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In this paper, we illustrate how advanced computational modelling and simulation can
be used to investigate drug-induced effects on cardiac electrophysiology and on specific
biomarkers of pro-arrhythmic risk. To do so, we first perform a thorough literature
review of proposed arrhythmic risk biomarkers from the ionic to the electrocardiogram
levels. The review highlights the variety of proposed biomarkers, the complexity of
the mechanisms of drug-induced pro-arrhythmia and the existence of significant animal
species differences in drug-induced effects on cardiac electrophysiology. Predicting drug-
induced pro-arrhythmic risk solely using experiments is challenging both preclinically
and clinically, as attested by the rise in the cost of releasing new compounds to
the market. Computational modelling and simulation has significantly contributed to the
understanding of cardiac electrophysiology and arrhythmias over the last 40 years. In the
second part of this paper, we illustrate how state-of-the-art open source computational
modelling and simulation tools can be used to simulate multi-scale effects of drug-
induced ion channel block in ventricular electrophysiology at the cellular, tissue and whole
ventricular levels for different animal species. We believe that the use of computational
modelling and simulation in combination with experimental techniques could be a
powerful tool for the assessment of drug safety pharmacology.
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1. Introduction

Anti-arrhythmic drugs (classes I, III and IV) are routinely used to treat heart
rhythm disorders by directly interfering with cardiac ion channel activity. How-
ever, as stated in a review of class III anti-arrhythmic drugs by MacNeil (1997),
‘proarrhythmia is a concern for all patients taking anti-arrhythmic drugs’.
For example, class III anti-arrhythmic drugs prevent arrhythmias by prolonging
action potential duration (APD). However, excessive action potential (AP)
prolongation caused by a high dosage of class III anti-arrhythmic drugs
is suspected to be the cause of a variety of forms of triggered activity
at the cellular level—including early after depolarizations (EAD)—that may
degenerate into life-threatening forms of arrhythmia. Moreover, pro-arrhythmia
is not only an issue related to anti-arrhythmic drugs, but non-cardiac drugs
can also unintentionally interfere with cardiac electrophysiology and pose
risks of arrhythmogenicity. Thus, cardiac toxicity is a major concern for the
pharmaceutical industry, regulatory agencies and society and represents a huge
socio-economic impact. Improvements in the assessment of safety pharmacology
are therefore urgent to aid in identifying cardiotoxic compounds as early as
possible in the drug development process.

Regulatory agencies point at the prolongation of the interval between
the Q wave and the T wave (QT interval) as the main clinically
proven electrocardiogram (ECG) biomarker for drug safety. Preclinically, AP
prolongation and human ether-a-go-go (hERG) block would also lead to the
abandonment of the compound from further development. It is, however, well
recognized that a thorough QT/QTc (where QTc is the QT interval corrected
for the heart rate) study alone is inadequate for assessment of drug-induced
cardiac toxicity owing to the poor correlation between QT prolongation and
occurrence of torsade de pointes (TdP; Shah & Hondeghem 2005). In addition,
it has also been extensively documented that AP prolongation or hERG block
are not necessarily related to increased arrhythmic risk. Thus, a large body of
research has been directed at identifying new biomarkers of drug cardiotoxicity.
For instance, the TRIaD concept (i.e. triangulation of AP, reverse use dependence
of the drug, beat-to-beat instability and spatial dispersion of repolarization)
suggests that QT prolongation in the presence of TRIaD preferentially leads
to TdP, while QT prolongation without TRIaD may be anti-arrhythmic. Thus,
new ECG biomarkers obtained by extracting TRIaD from ECG, either alone
or combined with the QT/QTc interval, may provide a better drug safety
assessment than the QT/QTc interval alone. Among steady-state morphological
and dynamic repolarization parameters, the most probable ECG equivalents
of TRIaD have been suggested to be T-wave changes (T), QT/RR slope (R),
QT variability (I) and T-peak to T-end (TpTe) interval (D; Hondeghem 2006;
Antzelevitch et al. 2007).

Identification of new and efficient biomarkers of drug cardiotoxicity requires
a deep understanding of the mechanisms of drug-induced cardiac arrhythmias.
These mechanisms are often multi-scale, spanning from multiple drug-induced
alterations in ion channels to whole organ properties such as propagation
dynamics, and their investigation using solely experimental techniques offers
important limitations. Computational modelling and simulation have been
extensively used in the field of cardiac electrophysiology, and they represent
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promising tools for the improvement of the safety pharmacology assessment
process and the identification of new biomarkers of drug cardiotoxicity. The
goal of the present paper is twofold. Firstly, a literature review is performed
on biomarkers for the evaluation of drug-induced arrhythmic risk from the ionic
to the ECG levels. Then we illustrate the use of state-of-the-art computational
modelling and simulation techniques for the simulation of drug-induced effects on
cardiac electrophysiology and on specific biomarkers proposed in the literature.

2. Biomarkers of drug-induced arrhythmic risk

A large body of research has provided insight into the impact that alterations
in specific ion channel properties has at the cellular, tissue and ECG levels.
These investigations have resulted in the identification of a number of biomarkers,
which could be key to the diagnosis of pathological pro-arrhythmic states.
Pro-arrhythmic mechanisms can be related to alterations in ion channel
properties caused by drugs, mutations and diseases, usually involving cardiac
sodium, potassium and/or calcium channels. In the following sections, we
review the main biomarkers identified for each of the ionic currents, providing
examples of the impact of specific anti-arrhythmic or pro-arrhythmic drugs on
those biomarkers.

(a) Sodium channels

SCN5A-encoded Na+ channels have been known to be expressed in cardiac
myocytes for more than three decades (Kohlhardt et al. 1972). Two distinct
components of the Na+ current have been identified in cardiac myocytes: a
transient component (INa(T)) and a persistent component (INa(P), also termed
INa(late)). Whether these two currents are produced by the same channel or
by different isoforms remains an open question (see Saint (2008) for a review
and further references supporting each of the two theories). From a biophysical
point of view, INa(T) is activated following membrane depolarization, inactivates
quickly and is responsible for the upstroke phase of the cardiac AP as well as
for the entrainment system between neighbouring cells that guarantees a proper
conduction of the electrical stimulus. INa(P) differs from INa(T) primarily owing to
different inactivation properties, almost absent for INa(P), but also for the slightly
different steady-state activation kinetics (20 mV more negative for INa(P)). The
two currents also differ in tetrodotoxin sensitivity (Saint et al. 1992).

Class I anti-arrhythmic drugs are known to alter Na+ channel properties,
resulting in depressed maximal rate of rise of cardiac APs, slowing of conduction
velocity and alterations in refractoriness. Class I drugs have been traditionally
subdivided into three categories—Ia, Ib and Ic—according to their kinetics of
action (intermediate, fast and slow, respectively; Trevor & Katzung 2003) and
also their different effects on the effective refractory period (ERP): class Ib drugs
markedly depressed ERP (and shortened APD), whereas Ic drugs had minor
effects on ERP and the Ia subgroup moderately prolonged ERP (and APD;
Campbell 1983).

Quinidine, flecainide and lidocaine are examples of class Ia, Ib and Ic drugs,
respectively, that have shown pro-arrhythmic potential as described below.
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Quinidine is a class Ia drug, used to treat atrial and ventricular fibrillation. It
has been shown to block both components of the sodium current (binding to its
open state) and to cause a prominent reduction in upstroke velocity (Salata &
Wasserstrom 1988). However, it also blocks the calcium current and a variety
of potassium conductances. Its class III effects on IKr have been suggested as
the reason for its pro-arrhythmic potential (Yang & Roden 1996). Quinidine
was found to increase ERP in a rate-independent manner in humans (Rosenheck
et al. 1990). Interestingly, quinidine was found to be pro-arrhythmic only at low
concentrations and safe at higher concentrations. Wu et al. (2008) proposed that
an explanation can be found in the concomitant block of both IKr and INa(P) by
quinidine at higher concentrations (the IC50 was found to be 4.5 and 12 mM for
IKr and INa(P) blocks, respectively).

Lidocaine (a local anaesthetic belonging to class Ib anti-arrhythmic drugs)
was first described as a cardiac INa blocker with possible anti-arrhythmic effects
by Bean et al. (1983). Lidocaine displayed affinity to the inactivated state of
the channel (Liu et al. 2003) and appears to alter the movement of the S4
segment in the IV domain of the ion channel (Sheets & Hanck 2003) where
residues at positions 1764(F) and 1771(Y) have been found to be implicated
in the binding (Ragsdale et al. 1996; figure 1). The effect on the macroscopic
current is a lower peak in the gating charge/voltage (QV) relationship. Boltzmann
fits also showed a lower half-activation value and a bigger slope factor in the
presence of lidocaine compared with control (Hanck et al. 2000). In healthy
canine hearts, lidocaine slowed conduction velocity in a rate-dependent manner
(no effect at 1000 ms pacing cycle length, 13–17% decrease at 200 ms pacing
cycle length (Anderson et al. 1990)). In a recent review, Singh & Patrick (2007)
classified lidocaine as having no effect (or minor shortening) on ERP, confirming
early findings by Olsson et al. (1975) in which a correlation between ERP changes
and administration of lidocaine could not be found. In DKPQ mutant Na+
channels (increased persistent INa(late) compared with wild type) expressed in HEK
cells, lidocaine blocked the late Na+ current (INa(late)) more than the peak (INa(T))
(An et al. 1996).

Flecainide is an example of a class Ic drug that binds to the Na+ channel
in its open state. Although it shares the same molecular receptor as lidocaine,
it appears to reach it via an intracellular pathway rather than extracellularly
(Liu et al. 2003). However, Liu et al. (2002) have shown that channel opening is
necessary but not sufficient for stable drug binding and indicated the inactivation
that follows channel opening as a critical process. At the tissue level, flecainide has
been shown to slow conduction velocity in a heterogeneous fashion (35% decrease
in the right ventricle and 29% decrease in the left ventricle; Veeraraghavan &
Poelzing 2008) but has also been shown to reduce QT prolongation in some forms
of long QT syndrome.

At the ECG level, it is well reported that administration of drugs that block
INa(T) can induce (Brugada-type) ST-segment elevation (Junttila et al. 2008). In
addition, macroscopic T-wave alternans (TWA), i.e. beat-to-beat variations in
T-wave amplitude (Tamp), morphology or polarity, have reportedly been closely
related to a high inducibility of ventricular arrhythmia after administration
of pilsicainide in patients with Brugada syndrome (Morita et al. 2003; Tada
et al. 2008). ST elevation of no less than 0.2 mV and late potentials have also
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Figure 1. Schematic of a Na+ channel and drug-binding sites. The four domains of the pore-forming
a subunit are shown together with two b sheets (b1 and b2). Each domain is composed of six
segments (S1–S6). The pore-lining segments are shown in green (S5–S6), while the voltage-sensitive
(S4) segments are shown in yellow. A part of the amino acid sequence in the S4 segments of the
fourth domain is shown enlarged in the lower panel. The particular amino acids in positions 1764
and 1771 are shown in blue as they are believed to be involved in the binding of anti-arrhythmic
drugs such as lidocaine and flecainide. Adapted from fig. 2 of Schauer & Catterall (2006).

been shown to be much more significant indices for risk stratification than
QT prolongation in patients with a Brugada-type ECG (Ajiro et al. 2005;
Ikeda et al. 2005).

Transmural dispersion of repolarization has been found to increase significantly
after administration of veratridine, which leads to type 3 of long QT (LQT)
syndrome (LQTS) owing to augmented INa(late) (Milberg et al. 2005). Being
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considered as electrocardiographic counterparts of dispersion of repolarization
(Benatar et al. 2002; Antzelevitch et al. 2007), TpTe and the ratio between
TpTe and Q-onset to T-peak interval (TpTe/QTp) may be useful biomarkers
for monitoring cardiac safety of drugs that can increase late sodium current. It
has been shown in patients with acquired (pharmaceutical-induced) LQTS that
TpTe/QTp was a better predictor of TdP than QTc and its value of 0.28 in the
V5 lead was the cut-off point for occurrence of TdP (Yamaguchi et al. 2003).

(b) Potassium channels

The delayed rectifier K+ channels are responsible for the repolarization phase
of the cardiac AP. The KCNH2-encoded hERG protein constitutes the pore-
forming subunit of the rapid component of the delayed rectifier K+ channels (IKr)
expressed in ventricular myocytes (Sanguinetti et al. 1995). Regulatory subunits
(MiRP peptides encoded by the KCN1 gene) are believed to co-assemble with
hERG to constitute the complete IKr ion channel (see Tamargo et al. (2004) for
chromosomal locations and a more in-depth review of the K+ channels, genotype).
During a cardiac AP, IKr is activated during the plateau phase (Zhou et al. 1998)
and is responsible for the repolarization of the transmembrane potential.

In addition, the slow component of the delayed rectifier current (IKs)
is expressed in cardiac ventricular myocytes and contributes to the AP
repolarization phase. The genotype of the pore-forming subunit has been elusive
for many years and is now believed to be constituted by the assembly of KCNQ1
(also termed KvLQT1) and KCNE (also termed minK or IsK) gene products
(Sesti & Goldstein 1998; Suessbrich & Busch 1999). In healthy tissues, full
block of IKs failed to have a significant impact on the APD in ventricular
myocytes of rabbits (only 4% mean prolongation in the presence of IKs blocker
chromanol 293B (Lengyel et al. 2001)), dogs (a frequency-independent 7%
increase with the same blocker (Varro et al. 2000)) and human myocytes (APD
changes less than 12 ms (Jost et al. 2005)). However, chromanol 293B had a
significant impact on pharmacologically lengthened APD in canine myocytes,
suggesting a primary role of IKs in pathological conditions (Varro et al. 2000).
Similarly, in human myocytes, blockade of IKs by HMR-1556 caused significant
APD prolongation when repolarization reserve was reduced (by IKr block)
and sympathetic activation was present (Jost et al. 2005). In an experimental
model of rabbit with AV block-induced long QT interval and TdP, IKs (among
other currents) was found to be reduced by 50 per cent (Tsuji et al. 2002).
Cheng & Kodama (2004) also suggest that IKs (and IKr) is likely to contribute to
arrhythmogenesis in diseased hearts via the spatially heterogeneous prolongation
of APD.

IKr is considered to be the most widely targeted K+ channel linked to
potential arrhythmogenicity. The evaluation of the effects of drugs on hERG-
encoded ion channels is considered of primary importance in preclinical tests.
In fact, a relationship between blockage of IKr at therapeutic concentrations
and risk of onset of TdP through delayed repolarization is now generally
accepted in drug evaluation (Gintant et al. 2006). For example, cisapride, a
gastrointestinal prokinetic agent (Carlsson et al. 1997), and terfenadine, a non-
sedating antihistamine (Roy et al. 1996), were both withdrawn from the market
between 1997 and 2000 owing to their hERG block effects.
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The biophysical interactions between class III drug compounds and the ion
channel protein have been the subjects of extensive investigation. It has been
suggested that multiple aromatic rings on the inner surface of the pore, a rather
unique characteristic of hERG-encoded channels, are responsible for the high
affinity of drugs with similar aromatic rings in their structure (Vandenberg
et al. 2001). Methanesulfonanilides (e.g. E-4031, dofetilide, MK-499) have been
shown to bind to the open state of the channel (IC50 ∼ 130 nM) without altering
any of its kinetic properties (Spector et al. 1996). However, Herzberg et al.
(1998) were able to confer E-4031 sensitivity to the E-4031-insensitive M-eag
channels by transplanting the hERG inactivation domain into it, suggesting
a fundamental role of channel inactivation to the stability of drug binding.
Similarly, Numaguchi et al. (2000) found that the affinity of dofetilide for hERG
was nearly eliminated in a non-inactivating hERG double mutant (G628C–
S631C) compared with wild-type.

The rate dependency of drug binding to hERG channels has been suggested
as one of the factors that lead some class III anti-arrhythmic drugs to be
ineffective or even become pro-arrhythmic. Delayed repolarization is thought to
be beneficial during ventricular tachycardia because of the subsequent increase
in the refractory period, which also prevents the formation of potentially fatal
re-entrant circuits (re-entrant arrhythmia). However, many IKr blockers, which
prolong APD, are known to have a negative correlation between their potency
and heart frequency, i.e. they do not work as well at higher frequencies (which
is exactly when they are needed) and are more potent at lower frequencies,
exposing the heart to extremely prolonged APD and risk of TdP after episodes
of bradycardia (Hondeghem & Snyders 1990; Varro et al. 2004; Bnsz et al. 2009).

For example, the development of d-sotalol, a IKr blocker, was abandoned
because of poor clinical results and increased mortality compared with placebo in
patients with a defective left myocardial function (ejection volume less than 40%
and/or history of myocardial infarction (Waldo et al. 1996)). Similarly, cases
of TdP have been reported during administration of dofetilide (Moller 1996).
Interestingly, the ability of dofetilide to increase ERP was found to be decreased at
higher heart rates and increased at low heart rates (Bauer et al. 1999), which could
be related to drug-induced increased pro-arrhythmic risk as described above.

Nevertheless, block of hERG-encoded IKr does not necessarily imply delayed
repolarization and potential arrhythmogenesis. Verapamil, for example, is a
vasodilatory and anti-arrhythmic drug that has been reported to block IKr ion
channels at therapeutic concentrations (Duan et al. 2007). The lack of an AP
prolongation effect is thought to be due to the concomitant blockage of L-type
Ca2+ channels by verapamil at similar concentrations and a subsequently restored
balance between hyperpolarizing and depolarizing currents during the AP plateau
phase (Gintant et al. 2006).

The involvement of abnormal IKs behaviour in arrhythmogenicity was
suggested by Wang et al. (1996) and Chen et al. (2003). They identified
several types of genetic mutations (mostly missense mutations) in the KvLQT1
gene in families with congenital LQTS (type 1) and increased susceptibility to
cardiac tachyarrhythmias and sudden death. IKs has been recently evaluated
as a potential target for anti-arrhythmic drugs after unsatisfactory results
of clinical trials with IKr blocking agents such as d-sotalol (Gerlach 2003).
Three main compounds have shown the ability of selectively blocking IKs: the
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above-mentioned chromanol 293B, benzodiazepines and benzamides (Gerlach
2003). Although KCQN1 appears to be the main molecular target, it has been
shown that KCNE allosterically facilitates drug binding resulting in a 6–100-
fold increase in affinity (Busch et al. 1997; Tamargo et al. 2004). Benzodiazepine
L-7 blocks KCNQ1 channels by binding to the S6 protein domain; normalized
I–V curves and activation kinetics were not affected by the presence of L-7,
suggesting that the block is voltage independent (Seebohm et al. 2003). The
beneficial effects of chromanol were evaluated in the intact canine heart and
it was found that blockage of IKs produced a spatially uniform increase in
ERPs that, unlike blockage of IKr by dofetilide, became more pronounced at
higher heart rates (Bauer et al. 1999). This is thought to preserve the heart
from re-entrant arrhythmias (Wellens et al. 1984). Similarly, benzodiazepines
(L-768 673 compound) were able to reduce ventricular fibrillation and incidence
of arrhythmias in a canine experimental model of recently infarcted heart
(Lynch et al. 1999).

Administration of drugs that block IKr and/or IKs can change steady-state
behaviour of repolarization reflected in T-wave morphology, time interval and
T-wave vector loop morphology. In terms of T-wave morphology, increased JT
area (total area of the T-wave) has been reported (Thomsen et al. 2006a,b),
representing increased interventricular dispersion of repolarization (van Opstal
et al. 2002). T-wave area-based parameters have been shown to be indices
as effective as QT interval for identification of sotalol-induced repolarization
changes (Couderc et al. 2003). Moreover, such morphological measurements
take into account not only the morphology of repolarization but also the
entire process of repolarization. They have been shown to be more stable
and thus more reliable than manual QT measurement (Couderc et al. 2003).
Decreased Tamp, increased U-wave amplitude, increased ratio of U-wave to T-
wave amplitude, and increased incidence of T-wave notching have also been
observed following the use of IKr/IKs blockers (Houltz et al. 1999; Gbadebo
et al. 2002; Thomsen et al. 2006a,b). Recent studies conducted by researchers in
Denmark have demonstrated that an overall morphology score, which evaluates
the asymmetry, notch and flatness of the T-wave, could discriminate patients with
LQT2 (hERG) mutations from normal controls (Andersen et al. 2007). The score
has also been shown to be a more sensitive measure of repolarization changes
induced by an IKr -inhibiting compound (Lu 35-138) than the QT/QTc interval
(Graffet al. 2008). Changes in steady-state repolarization are also reflected in
changes in time intervals, such as increased TpTe and TpTe/QTp (Benatar
et al. 2002; Liu et al. 2006; Thomsen et al. 2006a,b; Gallacher et al. 2007),
which represents increased transmural dispersion of repolarization (Benatar et al.
2002; Antzelevitch et al. 2007) as mentioned previously. TpTe/QTp has been
suggested to be a better biomarker than QT and TpTe in assessment of
pro-arrhythmic effects of IKr -blockers (Liu et al. 2006), while TpTe has been
shown to be a better indicator of spontaneous TdP induced by IKs-blockers
than QT (So et al. 2008). In terms of T-loop morphology, IKr -blocker-induced
changes in vectorcardiograms derived from conventional 12-lead ECG have been
investigated, including increased early and late repolarization duration measured
from the T loop (Couderc et al. 2006, 2008). Such morphology parameters have
been shown to be better in detecting the existence of an IKr -blocker than QTc
interval (Couderc et al. 2008).

Phil. Trans. R. Soc. A (2010)



Review. Arrhythmic biomarkers 3009

IKr/IKs blockers can also lead to changes in the dynamic behaviour of
repolarization, such as decreased Tamp/RR ratio, decreased QT/TQ ratio (Fossa
et al. 2007) and increased slope of the QT/RR relationship (Lande et al. 1998;
Couderc et al. 2003; Smetana et al. 2004). Variation of QT also increases, which
indicates increased temporal dispersion of repolarization, and can be assessed by
the QT variability index (evaluated over several beats (Berger et al. 1997)) or
by beat-to-beat QT variability (evaluated from Poincare plots (van der Linde
et al. 2005)). The latter has been shown to be superior to QT prolongation for
predicting occurrence of TdP induced by IKr -blocking drugs (Thomsen et al. 2004,
2006a,b).

Microvolt TWA has been observed after administration of pentamidine
(Kroll & Gettes 2002), which can prolong the QT interval by reducing hERG
expression (Cordes et al. 2005), and thus proposed to be potentially useful
for identification of patients who exhibit higher risk for lethal arrhythmias.
Spectral analytical method is the most common method for TWA detection from
stationary ECG recordings (Bloomfield et al. 2002). Non-spectral technique, such
as the modified moving average beat analysis, has been used for Holter recordings
(Verrier et al. 2005).

(c) Calcium channels

L-type Ca2+ channels are commonly expressed in mammalian cells of excitable
and non-excitable tissues by the CACNA1C gene. They have traditionally
been classified by their sensitivity to dihydropyridine-based compounds (e.g.
nifedipine) and constitute one of the most important Ca2+ entry pathways into
the cell. The ubiquitous role of Ca2+ in cellular pathophysiology underlies the
implication of L-type Ca2+ channels in a variety of diseases of diverse nature.
In the heart, L-type Ca2+ channel abnormalities have been linked to ventricular
arrhythmias, impaired excitation–contraction coupling leading to heart failure,
as well as atrial fibrillation (see Bodi et al. 2005).

Three main classes of drugs are known to interfere with L-type Ca2+ channel
activity: phenylalkylamines (e.g. verapamil), benzothiazepines (e.g. diltiazem)
and dihydropyridines (e.g. nifedipine and Bay K 8644 (Hockerman et al. 1997)).
Compounds belonging to all three classes directly interact with the IIIS6 and IVS6
transmembrane segments of the a1 subunit of the channel in a voltage and state-
dependent fashion that was found to be consistent with the modulated receptor
model initially proposed for local anaesthetics with Na+ channels (McDonald
et al. 1984). While phenylalkylamines and benzothiazepines are for the most
part channel blockers, different compounds belonging to the dihydropyridines
class may be either agonists or antagonists. A link between L-type Ca2+
channels agonist dihydropyridines and cardiac arrhythmias was first proposed
by January & Riddle (1989). L-type Ca2+ channel agonist Bay K 8644 was
shown to induce EADs from an average take-off potential of −34 mV. In the
presence of Bay K 8644, L-type Ca2+ current was augmented and the peak of
the I–V curve was shifted to more negative potentials indicating interference
with the kinetic properties of the ion channel. Furthermore, it was pointed
out that time-dependent properties such as recovery from inactivation could
be of primary importance for the onset of EADs. These findings were further
substantiated by a later modelling study by Zeng & Rudy (1995), where the
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effects of a b-adrenergic agent (isoproterenol) on L-type Ca2+ channels were
simulated and incorporated into a whole-cell Luo–Rudy model. In particular,
owing to experimental results of patch clamp experiments on isolated canine
myocytes by Priori & Corr (1990), the authors modified the normal equation of
the Hodgkin and Huxley formulation of ICaL by increasing the inactivation time
constant (13%) and the maximal conductance (fivefold increase). Results of whole
cell simulations under such conditions showed the ability of b-adrenergic agents
to initiate an EAD, confirming the potential implication of L-type Ca2+ channels
in the arrhythmogenic process. Similar conclusions regarding the involvement
of ICaL were reached by Viswanathan & Rudy (1999) in a simulation study of
pause-induced EADs.

The arrhythmogenic effect of stimulating L-type Ca2+ channels was also found
to be potentiated by acetylcholine in guinea pig ventricular myocytes (Song
et al. 1998). The implication of ICaL in the arrhythmogenic process was further
studied in a rabbit experimental model with chronic atrioventricular block (AVB;
Tsuji et al. 2002). In such animals, the incidence of acquired QT prolongation
and TdP was significantly higher than in similar experiments with dogs. The
electrophysiological properties of L-type Ca2+ channels were found to be altered.
In particular, the steady-state activation curve of ICaL was shifted towards the
negative direction whereas the inactivation kinetics were unaltered. These results
are, again, in contrast with previous experiments on dogs that seemed to imply
an involvement of the inactivation kinetics of ICaL in arrhythmogenesis.

Another link between L-type Ca2+ channels and cardiac arrhythmias was
established by the study of patients affected by Timothy syndrome (Splawski
et al. 2004). It was found that the origin of this multi-system disorder was
a de novo missense mutation affecting the Cav1.2 gene (one of the aliases
commonly used for the CACNA1C gene). Patients affected by Timothy syndrome
displayed a variety of symptoms affecting different tissues and organs (autism
and finger syndactyly, among others). In the heart, prolonged QT interval
was found in 100 per cent of the patients and ventricular tachycardia in 71
per cent. From an electrophysiological point of view, it was shown that the
mutation underlying Timothy syndrome caused a loss of voltage-dependent
inactivation, resulting in a gain of function of the L-type Ca2+ channel. Voltage
clamp data were incorporated into the Luo–Rudy model and a prolonged APD
was predicted.

Regarding the effect of calcium antagonists on the ECG, verapamil and
diltiazem have been widely reported to prolong the PQ interval (atrioventricular
conduction time) while producing no significant changes in QT/QTc (Heng et al.
1975; Della Paschoa et al. 1995; Busse et al. 2006). QT variability, however,
has been shown to increase significantly following administration of diltiazem
(Yamabe et al. 2007).

3. Computational assessment of the impact of drug-induced alterations on
cardiac electrophysiology: from ion channels to ECG

As illustrated in the previous section, drug-induced alterations in ionic current
properties result in complex changes in cardiac electrophysiological activity, which
often involve multi-scale mechanisms from the ionic to the whole organ level
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and exhibit important animal species differences. Over the last five decades,
computational cardiac electrophysiology has developed into a mature discipline,
and state-of-the-art computational models are routinely used to investigate
heart rhythm mechanisms. The following sections provide a description of
advanced computational tools and models developed within the Computational
Biology Group at the University of Oxford, which are freely available to
the scientific community. We present three simulation studies that illustrate
how these tools can be used for the simulation of drug-induced effects on
cardiac electrophysiology using cellular, tissue and whole ventricular models
for different animal species including (and not limited to) human, rabbit
and guinea pig.

(a) Computational tools and models for heart rhythm research

Since 1960, when Denis Noble published the first cell model of the cardiac AP
(Noble 1960), a large number of mathematical models of the cellular AP have
been developed for different cell types (i.e. sino-atrial, Purkinje, atrial, ventricular
and fibroblast) and animal species (including human, dog, rabbit, guinea pig
and rat). The complexity of these models varies, but the most complex ones
can include 60–80 ordinary differential equations and hundreds of parameters
to describe the ionic processes underlying cardiac cellular electrophysiological
activity. Most of the AP models are now available in the CELLML repository
(http://www.cellml.org/). The CELLML (Lloyd et al. 2004) code for the cellular
AP models can be used to conduct simulations with freely available software such
as COR (http://cor.physiol.ox.ac.uk/) or can be converted from CELLML code
to a variety of programming languages (such as Matlab or C++) with software
such as PyCML (https://chaste.comlab.ox.ac.uk/cellml/).

Simulation of cardiac electrophysiology activity using tissue or whole organ
models is a computationally expensive task that requires the use of sophisticated
numerical and computational techniques. The Chaste simulator is, to date, the
only open source software package which can be used for the simulation of
cardiac electrophysiological activity from the ionic to the ECG level. Chaste
has been developed at the University of Oxford with inputs from industrial
partners such as Fujitsu Laboratories Europe and the code is available from
www.comlab.ox.ac.uk/Chaste. As described in Pitt-Francis et al. (2008), Chaste
was developed with four main specific requirements: (i) to use state-of-the-
art software engineering methods, (ii) to achieve maximum efficiency on high
performance computing (HPC) platforms by using state-of-the-art numerical
and computational techniques, (iii) to be freely available (including source
code) to the scientific community, and (iv) to be generic enough, and not
constrained to a particular application. Chaste can be used for the simulation
of cardiac electrophysiological activity from the ionic to the ECG level, using
any AP model available in the CellML repository and any tissue or whole
organ geometry.

In the following sections we describe the use of cellular, tissue and whole
ventricular models for the simulation of the effect of alterations on cellular,
tissue and ECG biomarkers of arrhythmic risk. In §3b, we describe a recent
study in which one of the most detailed human ventricular AP models was
used to investigate the impact of variability in ionic current properties on
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cellular biomarkers of arrhythmic risk (Romero et al. 2009). In §3c,d, tissue and
whole ventricular models are used to illustrate how the impact of ion channel
block on the tissue and ECG biomarkers can be simulated using the cardiac
simulator Chaste.

(b) Impact of ion channel variability on preclinical cellular biomarkers of
arrhythmic risk

In a recent study, Romero et al. (in press) analysed the sensitivity of the
main preclinical biomarkers of arrhythmic risk to changes in transmembrane ionic
current conductances and the kinetics involved in AP repolarization in humans.
Different stimulation protocols were applied to the human ventricular model
(ten Tusscher et al. 2004) to study the impact of changes in transmembrane
ionic current properties on cellular electrophysiological properties related to
arrhythmic risk. In particular, APD, AP triangulation, diastolic and systolic
calcium levels at normal (1 Hz) and slow rates (0.5 Hz), maximum slope of the
standard (slopemax,S1S2) and the dynamic (slopemax,DYN) restitution curves, fast
and slow time constants of the APD adaptation to changes in heart rhythm
(tfast and tslow, respectively) and intracellular calcium and intracellular sodium
concentration rate dependence were investigated. A total of 10 440 simulations
were run. The simulation of 3000 ms of cellular activity in an Intel Core 2 Quad
CPU 2.39 GHz 1.96 GB RAM took 1.5 s.

The relative sensitivities of each cellular biomarker to changes in each current
property found in that study are represented in figure 2 in grey scale, except
for activation and fast voltage-dependent inactivation gate time constants of
ICaL and activation and inactivation gate time constants of the rapid component
of the delayed rectifier current as their effects were negligible. In figure 2, the
highest sensitivity of a biomarker is represented in white and its absolute
value is also shown in each white box. The figure shows that changes in any
repolarization current conductance and in ICaL inactivation kinetics as well as
the slow component of the delayed rectifier current (tXs) can effectively modify
the APD. By contrast, AP triangulation is basically determined by inward
rectifier potassium current (IK1) and IKs. In addition, adaptation of AP duration
to rate changes, restitution properties and intracellular calcium and sodium
concentrations depend on ICaL properties and the sodium–potassium pump. As
each column represents the effect of a certain ionic current modification, potential
side effects of a new component could be anticipated by using this sensitivity
analysis.

A similar sensitivity study was conducted using the Shannon et al. rabbit
ventricular AP model (Romero et al. 2009). Our results showed that, similarly
to humans, rabbit APD is moderately sensitive to changes in all repolarization
currents. However, the effect of INaK, ICaL and IKr is more relevant in rabbit
myocytes. AP triangulation is strongly dependent on IK1 and IKr , as in humans.
In addition, AP rate dependence is markedly modified by INaK, INaCa and ICaL,
which play a major role in this electrophysiological property in humans, but
also by IKr and IK1. Furthermore, intracellular Ca2+ and Na+ levels are very
sensitive to INaK and INaCa, which supports our results obtained in virtual human
cardiomyocytes.
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Figure 2. Impact of ionic current variability on cellular electrophysiological biomarkers of
arrhythmic risk. Electrophysiological properties are shown in the first column and ionic current
properties appear in the first row. Relative sensitivities are depicted in grey code, with white being
the colour that indicates the maximum sensitivity of an electrophysiological property. ICaL, L-type
calcium current; IKr , the rapid component of the delayed rectifier current; IKs , the slow component
of the delayed rectifier current; IK1, inward rectifier potassium current; INaK, sodium–potassium
pump current; INaCa, sodium–calcium exchanger current; GCaL, maximal conductance of ICaL; tf ,
slow voltage-dependent inactivation gate time constants of ICaL; GKr , maximal conductance of IKr ;
GKs , maximal conductance of IKs ; tXs , activation time constant of IKs ; GK1, maximal conductance
of IK1; GNaK, maximal activity of the sodium–potassium pump; GNaCa, maximal activity of the
sodium–calcium exchanger.

Therefore, this sensitivity analysis can also be used to compare the
electrophysiological behaviour between different species and to anticipate
discrepancies in drug effects between the experiments on different animal species
(including human) and different cell types (Sanchez et al. 2009).

(c) Simulation of multi-scale electrophysiological effects of ion channel
block in a ventricular tissue slab

In this section, we present results of the simulation of the effect of ion channel
block on cardiac electrophysiological activity in a slab of ventricular tissue
obtained using the Chaste simulator. The electrical properties of the 0.45 cm edge
length slab were simulated using the bidomain model. The tissue model included
epicardial (0.11 cm), mid-myocardial (0.17 cm) and endocardial (0.17 cm) layers
(Saucerman et al. 2004). In order to examine species difference in response to
changes in IKr , simulations were conducted with membrane kinetics represented
by the Mahajan–Shiferaw rabbit ventricular model (Mahajan et al. 2008) and
the Luo–Rudy dynamic mammalian model (Faber & Rudy 2000). Transmural
heterogeneities in IKs and transient outward current (Ito) were simulated as in
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AP

(a) (b)

ECG

100 ms

5 mV

50 mV

Figure 3. Action potentials (AP) from a representative node of each transmural layer and also the
pseudo-ECG for the control (solid lines) and 100% IKr blockade (dashed lines) conditions, for the
rabbit (a) and the guinea pig (b) models (black line, endocardium; blue line, M cell; green line,
epicardium).

previous studies (McIntosh et al. 2000; Gima & Rudy 2002). Homogeneous IKr
blockade was simulated by decreasing the maximum conductance of IKr from its
control value to 0 in steps of 20 per cent throughout the slab.

To ensure steady-state propagation, the slab was paced from the entire
endocardial surface at a basic cycle length of 300 ms. Action potentials (APs)
and pseudo-ECG during the last pacing beat were analysed. The pseudo-ECG
was recorded as the extracellular unipolar potential from the centre of the
outmost epicardial layer. The pseudo-ECG is obtained by assimilating the
electrical activity of the heart to a single electrical dipole. This, together with
the simplified geometry of a tissue slab, inevitably causes loss of information in
the simulated signal when compared with an anatomically realistic solution of
the forward problem of electrocardiography (Bradley et al. 2000). Nevertheless,
certain time-dependent (e.g. QT interval) as well as morphological (e.g. ST
segment elevation) features are still well represented in the pseudo-ECG signal.
Interestingly, the pseudo-ECG is also used experimentally in wedge preparations
(Weinberg et al. 2008). The computational mesh consisted of 162 000 tetrahedral
elements (edge width of 0.015 cm). Simulations were run with 5 ms time steps
on a four-processor computer (AMD Phenom(tm) 9600B Quad-core Processor
1.15 GHz 3.9 GB RAM). A full AP (400 ms) took 4 hours to simulate. According
to the parallel speed-up reported by Pitt-Francis et al. (2009), the same simulation
would take just under half an hour on 64 processors.

Figure 3 shows the time course of the AP from a representative node of each
transmural layer and also the pseudo-ECG for the control (solid lines) and 100
per cent IKr blockade (dashed lines) conditions, for the rabbit (figure 3a) and
the guinea pig (figure 3b) models. Clearly, in both models, Ir blockade led to
prolongation of APD in all three layers and the interval between Q-wave and the
peak of the T-wave (QTp). Figure 4 presents changes in transmural dispersion of
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Figure 4. Transmural dispersion of repolarization (a) and QTp (b) with varying degrees of IKr
blockade for the rabbit (crosses) and guinea pig (triangles) models.

repolarization (TDR; measured as the maximum difference in transmural APD)
and QTp with varying degrees of IKr blockade for the rabbit (crosses) and guinea
pig (triangles) models. Specifically, as the degree of IKr blockade increased from
0 to 100 per cent, TDR increased gradually by 17 and 8 per cent, together with a
gradual increase in QTp by 20 and 13 per cent for the rabbit and guinea pig model,
respectively. Here, we present simulations using two ionic specific models and we
evaluate two sets of biomarkers. However, it must be noted that users could use
any AP model and investigate any biomarker in addition to those described in
the previous section.

(d) Simulation of the impact of ion channel block on whole ventricular
electrophysiology

In this section, a rabbit ventricular model was used to simulate the impact of
ion channel block on the ECG, under several conditions of tissue coupling. The
propagation of the AP across the cardiac muscle was simulated by solving the
monodomain equation using the Chaste simulator (Pitt-Francis et al. 2009). Potse
et al. (2006) have shown that, in most cases when the extracellular potential is
not of specific interest, the distribution of Vm calculated with the monodomain
and bidomain equations are very similar. Having to solve one equation instead of
two, the monodomain model has the advantage of reduced computational cost.
Hence, although the Chaste software fully supports the solution of the bidomain
equations for the whole heart, here the monodomain model was used. Assuming
a constant conductivity tensor, the monodomain equation is

bV · VVm = Cm
vVm

vt
+ Iion + Istim, (3.1)

where Vm is the transmembrane potential, Cm is the membrane capacitance per
unit of tissue area, Iion is given by the equations in the Mahajan–Shiferaw model
of a rabbit ventricular cell (Mahajan et al. 2008), Istim is an intracellular stimulus
current and b is a diffusion coefficient (see below). The geometry of the rabbit
ventricles was reconstructed from MRI images as described in Bishop et al. (2010)
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(a) (b)

Figure 5. (a) The whole ventricular mesh. A portion of it is shifted to allow visualization of the
three layers in which the wall has been subdivided: endocardial (blue), mid-myocardial (green) and
epicardial (red). (b) Action potentials of isolated cells included in the three layers.

and discretized by 3 172 910 tetrahedral elements (average distance between nodes
was 250.741 mM). Transmural cellular heterogeneities were modelled by dividing
the cardiac wall in epicardial, mid-myocardial and endocardial layers as shown in
figure 5a in relative proportions of 2 : 3 : 3, respectively (Saucerman et al. 2004).
In each of these layers, parameters for IKs and Ito were scaled in order to match the
experimental observations on AP duration in single-cell experiments by McIntosh
et al. (2000) in a similar way to that proposed by Saucerman et al. (2004;
figure 5b).

Endocardial activation from the Purkinje system was replicated in the whole
ventricular mesh by applying an intracellular stimulus to nodes located in the
apical third of the endocardial surface.

Chaste simulations were launched through a grid middleware platform
(Nimrod), as described previously (Bernabeu et al. 2009). The monodomain
equation was solved with a PDE time step of 0.01 ms and an ODE time step of
0.005 ms. Each simulation was assigned 16 processors in parallel and took about
4 h to simulate 500 ms and output results.

The unipolar pseudo-ECG (P) recorded at a location (x0, y0, z0) was computed
as the integral of the derivative of the transmembrane potential across the heart
geometry according to the equation (Baher et al. 2007)

P(x0, y0, z0) = −
∫
Ω

DVVm · V
1
r
, (3.2)

where Ω is the geometry under consideration (the whole heart in this case), D is
the diffusion coefficient of the electrical medium surrounding the heart (assumed
constant), Vm is the transmembrane potential and r is the distance between the
recording electrode (x0, y0, z0) and a point (x , y, z) within the cardiac tissue.

Figure 6a shows a transverse slice of the whole heart 3 ms after endocardial
stimulation. The depolarizing wave reaches the epicardium and starts propagating
towards the apex (figure 6b). Figure 6c shows representative APs from three
nodes (location shown in the inset) under control conditions and under the

Phil. Trans. R. Soc. A (2010)



Review. Arrhythmic biomarkers 3017

whole organ simulations (rabbit heart)

stimulation(a)

(b)

(c)

(d )

propagation

ECG

AP prolongation

IKr block

QT prolongation

cellular action 
potentials
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Figure 6. (a) Endocardial activation seen in a sliced whole heart. (b) Snapshot of AP propagation
across the epicardial surface. (c) Representative AP traces in control and IKr block conditions at
nodes located in the epicardial (red line), mid-myocardial (green line) and endocardial (blue line)
layers. (d) Pseudo-ECG computed at a distance of approximately 3 cm from the epicardium (IKr
block, red line; control, green line).

effect of IKr block. The differences in AP shape and duration between epicardial,
mid-myocardial and endocardial layers are less marked than with a single-
cell situation (figure 5b) owing to cell-to-cell electrotonic interactions. APD
prolongation caused by IKr block was 40, 39 and 40 ms in the epicardial, mid-
myocardial and endocardial representative nodes, respectively. These variations
in AP duration are reflected in variations in the QT interval at the ECG level
(figure 6d) where the QT interval was prolonged by 42 ms.

The role of intercellular coupling in modulating transmural APD heterogeneity
and QT interval was evaluated by varying the diffusion coefficient b in the
monodomain equation. Simulations were conducted for three cases of intercellular
coupling (b = 0.428, 0.214 and 0.14 ms). The three values of intercellular coupling
gave rise to propagation velocities across the tissue of 39.2, 26.7 and 19.6 cm s−1,
respectively. Figure 7a shows APs recorded at representative nodes (the same as
in figure 6) under different coupling conditions. As the tissue becomes less coupled
the differences between epicardial, mid-myocardial and endocardial APs increase
and tend to approach the isolated cell AP. The variation in AP shape due to
intercellular coupling is shown in figure 7b, where an estimate of AP triangulation
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Figure 7. (a) Action potentials recorded at representative nodes in the mesh under different
coupling conditions (b = 0.428 ms in the top panel, b = 0.214 ms in the middle panel and b = 0.14 ms
in the bottom panel; endocardial, blue line; mid-myocardial, green line; and epicardial, red line).
The differences between epicardial and endocardial APs are highlighted (red line is a straight line).
(b) Effect of coupling on APD triangulation for epicardial, mid-myocardial and endocardial nodes.

(ratio between APD30 and APD90) is shown for the three different degrees of
coupling. While epicardial and endocardial cells slightly increase the value of AP
triangulation, as the tissue becomes less coupled, the opposite is seen for mid-
myocardial cells. Note that these trends reflect the tendency of an uncoupled
tissue to behave in a similar way to isolated cells.

4. Conclusions

It is now well established that the development of drug-induced cardiac
arrhythmia is an extremely complex and diversified pathophysiological
phenomenon that involves processes at different scales, from molecular to cellular
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and tissue levels. Furthermore, as clinical evaluation of cardiac rhythmicity is
routinely performed through the examination of ECG traces, it has become
increasingly important to understand the relationships among events occurring
at the nanoscale (molecular), microscale (cellular) and macroscale (ECG). The
first part of this paper provides a thorough review of the biomarkers of drug-
induced arrhythmic risk proposed in the literature from the ionic to the ECG
level. The review presents evidence for the existence of a variety of biomarkers,
the complexity of the mechanisms involved in drug-induced pro-arrhythmia and
some significant animal species differences, especially in drug-induced effects on
cardiac ion channels. Predicting drug-induced pro-arrhythmic risk is therefore
challenging both preclinically and clinically, as attested by the rise in the cost of
releasing new compounds onto the market.

Computational modelling and simulation have significantly contributed to
the understanding of cardiac electrophysiology and arrhythmias over the last
40 years. The second part of this paper is aimed at demonstrating the ability
of state-of-the-art computational tools to capture the multi-scale complexity
of cardiac arrhythmias. Open source computational modelling software was
used to simulate multi-scale effects of drug-induced ion channel block in
ventricular electrophysiology at the cellular, tissue and whole ventricular levels
for different animal species. Owing to its vast use in pre-clinical assessment,
IKr was chosen as an example for our simulations. Nevertheless, the same
processes can be repeated for any molecular target and also for the evaluation
of drugs acting on more than one target simultaneously. We believe that
the use of computational modelling and simulation in combination with
experimental techniques could be a powerful tool for the assessment of drug safety
pharmacology.
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