of contrasting full and reduced models is that, beyond the obvious computational
overhead of computing additional variables and parameters, the need to fit
these additional variables and parameters may render more complete models less
accurate in tracking complex systems than by employing more reduced models.
This seems counterintuitive, but the use of reduced models is commonplace in
meteorological forecasting in place of the full atmospheric dynamical equations
(Kalnay 2003), and in recent fluid dynamic experiments, reduced models have
also proven their use in such data assimilation frameworks (Cornick et al. 2009).
An important feature of the use of such reduced models in tracking scenarios is
that the optimal parameters in these inadequate models are often non-physical
(Cornick et al. 2009; Sauer & Schiff 2009). But what matters for Parkinson’s
disease patients is that we optimize our controllers and improve symptoms better
than with open-loop approaches, not that we reverse engineer their failing basal
ganglia. Model validation is not our primary goal in neural system control.

Recent work has extended the model of Rubin & Terman (2004) to take
into account more biologically relevant connections, the direct versus indirect
pathways, from striatum to the structures of the basal ganglia (figure 19). The
further incorporation of relevant model components may well give greater fidelity
to the realistic basal ganglia dynamics in Parkinson’s disease. But with our goal
being control, such fidelity through complexity will need to be balanced against
accuracy of data assimilation and control metrics. One of the important issues
raised by Pirini et al. (2008) is that a more complex model of the thalamic cell’s
function, beyond the simple relay, is probably important. One example of this
is action-selection theory, which envisions that the basal ganglia serves to select
from competing neuronal efforts for access to the final common path of motor
movement (Humphries et al. 2006). Furthermore, as in human patient experience,
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the DBS target sites are not equivalent. Indeed, maintaining the flexibility to
perform model-based control the STN, GPi or VIM, depending upon a patient’s
symptom complex, is a challenge for future work.

Parkinson’s disease will probably be the first dynamical human disease where
model-based control principles will show efficacy. The bar is not really that high.
Were we merely to demonstrate that we can significantly extend the battery life
of implanted stimulators, the control algorithms will be valuable. But as I hope
the above calculations allude to, such device longevity may well be accompanied
by improved performance. The parameter space that we presently face clinically
in adjusting a patient’s stimulator is, for all practical purposes, infinite. Adaptive
algorithms that can continually optimize stimulator performance will give our
present empirical trial and error efforts very good competition. So long as our
devices operate within the electrical safety limits, and incorporate present DBS
protocols as alternatives if the adaptive ones are not better, our patients have
nothing to lose and improved lives to gain.

The author expresses his deep appreciation to J. Rubin, D. Terman, T. Sauer, E. Shea-Brown,
R. Worth, R. Murray and A. Sinha for their extensive and helpful discussions, and to J. Rubin and
B. Gluckman for their critical reading of this manuscript. In addition, the author acknowledges the
generosity of Harvey F. Brush, whose endowment fund has supported this adventure in Parkinson’s
disease control at this early stage of exploration.
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