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Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform
pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous
alumina membranes are currently being considered for use in implantable sensor
membranes and water purification membranes. Atomic layer deposition is a thin-film
growth process that may be used to modify the pore size in a nanoporous alumina
membrane while retaining a narrow pore distribution. In addition, films deposited
by means of atomic layer deposition may impart improved biological functionality
to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum
coatings were deposited on nanoporous alumina membranes by means of atomic layer
deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly
of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina
membranes. The pores of the PEGylated nanoporous alumina membranes remained
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free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin
networks and platelet aggregation were not observed on the coated membrane surface.
Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two
waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this
work indicate that nanoporous alumina membranes may be modified using atomic layer
deposition for use in a variety of medical and environmental health applications.

Keywords: atomic layer deposition; self-assembly; nanoporous alumina;
antimicrobial; antifouling

1. Introduction

There is a great interest in incorporating nanoporous materials within devices
for medical and environmental health applications. As defined by Lu & Zhao
(2004), nanoporous materials contain pore diameters between 1 and 100 nm
and large porosities (volume ratio of pore space to total material volume greater
than 0.4). According to Rouquerol et al. (1994), nanoporous materials may be
classified by pore diameter as microporous (pore diameters smaller than 2 nm),
mesoporous (diameters between 2 and 50 nm) or macroporous (pore diameters
larger than 50 nm). Analogous structures to nanoporous materials can be found
in many biological organisms. An example of a natural filter is the nanostructured
epithelial cell in the kidney, which is known as the podocyte. The podocyte allows
water and small waste molecules to pass into the urine. On the other hand, it pre-
vents proteins (e.g. albumin) and cells from passing into the urine. Karnovsky &
Ainsworth (1972) described glomerular filtration in the kidney as a two-part
process, in which the glomerular basement membrane serves as a coarse filter
and the slit diaphragm serves as a molecular sieve. Rodewald & Karnovsky (1974)
subsequently demonstrated, using electron microscopy, that the slit diaphragm
contains rectangular pores; the dimensions of the filtration slit are 4 × 14 nm.

Recent studies by Huang et al. (2007) and Narayan et al. (2007) have
examined the use of anodized aluminium oxide, also known as nanoporous
alumina, as a membrane for kidney dialysis (a process that replaces natural
kidney function) owing to its high porosity, uniform pore size and stability
at high temperatures. The anodization process allows for the development of
a semipermeable membrane with ideal properties for controlled filtration of
nanoscale materials. Unlike many porous materials, the pores in nanoporous
alumina exhibit a narrow distribution of pore sizes as well as well-defined
pore geometries. In addition, Uehara et al. (2009) noted that nanoporous
alumina membranes are unusual among nanoporous materials with regard to the
straightness of the pores over thicknesses exceeding 1 mm.

Several investigators have examined the use of anodization for fabrication
of nanoporous alumina membranes. Raj et al. (2003) noted that anodizing is
a common method for forming an oxide coating on aluminium and its alloys
in order to inhibit corrosion. Keller et al. (1953) used electron microscopy to
demonstrate that anodizing aluminium in acid electrolytes results in a thick layer
of nearly cylindrical pores, which are oriented perpendicularly to the surface of
the material. The regular, nearly cylindrical pores are arranged in a close-packed
hexagonal cell structure. O’ Sullivan & Wood (1970) subsequently demonstrated
that pore formation occurs as a result of concentration of current into residual
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thin areas of the anodic oxide surface. In their study, cell diameter and pore
diameter were shown to be directly related to anodizing voltage; a proportionality
factor of 2.8 nm V−1 was suggested. According to Darder et al. (2006), thickness
is related to the amount of transferred charge. Work by Jessensky et al. (1998)
indicated that the relationship between pore dimensions and anodizing voltage
can be correlated with the current efficiency for oxide formation as well as with
the volume expansion of aluminium during oxide formation. Garcia-Vergarai et al.
(2006) stated that alumina–electrolyte chemical interactions are also affected
by the composition of the electrolyte, the pH and the processing temperature.
Jessensky et al. (1998) suggested that self-organization of nanoscale pores results
from mechanical stress owing to the volume expansion of aluminium; repulsive
forces between pores provide the driving force for self-organization. Nielsch
et al. (2002) determined that the volume expansion of alumina to aluminium is
approximately 1.2. Su et al. (2008) created an equifield strength model to explain
pore formation and self-adjustment of pore ordering in nanoporous alumina.
The relative dissociation rate of water was shown to play a significant role in
determining the ratio of pore size to cell dimension.

Contemporary interest in the use of nanoporous alumina as a template for the
development of nanostructured materials and devices can be traced back to the
work by Masuda & Fukuda (1995). Highly ordered platinum and gold nanohole
arrays were prepared using a replication process, which involved initial formation
of a negative structure of nanoporous alumina and subsequent formation of a
positive structure of a nanoporous metal. These structures exhibited 70 nm dia-
meter pores, 1–3 mm thickness and textured surfaces. Masuda et al. (1997) subse-
quently demonstrated the fabrication of nanoporous alumina using a textured
surface pattern; arrays with aspect ratios greater than 150 and channel densities
of 10 × 10−10 cm−2 were demonstrated. The textured surface pattern was prepared
by means of a reusable mould. Li et al. (1999) described a two-step anodization
process to fabricate arrays with 6 × 108 to 5 × 1010 cm−2 pore densities; as with
the single-step process described earlier, the interpore distance was altered by
modifying the anodizing voltage as well as by modifying the anodic electrolyte.
Recent efforts have involved fabrication of nanoporous alumina using hard anodi-
zation processes. For example, Lee et al. (2006) used a hard anodization process in
order to prepare nanoporous alumina membranes; membranes with uniform pores,
high aspect ratios (greater than 1000) and pore diameters between 40 and 60 nm
were created using this process. Vojkuvka et al. (2008) also prepared nanoporous
alumina by means of a hard anodization process; membranes with long interpore
distances, uniform pore sizes and good pore ordering were prepared.

Owing to its chemical stability, large surface area, high pore density,
well-controlled and uniform pore size, as well as straight pores, nanoporous
alumina has been investigated for use in several medical and environmental
applications over the past decade. Nanoporous alumina membranes can be
processed with smaller pore sizes and more uniform pore sizes than polymer
membranes. Unlike other inorganic materials such as silicon, alumina is stable
in physiological solutions and does not induce calcium phosphate deposition
(Bayliss et al. 1999; Anglin et al. 2008). For example, Gong et al. (2003)
demonstrated diffusion of dextran conjugates and fluorescein isothiocyanate from
nanoporous alumina capsules with pore sizes between 25 and 55 nm. Molecular
transport was controlled by selecting a nanoporous alumina capsule with an
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appropriate capsule pore size. Nanoporous alumina capsules were shown to
prevent diffusion of molecules larger than a given cut-off size. They were able
to create membranes with branched pores that exhibited less than 10 nm pore
sizes using multiple anodizing voltages; the small pores were supported by,
and were connected to, larger pores. Orosz et al. (2004) proposed the use
of nanoporous alumina membranes for delivery of angiostatic and antioxidant
pharmacological agents. Diffusion of catalase, endostatin and vitamin C through
nanoporous alumina membranes for modulation of human retinal endothelial
cell activity was demonstrated. It is believed that nanoporous materials such as
nanoporous alumina may enable quasi-linear release kinetics and may provide
slower transport rates than conventional sustained release devices. Kipke &
Schmid (2004) demonstrated the diffusion of crystal violet-containing micelles
encapsulated in sodium dodecylsulphate through nanoporous alumina membranes
with pore sizes between 20 and 200 nm; the release of free crystal violet into an
aqueous environment was spectroscopically demonstrated. Swan et al. (2005a)
physically adsorbed vitronectin and covalently immobilized arginine–glycine–
aspartic acid–cysteine cellular adhesive peptide onto nanoporous alumina surfaces
in order to enhance the adhesion of osteoblasts. Arginine–glycine–aspartic
acid–cysteine cellular adhesive peptide immobilization was shown to improve
osteoblast adhesion; matrix production was demonstrated on the peptide-coated
surfaces. Swan et al. (2005b) also showed that osteoblasts grown on nanoporous
alumina (pore diameter = 30–80 nm) extended cell processes into the pores; the
cells exhibited normal phenotype and morphology. Popat et al. (2005) seeded
osteoblasts on nanoporous alumina membranes, aluminium as well as other
materials; short-term osteoblast adhesion and proliferation were shown to be
better on nanoporous alumina membranes than on other surfaces. Osteoblasts
on nanoporous alumina membranes deposited more matrix and showed higher
protein content than cells on other surfaces. Darder et al. (2006) developed
an amperometric biosensor, in which glucose oxidase was encapsulated by a
nanoporous alumina membrane. The large surface area of the nanoporous alumina
membrane allowed relatively large amounts of glucose oxidase to be incorporated.
Yang et al. (2007) immobilized urease on nanoporous alumina membranes; the
immobilized enzyme served as the basis of an electrode-separated piezoelectric
sensor. The urea sensor exhibited short response times, high selectivity for
urea as well as long-term storage stability. La Flamme et al. (2007) examined
the use of nanoporous alumina and poly(ethylene glycol)-modified nanoporous
alumina as membranes for immunoisolation devices. The surfaces of nanoporous
alumina membranes were modified with poly(ethylene glycol) in order to resist
the adhesion of blood proteins as well as immune cells; proteins and cells may
block pores and reduce diffusion across an immunoisolation device membrane.
Nanoporous alumina and poly(ethylene glycol)-modified nanoporous alumina
were shown to be non-toxic and did not initiate significant complement activation.
In addition, poly(ethylene glycol)-modified nanoporous alumina was shown to
exhibit fewer interactions with serum albumin than unmodified nanoporous
alumina. Poly(ethylene glycol)-modified nanoporous alumina was also shown
to minimize the host response when implanted within the peritoneal cavity of
rats. Attaluri et al. (2009) compared the transport performance of nanoporous
alumina membranes with polyethersulphone membranes used in haemodialysis;
the hydraulic conductivity of nanoporous alumina was shown to be twice
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that of polyethersulphone. In addition, no albumin leakage was noted from
albumin membranes. Parkinson et al. (2009) utilized a nanoporous alumina
template in order to create nanoporous membranes for fibroblast growth. Dermal
fibroblasts and epidermal keratinocytes were shown to adhere to these nanoporous
membranes as well as migrate across membrane surfaces. Graham et al. (2009)
recently suggested that nanoporous alumina electrodes may be used as an
interface with neuronal cells; an in vitro assay involving mouse neuroblastoma ×
rat glioma hybrid cells demonstrated the biocompatibility of nanoporous alumina.
The use of nanoporous alumina membranes for environmental applications has
also received recent interest. For example, Ma, B. et al. (2009) suggested the use
of nanoporous membranes for water purification.

As mentioned earlier, many medical and environmental applications for
nanoporous alumina membranes are attributed to the fact that these materials
exhibit high pore densities, well-controlled and uniform pore sizes, as well as
straight pores. Transport of materials across nanoporous membranes may be
controlled by altering the membrane pore size in a controlled manner. In addition,
nanoporous materials with unusual biological and chemical properties may be
created by chemically modifying the pore surface. For example, Xiong et al.
(2005) pointed out that impurities incorporated within nanoporous alumina
membranes during the synthesis of these structures could have a significant
influence on the chemical properties of the membranes. In addition, it is
currently unknown whether aluminium is a biocompatible material; for example,
Hegde et al. (2003) suggested that aluminium ingestion is associated with
the development of amyloid plaques. Atomic layer deposition may be used to
decrease the sizes of the pores while retaining a narrow pore distribution. In
addition, the coatings may impart improved biological and chemical properties
to the nanoporous alumina membranes. Atomic layer deposition is a thin-film
growth process that involves alternating chemical reactions between gaseous
precursor molecules on the surface of a material. According to Puurunen &
Vandervorst (2004), the self-terminating gas–solid reactions enable deposition
of atoms or molecules in a layer-by-layer fashion. In atomic layer deposition,
individual reactions are separated by purge steps involving saturation with an
inert gas. By saturating the substrate during each reaction, all of the surfaces of
a substrate receive a conformal coating of identical thickness. As such, atomic
layer deposition is uniquely suited for depositing conformal nanometre-scale
films with precise thickness values onto nanoporous membrane surfaces. Stair
et al. (2006) described the fabrication of highly uniform heterogeneous catalysts
by atomic layer deposition of vanadium oxide coatings on nanoporous alumina
membranes. Vanadium oxide-coated nanoporous alumina membranes were shown
to provide improved selectivity for catalytic oxidative dehydrogenation of
cyclohexane compared with conventional powdered alumina-supported vanadia
catalysts. Moon et al. (2009) used atomic layer deposition to reduce the pore
size in nanoporous alumina membranes from 70 to 40 nm. Centrifugation was
subsequently used to align bacteriophage phi29 virus nanoparticles in the pores
of the nanoporous alumina membranes. Selective filtration of nanoparticles was
obtained; empty capsids entered the 20 nm pores and DNA-packaged particles
remained on the membrane surface. Velleman et al. (2009) demonstrated surface
modification of nanoporous alumina membranes using silica; these silica-coated
membranes were subsequently modified with perfluorodecyldimethylchlorosilane.
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These hydrophobic membranes showed enhanced transport of hydrophobic
molecules such as (tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate) over
hydrophilic molecules such as Rose Bengal. Adiga et al. (2008) described the use
of atomic layer deposition to modify the surfaces of membranes; these materials
have applications in size-sorting and filtration of small biological molecules.
They showed that a PEGylated, platinum-coated nanoporous alumina membrane
exposed to human platelet-rich plasma resisted fouling by proteins and platelets.
Narayan et al. (2009) deposited titanium oxide coatings onto nanoporous alumina
membranes with pore sizes of 20 and 100 nm by means of atomic layer deposition.
Neither the titanium oxide-coated 20 nm nanoporous alumina membranes nor
the titanium oxide-coated 100 nm nanoporous alumina membranes exhibited
statistically lower viability than the uncoated nanoporous alumina membrane
control materials. In addition, titanium oxide-coated 20 nm nanoporous alumina
membranes exposed to ultraviolet light exhibited antimicrobial activity against
two micro-organisms, Escherichia coli and Staphylococcus aureus. More recently,
Lee et al. (2009) described the processing of photocatalytic zinc oxide and titania
coatings on avian eggshell using atomic layer deposition.

This paper examines the use of atomic layer deposition for coating all of the
surfaces of commercially obtained nanoporous alumina membranes, including
the surfaces within the pores, with platinum or zinc oxide. In the first section,
20 nm pore size nanoporous alumina membranes were initially coated with
platinum using atomic layer and subsequently coated with 1-mercaptoundec-11-yl
hexa(ethylene glycol) using a self-assembly process; these membranes may
be suitable for use in implantable biosensors. Human epithelial keratinocyte
viability and human platelet-rich plasma–membrane interactions were examined.
In the second section, 100 nm pore size nanoporous alumina membranes
were conformally coated with zinc oxide using atomic layer deposition; these
membranes have potential applications in water purification. Human epithelial
keratinocyte viability and microbial growth on the zinc oxide-coated nanoporous
alumina membranes were examined. Our results indicate that atomic layer
deposition may be used to modify nanoporous alumina membranes as well as
other nanostructured materials for medical and environmental applications.

2. Experimental procedure

The nanoporous alumina membranes were coated in a custom viscous flow atomic
layer deposition reactor (inside diameter = 5 cm), which was constructed from a
circular stainless steel flow tube. A custom metal wire mesh fixture was used
to vertically suspend the nanoporous alumina membranes in order to facilitate
efficient diffusion of the gaseous precursors into the pores of the nanoporous
alumina membranes; the fixture allowed up to 12 membranes to be coated at one
time. Ultrahigh purity (99.999%) nitrogen carrier gas was continuously passed
through the flow tube at a mass flow rate of 360 s.c.c.m. and at a pressure of 1 Torr.
A constant reactor temperature was maintained by temperature controllers,
which were connected to resistive heaters attached to the exterior of the reactor.
Four separate heating zones were used to establish a uniform temperature profile
along the length of the flow tube.
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Platinum coatings were deposited on 20 nm pore size nanoporous alumina
membranes using atomic layer deposition. The nanoporous alumina membranes
were obtained from a commercial source (Whatman, Maidstone, UK). These
membranes exhibited outside diameters of 13 mm and thicknesses of 60 mm.
The nanoporous alumina membranes exhibited pore diameters of 200 nm for
approximately 58 mm of the membrane thickness and tapered to 20 nm pore
diameters for approximately 2 mm of the membrane thickness. Prior to coating,
the nanoporous alumina membranes were cleaned in situ using a 5 min exposure
to flowing ozone. The ozone was produced by an L11 commercial generator (Ozone
Engineering, El Sobrante, USA). A temperature of 300◦C and an ozone partial
pressure of approximately 0.1 Torr were maintained during the cleaning process.
The nanoporous alumina membranes were initially coated with alumina and
subsequently coated with platinum. This alumina coating served to bury anionic
impurities in the nanoporous alumina membranes. In addition, the alumina
coating provided a densely hydroxylated surface in order to promote better
nucleation of the platinum coating. Atomic layer deposition of the approximately
1 nm alumina coating was performed by means of alternating exposure to 10
cycles of 97 per cent purity trimethyl aluminium (Sigma-Aldrich, St Louis, USA)
and water.

Precursor exposure times of 6 s were utilized for trimethyl aluminium
and water; 5 s purge periods were used between precursor exposures to
prevent mixing of trimethyl aluminium and water. The platinum coating
was deposited using alternating exposures to 99 per cent purity trimethyl
(methylcyclopentadienyl) platinum(IV) (Pt(MeCp)Me3) (Sigma Aldrich) and
oxygen at a growth temperature of 300◦C. Precursor exposure times of
50 and 20 s were utilized for Pt(MeCp)Me3 and oxygen, respectively; 10 s
purge periods were used between precursor exposures to prevent mixing of
Pt(MeCp)Me3 and oxygen. Silicon wafers were coated at the same time as the
nanoporous alumina membranes. The thicknesses of the platinum and alumina
coatings on the silicon wafers were determined using an M2000V spectroscopic
ellipsometer (J. A. Woollam, Lincoln, USA). Imaging of the platinum-coated
nanoporous alumina membranes was performed using an S4700 scanning electron
microscope (Hitachi, Tokyo, Japan) with a field emission source as well as
a 3200 scanning electron microscope (Hitachi) with a thermionic source and
an Isis energy-dispersive X-ray spectrometer attachment (Oxford Instruments,
Abingdon, UK).

A method similar to the one described by Wang et al. (2005) was used to
obtain self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) monolayers
on the platinum-coated nanoporous alumina membranes. 1-Mercaptoundec-11-yl
hexa(ethylene glycol) (HS(CH2)11(OCH2CH2)6OH) and 99.5 per cent purity
ethanol were obtained from a commercial source (Sigma Aldrich). Self-assembled
monolayers were prepared by immersing platinum-coated nanoporous alumina
membranes in an ethanol solution of 1-mercaptoundec-11-yl hexa(ethylene glycol)
for 48 h. The membranes were subsequently removed from the solution, rinsed in
ethanol, dried, sonicated in ethanol for 3 min, rinsed in ethanol and dried. Self-
assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) monolayers was also
performed on a silicon wafer that was coated with a titanium interlayer and a
platinum top layer using pulsed laser deposition. Attenuated total reflectance
Fourier transform infrared spectroscopy measurements were obtained from the
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coated silicon wafer using a Nicolet Nexus 470 Fourier transform infrared
spectrometer equipped with an OMNI sampler and a continuum microscope
(Thermo Fisher, Waltham, USA).

We examined the proliferation of neonatal human epidermal keratinocytes
on PEGylated, platinum-coated nanoporous alumina membranes, platinum-
coated nanoporous alumina membranes and uncoated nanoporous alumina
membranes using the MTT (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium
bromide) assay. The MTT assay, first described by Mossman (1983), is based
on the reduction of a yellow tetrazolium salt (MTT) to a purple formazan
dye by mitochondrial succinic dehydrogenase. Membranes were sterilized using
ultraviolet B light, exposed for 3 h on each side, and rotated 90◦ every 45 min.
Upon completion of ultraviolet B light exposure, the membranes were placed in
24-well plates. A small drop of Akwa Tears (Akorn, Lake Forest, USA) was placed
on the bottom of each well to secure the membranes and to prevent floating of the
membranes. Wells and membranes were rinsed with 1 ml of keratinocyte growth
medium (KGM-2) and were seeded with 20 000 human epidermal keratinocytes
in 1 ml of KGM-2 per well. Medium was changed after 24 h. Once the human
epidermal keratinocytes were 60 per cent confluent, they were grown for 24 h;
the membranes were subsequently moved to new plates in order to prevent cell
growth outside the membranes from influencing the data. Each coating was run
in triplicate. Viability data for the PEGylated, platinum-coated membranes and
platinum-coated membranes were standardized to the data for the uncoated
nanoporous alumina membranes.

Platelet adhesion testing was used for evaluating adsorption of platelets,
proteins and other blood components to the surfaces of PEGylated, platinum-
coated nanoporous alumina membranes, platinum-coated nanoporous alumina
membranes and uncoated nanoporous alumina membranes; Narayan et al. (2006)
previously provided details on the platelet adhesion testing procedure. Fresh
whole blood was obtained from a healthy human adult volunteer. The blood was
examined for the presence of anticoagulants, pharmacological agents or other
agents that could affect protein–biomaterial or platelet–biomaterial interaction
by means of platelet function, prothrombin time and partial thromboplastic
time studies. Sodium citrate was added to the blood in order to prevent
coagulation. The blood was subsequently centrifuged using a Plasma Saver
system (Haemonetics, Braintree, USA) at 25◦C for 10 min, 25◦C for 10 min
and 4◦C for 1 h (operating speed = 3500 r.p.m.). According to Lozada et al.
(2001), the first spin process in this multi-step centrifugation process separated
low-platelet concentrated plasma from red blood cells and platelet-rich plasma.
The mixture of platelet-rich plasma and red blood cells was separated; the
platelet-rich plasma was subsequently collected at the bottom of the test tube
owing to its high specific gravity. The platelet-rich plasma was incubated at
37◦C for 10 min and subsequently frozen until testing. PEGylated, platinum-
coated nanoporous alumina membranes, platinum-coated nanoporous alumina
membranes and uncoated nanoporous alumina membranes were immersed in
the platelet-rich plasma solution and incubated at 37◦C for 10 min. Weakly
adherent platelets were removed by rinsing the membranes with 0.9 per cent
saline solution. The platelet-rich plasma-exposed membranes were subsequently
fixed in 4 per cent glutaraldehyde and critical point-dried. Adhesion of
proteins and platelets on platelet-rich plasma-exposed membranes was examined
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using a 3200 scanning electron microscope (Hitachi, Tokyo, Japan) with an
Isis energy-dispersive X-ray spectrometer attachment (Oxford Instruments,
Abingdon, UK).

Zinc oxide coatings were deposited on 100 nm pore size nanoporous alumina
membranes using atomic layer deposition. The nanoporous alumina membranes
were obtained from a commercial source (Whatman). These membranes exhibited
outside diameters of 13 mm and thicknesses of 60 mm. The nanoporous alumina
membranes exhibited pore diameters of 200 nm for approximately 58 mm of the
membrane thickness and tapered to pore diameters of 100 nm for approximately
2 mm of the membrane thickness. Prior to coating, the nanoporous alumina
membranes were cleaned in situ using a 5 min exposure to flowing ozone. A feed
of ultrahigh purity oxygen at a flow rate of 400 s.c.c.m. was used to produce an
ozone partial pressure of approximately 0.1 Torr. Atomic layer deposition of zinc
oxide was performed by means of alternating exposure to diethyl zinc (Sigma
Aldrich) and water at a temperature of 200◦C. Precursor exposure times of 6 s
were utilized for diethyl zinc and water. Partial pressures of diethyl zinc and
water were maintained at approximately 0.2 Torr; 5 s purge periods were used
between precursor exposures to prevent mixing of diethyl zinc and water. Thirty-
one atomic layer deposition cycles were performed, which yielded a zinc oxide
thickness of 5 nm. Silicon wafers were coated at the same time as the nanoporous
alumina membranes. The thickness of the zinc oxide coating on the silicon wafer
was determined using spectroscopic ellipsometry measurements. Imaging of the
zinc oxide-coated nanoporous alumina membranes was performed using an S4700
scanning electron microscope (Hitachi, Tokyo, Japan) as well as a 3200 scanning
electron microscope (Hitachi).

Powder X-ray diffraction measurements were performed on the zinc oxide-
coated nanoporous membranes using a Miniflex Plus diffractometer (Rigaku,
Tokyo, Japan). X-ray photoelectron spectroscopy was performed on the zinc
oxide-coated nanoporous membranes using an LAS-3000 instrument (Riber,
Bezons, France) with an Mg Ka anode source. We examined the proliferation
of neonatal human epidermal keratinocytes on zinc oxide-coated nanoporous
alumina membranes and uncoated nanoporous alumina membranes using the
MTT assay. Membranes were sterilized and seeded as described above. Wells
were seeded with 25 000 human epidermal keratinocytes in 1 ml of KGM-
2 per well. Medium was changed after 24 h. Once the human epidermal
keratinocytes were 60 per cent confluent, they were grown for 24 h; the
membranes were subsequently moved to new plates in order to prevent cell
growth outside the membranes from influencing the data. Each coating was
run in triplicate. Viability data for the zinc oxide-coated nanoporous alumina
membranes were standardized to the data for the uncoated nanoporous alumina
membranes.

Microbial growth on zinc oxide-coated nanoporous alumina membranes and
uncoated nanoporous alumina membranes was determined using the agar plating
method. Liu et al. (2010) recently described the use of an agar plating
assay to determine the antimicrobial properties of a novel water purification
membrane; Copello et al. (2006) previously provided details on the agar
plating procedure. Tryptic soy broth, tryptic soy agar, Luria–Bertani broth,
Luria–Bertani agar, triphenyltetrazolium chloride and phosphate-buffered saline
(×10) were purchased from a commercial source (VWR International, West
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Chester, USA). Phosphate-buffered saline (×1) was prepared in deionized
water. Overnight cultures of E. coli ATCC 12435 (American Type Culture
Collection, Manassas, USA) in Luria–Bertani broth and S. aureus ATCC 25923
(American Type Culture Collection) in tryptic soy broth were pelleted via
centrifugation (4500 r.p.m.) for 10 min; the micro-organisms were subsequently
resuspended in phosphate-buffered saline in order to obtain a final cell density
of approximately 108 cells ml−1. Sterile swabs were used to inoculate lawns of
E. coli on Luria–Bertani agar plates and lawns of S. aureus on tryptic soy
agar plates. Zinc oxide-coated nanoporous alumina membranes and uncoated
nanoporous alumina membranes were then placed on the agar plates inoculated
with E. coli or S. aureus. The plates were inverted and incubated for 24 h
at 37◦C in the dark. An additional set of zinc oxide-coated nanoporous
alumina membranes and uncoated nanoporous alumina membranes was incubated
under continuous exposure to a tungsten-halogen light source, which was
placed in the incubator. Inhibition of bacterial growth on the membrane
surfaces was evaluated visually from digital images, which were obtained after
24 h of incubation. A biological activity indicator dye, triphenyltetrazolium
chloride, was added to the agar medium (70 mg l−1); this dye stained the
micro-organisms a red colour, which aided in the visualization of microbial
growth.

3. Results and discussion

Figure 1a shows a plan-view scanning electron micrograph of a 20 nm pore size
nanoporous alumina membrane following atomic layer deposition of an 8 nm
platinum coating, which was obtained from the large pore side of the membrane.
Figure 1b shows a plan-view scanning electron micrograph of a nanoporous
alumina membrane following atomic layer deposition of an 8 nm platinum
coating; the image was obtained from the small pore side of the membrane.
These figures demonstrate that the nanoporous alumina membrane coated with
platinum using atomic layer deposition exhibited a monodisperse pore size and
high porosity. Figure 2 shows a cross-sectional scanning electron micrograph
obtained from a cleaved 20 nm pore size nanoporous alumina membrane following
atomic layer deposition of an 8 nm thick platinum coating. The coating is
continuous near the ends of the pore (figure 2b); fairly uniform contrast was
noted. Images obtained from near the small pore side of the platinum-coated
nanoporous alumina membrane (data not shown) have a similar appearance.
Figure 2c indicates that the platinum coating is partially continuous at the
middle of the pore; uncoated regions of the nanoporous alumina membrane were
observed. In order to evaluate the continuity of the platinum coating, electrical
resistance through the nanoporous alumina membrane was determined using a
digital ohmmeter; measurements were obtained by pressing the platinum-coated
nanoporous alumina membrane between conductive metal plates. The resistance
of the platinum-coated nanoporous alumina membranes was approximately 1U; in
comparison, an immeasurably high resistance (greater than 20 MU) was obtained
for the uncoated nanoporous alumina membranes. This result indicates that
the platinum coating is partially continuous in nature. Figure 3 shows a high-
resolution scanning electron micrograph obtained at the middle of the pore, which
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(a)

500 nm

500 nm

(b)

Figure 1. Plan-view scanning electron micrograph of a nanoporous alumina membrane following
atomic layer deposition of 8 nm platinum coating. Images were obtained from (a) the large pore
side of the membrane and (b) the small pore side of the membrane.

shows the island structure of the partially continuous platinum coating; platinum
coatings prepared using atomic layer deposition typically consist of agglomerated
platinum nanoparticles.

Stair et al. (2006) demonstrated that atomic layer deposition is capable
of producing highly uniform, conformal coatings on all exposed surfaces
of nanoporous membranes. This attribute makes atomic layer deposition
an attractive technology for not only chemically modifying the surfaces of
nanoporous materials but also reducing pore size in nanoporous materials. As
shown by Cameron et al. (2000), saturation of individual surface reactions in
atomic layer deposition of metal oxide materials (e.g. titanium oxide) results
in nearly ideal, layer-by-layer film growth. On the other hand, atomic layer
deposition of noble metals such as platinum can sometimes result in the formation
of partially continuous coatings consisting of isolated metal nanoparticles; this
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(a)

400 µm

500 µm 500 µm

(b) (c)

Figure 2. (a) Cross-sectional scanning electron micrograph obtained from a cleaved specimen of
a nanoporous alumina membrane following atomic layer deposition of an 8 nm platinum coating.
(b) High-resolution scanning electron micrograph at the middle of the pore shows a partially
continuous platinum coating. (c) High-resolution scanning electron micrograph near the large pore
edge shows a continuous platinum coating.

result is commonly obtained when thin platinum films are deposited on metal
oxide surfaces. Partially continuous film growth results from a low density
of nucleation sites for platinum on the metal oxide surface as well as from
platinum sintering owing to surface diffusion. The partially continuous nature of
the platinum coating has important implications for the biological functionality
of platinum-coated nanoporous alumina membranes, since interactions between
alumina and the surrounding environment may take place. A completely
continuous platinum coating may be obtained using a larger number of cycles,
using longer Pt(MeCp)Me3 exposures or using other mechanisms that increase
film nucleation.

Figure 4 shows a plan-view scanning electron micrograph of a platinum-
coated (coating = 8 nm) 20 nm pore size nanoporous alumina membrane after
self-assembly of the 1-mercaptoundec-11-yl hexa(ethylene glycol) monolayer.
No particulates, blockages or other alterations in pore morphology were
observed on the surface of the PEGylated, platinum-coated nanoporous alumina
membrane. The self-assembly process allowed the nanoscale pores on the
surface of the platinum-coated membrane to be retained. The FTIR spectrum
of a PEGylated, platinum-coated and titanium-coated silicon wafer is shown
in figure 5; this spectrum showed good correspondence with the spectra
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Figure 3. High-resolution scanning electron micrograph at the middle of the pore shows the island
structure of the partially continuous platinum coating.

Analytical Instrumentation Facility NCSU
30.0 KV EM Mag 10000X 2 µm

Figure 4. Plan-view scanning electron micrograph of a PEGylated, platinum-coated
(coating = 8 nm) 20 nm pore size nanoporous alumina membrane.
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Figure 5. Fourier transform infrared spectrum of a PEGylated, platinum-coated, titanium-coated
silicon wafer. Scale bar, 500 nm.
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Figure 6. The 24 h MTT viability assay data for the PEGylated, platinum-coated (coating = 8 nm)
20 nm pore size nanoporous alumina membrane, the platinum-coated (coating = 8 nm) 20 nm
pore size nanoporous alumina membrane and the uncoated 20 nm pore size nanoporous alumina
membrane. Data were standardized to the uncoated membrane control. The PEGylated, platinum-
coated membrane and the platinum-coated membrane demonstrated lower viability than the
uncoated membrane.

of self-assembled monolayers containing oligo(ethylene glycol) moieties that
were previously examined by Zolk et al. (2000) and Wang et al. (2005).
Symmetric CH2 stretching vibrations were shown to extend over a range
from 2850 to 2950 cm−1. The peak 2920 cm−1 was assigned to asymmetric
CH2 stretching vibrations from the ethylene glycol chain. Figure 6 shows the
24 h MTT viability assay data for the PEGylated, platinum-coated (coating =
8 nm) 20 nm pore size nanoporous alumina membrane, the platinum-coated
(coating = 8 nm) 20 nm pore size nanoporous alumina membrane and the
uncoated 20 nm pore size nanoporous alumina membrane. The PEGylated,
platinum-coated nanoporous alumina membrane and the platinum-coated
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nanoporous alumina membrane exhibited a decrease in viability compared
with the uncoated nanoporous alumina membrane. Hexa(ethylene glycol) and
platinum have demonstrated good cell compatibility in previous studies by
Pang (1993) and Bajaj et al. (2007), respectively. Recent work by Narayan
et al. (2008) suggested that the metal coatings formed galvanic couples
with residual metallic aluminium in the nanoporous alumina membranes
coated using a line-of-sight process known as pulsed laser deposition; these
interactions accelerated aluminium ion release and led to reduced cell
viability rates.

A scanning electron micrograph of a PEGylated, platinum-coated (coating =
8 nm) 20 nm pore size nanoporous alumina membrane after exposure to human
platelet-rich plasma is shown in figure 7; no protein aggregation was observed on
the surface. The pores of the PEGylated, platinum-coated nanoporous alumina
membrane largely remained free of fouling. Scanning electron micrographs of a
platinum-coated (coating = 9 nm) 20 nm pore size nanoporous alumina membrane
and an uncoated 20 nm pore size nanoporous alumina membrane after exposure
to human platelet-rich plasma are shown in figures 8 and 9, respectively.
Significant protein aggregation and pore fouling were observed on the surfaces
of these membranes. In addition, small, widely scattered crystals were observed
on the surfaces of the platinum-coated nanoporous alumina membrane and
the uncoated nanoporous alumina membrane. The presence of sodium and
chlorine in the energy-dispersive X-ray analysis spectra of the platinum-coated
nanoporous alumina membrane and the uncoated nanoporous alumina membrane
suggests that sodium chloride crystals precipitated from platelet-rich plasma
during testing. Recent work by Andara et al. (2006) suggested that sodium
chloride crystal adsorption is independent from protein adsorption. Tsapikouni &
Missirlis (2008) noted that protein adsorption is governed by solution properties
(e.g. pH), surface properties (e.g. surface energy) and protein properties
(e.g. protein conformation). Previous studies have shown that polyethylene
glycol is resistant to adsorption of proteins; for example, Jiang et al. (2004)
demonstrated that self-assembled monolayers containing oligo(ethyleneglycol)-
terminated alkanethiols resist adhesion of mammalian cells as well as non-specific
adsorption of proteins; in their study, self-assembled monolayers containing
oligo(ethyleneglycol)-terminated alkanethiols on palladium were shown to remain
inert for at least four weeks. Seigel et al. (1997) utilized an acoustic plate-
mode sensor in order to demonstrate that hexa(ethylene glycol)-terminated
self-assembled monolayers demonstrate very low protein adsorption. Wang
et al. (1997) suggested that oligo(ethylene glycol)-terminated self-assembled
monolayers resist proteins and other biological molecules owing to the fact that
these molecules form hydrogen bonds with water molecules. It is believed that
a stable interfacial layer of water molecules inhibits protein–surface contact and
prevents protein adsorption; as such, this process is considered to be enthalpic
instead of entropic. These antifouling properties are appealing for implantable
devices, since protein fouling and cell adhesion can impede transport of biological
molecules between the device and the surrounding tissues.

Nanoporous materials of 20 nm pore size with resistance to fouling by human
platelet-rich plasma have potential uses in implantable biosensors. According
to Tsapikouni & Missirlis (2008), proteins are adsorbed to the surface of
biomaterials within seconds after implantation within the body. For example,
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Figure 7. (a) Plan-view scanning electron micrograph of a PEGylated, platinum-coated (coating =
8 nm) 20 nm pore size nanoporous alumina membrane after treatment with human platelet-
rich plasma. (b) Energy-dispersive X-ray analysis spectrum for the PEGylated, platinum-
coated nanoporous alumina membrane after treatment with human platelet-rich plasma. Protein
adsorption, fibrin networks and platelet aggregation were not observed on the surface of the platelet-
rich plasma-exposed membrane. The pores largely remain free of fouling. (Reproduced with kind
permission from Adiga et al. (2008), fig. 2. Copyright © Springer Science + Business Media.)

Hoshino et al. (2009) noted that the primary factor that is limiting development of
a mechanical artificial pancreas is the absence of an in vivo glucose sensor that can
function within the body for extended periods of time. Vriesendorp et al. (2005)
showed that currently used continuous glucose-monitoring devices that contain
subcutaneous glucose sensors possess insufficient accuracy for use in perioperative
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Figure 8. (a) Plan-view scanning electron micrograph of a platinum-coated (coating = 9 nm) 20 nm
pore size nanoporous alumina membrane after treatment with human platelet-rich plasma. (b)
Energy-dispersive X-ray analysis spectrum for the platinum-coated nanoporous alumina membrane
after treatment with human platelet-rich plasma. Protein adsorption and pore fouling were
observed on the surface of the platelet-rich plasma-exposed membrane. Sodium chloride crystals
were identified on the scanning electron micrograph; sodium and chlorine were noted on the
energy-dispersive X-ray spectrum.

medical care. Membranes are typically used to protect the functional component
(e.g. electrode) of the biosensor from biofouling as well as to provide a
diffusion barrier that enables transport of the analyte and prevents transport
of other species. Wisniewski & Reichert (2000) suggested that biosensor failure
is commonly attributed to membrane biofouling; adhesion or adsorption of small
proteins, large proteins as well as cells may occur on a biosensor membrane,
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Figure 9. (a) Plan-view scanning electron micrograph of an uncoated 20 nm pore size nanoporous
alumina membrane after treatment with human platelet-rich plasma. (b) Energy-dispersive X-ray
analysis spectrum for the uncoated nanoporous alumina membrane after treatment with human
platelet-rich plasma. Protein adsorption and pore fouling were observed on the surface of the
platelet-rich plasma-exposed membrane. Sodium chloride crystals were identified on the scanning
electron micrograph; sodium and chlorine were noted on the energy-dispersive X-ray spectrum.

limiting the transport of analytes from the surrounding tissues to the sensor.
For example, Kerner et al. (1993) demonstrated a decrease in implantable
sensor sensitivity after placement in human plasma as well as in human plasma
ultrafiltrate; this loss of sensor sensitivity was shown to be reversible upon
exposure of the sensor to a buffer solution. Studies by Mǎdǎraş & Buck (1996)
and others have indicated that biosensor membranes should exhibit low protein
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Figure 10. Plan-view scanning electron micrograph of a zinc oxide-coated (coating = 5 nm) 100 nm
pore size nanoporous alumina membrane.

fouling, controlled porosity (e.g. minimal pore-to-pore variation) as well as
low thickness values in order to enable the biosensor to rapidly respond to
fluctuations in analyte concentrations. Uehara et al. (2009) suggested that
nanoporous membranes could be incorporated within implantable biosensors for
monitoring of blood glucose levels over extended periods of time; nanoporous
membranes prepared using polyethylene-block-polystyrene were shown to enable
diffusion of glucose but prevent diffusion of albumin. However, the cell or blood
compatibility of this device was not described. In addition, Desai et al. (2000)
noted that hydrophobic or hydrophilic groups in polymeric sensor membranes
can promote nucleation of calcium phosphate, which can interfere with membrane
performance. Several investigators have examined the use of porous silicon as
a biosensor material. For example, Letant et al. (2003) demonstrated that
functionalized silicon membranes were able to capture streptavidin-coated beads
that served as simulated bio-organisms. Desai et al. (2000) demonstrated
that micromachined silicon membranes allowed glucose diffusion and prevented
albumin diffusion. It should be noted that porous silicon may undergo degradation
under physiological conditions; for example, Canham et al. (1997) noted that
porous silicon undergoes calcification in acellular simulated body fluids. In
addition, Anderson et al. (2003) showed that porous silicon films degrade in
aqueous solutions; significant release of Si(OH)4 was noted at a temperature
of 37◦C and at pH values of 7 and higher. Materials with greater porosity
demonstrated higher dissolution rates. Finally, Foell et al. (2002) noted that it
is, at present, difficult to obtain self-ordered pores in porous silicon.

Figure 10 shows a plan-view scanning electron micrograph of a 100 nm pore size
nanoporous alumina membrane following atomic layer deposition of a 5 nm zinc
oxide coating. This figure demonstrates that the nanoporous alumina membrane

Phil. Trans. R. Soc. A (2010)



2052 R. J. Narayan et al.

10 µm

500 nm

40 nm

Figure 11. Cross-sectional scanning electron micrographs obtained from a cleaved specimen of a
nanoporous alumina membrane following atomic layer deposition of a 5 nm zinc oxide coating.

coated with zinc oxide using atomic layer deposition exhibited monodisperse
pore sizes and high porosity. Figure 11 shows cross-sectional scanning electron
micrographs obtained from a cleaved nanoporous alumina membrane following
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Figure 12. X-ray diffraction pattern for a zinc oxide-coated (coating = 5 nm) nanoporous alumina
membrane, which contains peaks that correspond to hexagonal zincite.

atomic layer deposition of a 5 nm thick zinc oxide coating. Figure 11b indicates
that the alumina pore structure is not completely uniform; branching of pores as
well as intersections of pores are shown. Figure 11c shows that the inner surfaces
of the pores are completely coated with zinc oxide nanocrystals that exhibit
dimensions between 5 and 10 nm. In addition, cross-sectional energy-dispersive
X-ray analysis was performed across the membrane thickness; the zinc oxide
concentration was shown to be uniform throughout the membrane. Figure 12
shows an X-ray diffraction pattern for a nanoporous alumina membrane following
atomic layer deposition of a 5 nm zinc oxide coating. The peaks in this figure
match the expected positions for hexagonal zincite, which are described in File
36-1451 of the Joint Committee on Powder Diffraction Standards (2000). The
size of the zinc oxide crystals was estimated from peak widths using the Scherrer
formula to be 8 nm. Uncoated nanoporous alumina membranes are composed of
amorphous alumina and impurities; X-ray diffraction measurements performed
on uncoated nanoporous alumina membranes yielded no peaks. Figure 13a
contains an X-ray photoelectron spectrum of an uncoated 100 nm pore size
nanoporous alumina membrane. Figure 13b contains an X-ray photoelectron
spectrum of a zinc oxide-coated (coating = 5 nm) 100 nm pore size nanoporous
alumina membrane. The characteristic 2p peak for aluminium (binding energy =
74 eV) was not detected in the spectrum of the zinc oxide-coated nanoporous
alumina membrane. Analysis using CASAXPS software (RBD Instruments, Bend,
USA) confirmed the absence of aluminium; the zinc oxide coating was shown
to be continuous and was shown to completely cover the nanoporous alumina
membrane surface.
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Figure 13. (a) X-ray photoelectron spectrum of an uncoated 100 nm pore size nanoporous alumina
membrane. (b) X-ray photoelectron spectrum of a zinc oxide-coated (coating = 5 nm) 100 nm pore
size nanoporous alumina membrane.
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Figure 14. The 24 h MTT viability assay data for the uncoated 100 nm pore size nanoporous
alumina membrane and the zinc oxide-coated (coating = 5 nm) 100 nm pore size nanoporous
alumina membrane. Data were standardized by the uncoated membrane control. The zinc
oxide-coated membranes demonstrated higher viability than the uncoated membrane.

The 24 h MTT viability assay data for the uncoated 100 nm pore size
nanoporous alumina membrane and the zinc oxide-coated (coating = 5 nm)
100 nm pore size nanoporous alumina membrane are shown in figure 14. The
data for the coated membrane were standardized by the data for the uncoated
membrane. The zinc oxide-coated nanoporous alumina membranes were shown to
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Figure 15. Light microscopy images of agar plating assay results after 24 h of incubation. Materials
were examined on Luria–Bertani agar plates, which were inoculated with E. coli. (a) Uncoated
100 nm pore size nanoporous alumina membrane without light exposure. (b) Zinc oxide-coated
(coating = 5 nm) 100 nm pore size nanoporous alumina membrane without light exposure. (c)
Uncoated 100 nm pore size nanoporous alumina membrane under continuous light exposure.
(d) Zinc oxide-coated (coating = 5 nm) 100 nm pore size nanoporous alumina membrane under
continuous light exposure.

support higher cell viability than the uncoated nanoporous alumina membranes.
It should be noted that Naji & Harmand (1991) previously used in vitro
assays to confirm the cytocompatibility of amorphous alumina. The increase
in cell proliferation may be attributed to cell interactions with released zinc
ions. MacDonald (2000) indicated that Zn2+ activates mitogen-activated protein
kinase, which is involved with cell proliferation. Chen et al. (1999) showed
that zinc directly promotes DNA synthesis; zinc was shown to increase cell
DNA content. Hershfinkel et al. (2001) demonstrated that human epidermal
keratinocytes possess a functional extracellular zinc-sensing receptor; their work
suggests that the detection of extracellular zinc results in activation of numerous
signal transduction pathways and enhanced keratinocyte proliferation. Work by
MacDonald (2000), McNeil et al. (1998) and Oda et al. (2000) also suggested that
keratinocyte proliferation may be enhanced by zinc.
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Figure 16. Light microscopy images of agar plating assay results after 24 h of incubation. Materials
were examined on tryptic soy agar plates, which were inoculated with S. aureus. (a) Uncoated
100 nm pore size nanoporous alumina membrane without light exposure. (b) Zinc oxide-coated
(coating = 5 nm) 100 nm pore size nanoporous alumina membrane without light exposure. (c)
Uncoated 100 nm pore size nanoporous alumina membrane under continuous light exposure.
(d) Zinc oxide-coated (coating = 5 nm) 100 nm pore size nanoporous alumina membrane under
continuous light exposure.

Agar plating assay results for the zinc oxide-coated 100 nm pore size
nanoporous alumina membranes and uncoated nanoporous alumina membranes
are shown in figures 15 and 16. Figure 15 shows light microscopy images of
agar plating assay results after 24 h of incubation for uncoated and coated
membranes, which were examined on Luria–Bertani agar plates inoculated with
E. coli. Figure 16 shows light microscopy images of agar plating assay results after
24 h of incubation for uncoated and coated membranes, which were examined
on tryptic soy agar plates inoculated with S. aureus. The uncoated nanoporous
alumina membranes showed no inhibition of growth of E. coli and S. aureus under
either continuous light or dark exposure. On the other hand, zinc oxide-coated
nanoporous alumina membranes inhibited the growth of E. coli and S. aureus on
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the membrane surface. A small zone of growth inhibition was observed around
each zinc oxide-coated membrane, indicating leaching of zinc oxide from the
membrane. There was no discernable difference in antimicrobial performance
between membranes examined under either continuous light or dark exposure.

Zinc oxide exhibits several unusual physical and biological characteristics that
make it an appropriate selection as an antimicrobial coating material. As Sawai
(2003) noted, zinc oxide is more stable at high pressures and high temperatures
than conventional organic antimicrobial pharmacological agents. In addition,
Kamat et al. (2002) demonstrated that zinc oxide coatings can be used for
simultaneous sensing and degradation of organic contaminants, since the presence
of a contaminant may be detected by quenching of visible emission from zinc
oxide. According to Li et al. (2008), the broad level of antimicrobial activity
provided by zinc oxide remains unclear; however, several possible mechanisms
of activity have been presented in the literature. Akhavan et al. (2009) have
shown that zinc oxide provides antimicrobial activity in both dark and lighted
experimental conditions. Sawai et al. (1995) demonstrated that zinc oxide exhibits
antimicrobial activity against both Gram-positive and Gram-negative bacteria.
A study by Atmaca et al. (1998) demonstrated activity by zinc against S. aureus,
Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria; this study
suggested that zinc interacts with microbial membranes and acts to prolong the
lag phase of the growth cycle. Liu et al. (2009) recently suggested that zinc
oxide distorts and damages the bacterial cell membrane; this process results
in leakage of intracellular contents and cell death. Huang et al. (2008) also
demonstrated disorganization of Gram-negative membranes and Gram-positive
membranes after interaction with zinc oxide. Work by Zhang et al. (2007)
indicated that zinc oxide causes damage to the membrane wall of E. coli; their
work suggested that zinc oxide acts either by means of reactive oxygen species
(e.g. hydrogen peroxide) generation or by means of zinc oxide–membrane wall
interaction. In addition, Sawai et al. (1998) indicated that zinc oxide releases
hydrogen peroxide, which crosses the cell membrane and causes intracellular
damage. It should be noted that degradation of the entire zinc oxide coating could
potentially result in a loss of antimicrobial activity; as such, optimized zinc oxide-
coated membranes should exhibit low rates of zinc oxide release. However, work
by Yebra et al. (2006) noted that zinc oxide-based paints exposed to saline (sea
water) solutions exhibited markedly lower degradation rates than conventional
cuprous oxide-based paints. In addition, Pilbath et al. (2008) have demonstrated
that 1,5-diphosphonic acid-based treatments may be used to inhibit degradation
of zinc surfaces.

Nanoporous materials of 100 nm pore size with antimicrobial activity have
potential uses in water purification (Savage & Diallo 2005; Smith 2006).
Marcucci et al. (2003) have indicated that the use of membranes for water
purification is growing. Owing to their thermal stability, nanoporous ceramic
filters can be cleaned using high-temperature procedures (e.g. autoclaving)
for repeated use. The Gram-negative and Gram-positive organisms that were
examined in this study, E. coli and S. aureus, are organisms that were
noted by Lechevallier & Seidler (1980) as well as Edberg et al. (2000) to
be found in drinking water; these pathogenic micro-organisms have been
shown to cause human illness. Van der Bruggen & Vandecasteele (2003) have
described the use of nanoporous membranes for removing particles as well as
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micro-organisms. Ma, B. et al. (2009) and Ma, N. et al. (2009) noted that
membranes have several benefits over conventional processes for removal of
micro-organisms and particles during water treatment processes; membrane-
based processes involve lower energy costs, more compact devices, more scalable
processes and more straightforward processes than conventional processes.
Peltier et al. (2003) demonstrated that nanofiltration may improve water quality;
significant reductions in biological and organic contaminants were achieved.
For example, Srivastava et al. (2004) described the use of carbon nanotube
filters as water purification membranes; these hollow cylinders with aligned
carbon nanotube walls were shown to remove E. coli, S. aureus and Poliovirus
sabin 1. However, Liu et al. (2010) have stated that microbial biofouling of
membranes is the leading factor that limits the use of nanoporous membranes
in water treatment. Biofouling involves microbial adhesion and proliferation
on the water purification membrane surface; according to Hilal et al. (2004),
bacteria may form confluent biofilms on the membrane surface. Kochkodan et al.
(2008) and Liu et al. (2010) noted that micro-organisms degrade membrane
permeability, thereby reducing membrane lifespan and increasing the amount
of energy required for filtration. In addition, Park et al. (2005) suggested that
micro-organisms may release by-products that degrade water quality. Flemming
et al. (1997) noted that the conventional mechanism for preventing membrane
biofouling, pre-treatment of water with a biocidal agent, may not be completely
effective owing to rapid proliferation of many micro-organisms; according to
Kim et al. (2009), biocidal agents may damage the membrane surface. In
addition, Krasner et al. (2006) showed that conventional disinfectants such as
free chlorine, chloramines and ozone may interact with constituents of treated
water to create carcinogenic disinfection by-products. Li et al. (2008) stated
that membrane biofouling may be minimized by placing biocidal agents on the
membrane surface; the antimicrobial membrane surface may serve to prevent
microbial adhesion and proliferation as well as to provide separation functionality.
Haas (2000) and Weber (2002) suggested that nanoporous membranes with
antimicrobial properties may be especially useful small-scale or point-of-use
systems; distributed water systems may be especially useful for underdeveloped
regions, remote locations and emergency situations. Nanoporous membranes
containing chlorine-free biocidal agents may provide an environmentally friendly
mechanism for treating waterborne micro-organisms. Several investigators have
recently evaluated the use of inorganic membranes containing the photoactive
anatase phase of titania for water filtration and photocatalysis. For example,
Ma, N. et al. (2009) deposited an Si-doped TiO2 photocatalytic layer on an
alumina membrane using a sol–gel technique. Water permeability was shown to
be related to the thickness of the titania layer. In addition, photocatalysis of a
dye under ultraviolet irradiation was demonstrated. Zhang et al. (2006) prepared
silica/titania nanotube composite membranes on porous alumina using a sol–
gel method; removal of Direct Black 168 dye by means of membrane separation
and photocatalysis was demonstrated. Zhang et al. (2008) grafted anatase
titania nanotubes within the channels of alumina membranes using a liquid-
phase deposition mechanism; these membranes demonstrated photodegradation
of humic acid. In addition, the membranes demonstrated the removal of
humic acid from water. It should be noted that titania-containing nanoporous
membranes rely on access to a light source for photocatalytic antimicrobial
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activity; incorporation of a light source within the water treatment environment
may require extensive retrofitting as well as additional cost of operation.
In addition, Li et al. (2008) suggested that a light-dependent photocatalytic
antimicrobial system may have a lower disinfection efficiency than a conventional
slurry reactor.

4. Conclusions

The results of this study indicate that atomic layer deposition may be used
to modify the pores of nanoporous alumina membranes for medical and
environmental health applications. The pores of the PEGylated platinum-coated
nanoporous alumina membranes remained free of fouling after exposure to human
platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation
were not observed on the membrane surface. Zinc oxide-coated nanoporous
alumina membranes demonstrated activity against two waterborne pathogens,
E. coli and S. aureus. Atomic layer deposition is a scalable, cost-effective method
for modifying the surfaces of materials; it is anticipated that this technique
can successfully compete on a commercial basis with conventional surface
modification processes. The development of novel nanoporous membranes with
anti-protein biofouling and antimicrobial functionalities could have significant
impacts on in vivo sensing and water purification, respectively. Future studies will
involve assessing the size selectivity of coated nanoporous alumina membranes.
For example, efforts are needed to incorporate ‘smart’ functionalities such as
biomimetic selective transport properties within the pores of nanoporous alumina
membranes (Adiga et al. 2008)
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