# Characterization and PCR-Based Replicon Typing of Resistance Plasmids in *Acinetobacter baumannii*<sup>∀</sup>

Alessia Bertini,<sup>1</sup> Laurent Poirel,<sup>2</sup> Pauline D. Mugnier,<sup>2</sup> Laura Villa,<sup>1</sup> Patrice Nordmann,<sup>2</sup> and Alessandra Carattoli<sup>1\*</sup>

Department of Infectious, Parasitic and Immuno-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy,<sup>1</sup> and Service de Bactériologie-Virologie, INSERM U914, Emerging Resistance to Antibiotics, Hôpital de Bicêtre, Faculté de Médecine et Université Paris-Sud, Bicêtre, France<sup>2</sup>

Received 21 April 2010/Returned for modification 3 July 2010/Accepted 17 July 2010

Acinetobacter baumannii is an opportunistic pathogen, especially in intensive care units, and multidrugresistant isolates have increasingly been reported during the last decade. Despite recent progress in knowledge of antibiotic resistance mechanisms in A. baumannii, little is known about the genetic factors driving isolates toward multidrug resistance. In the present study, the A. baumannii plasmids were investigated through the analysis and classification of plasmid replication systems and the identification of A. baumannii-specific mobilization and addiction systems. Twenty-two replicons were identified by in silico analysis, and five other replicons were identified and cloned from previously uncharacterized A. baumannii resistance plasmids carrying the OXA-58 carbapenem-hydrolyzing oxacillinase. Replicons were classified into homology groups on the basis of their nucleotide homology. A novel PCR-based replicon typing scheme (the A. baumannii PCR-based replicon typing [AB-PBRT] method) was devised to categorize the A. baumannii plasmids into homogeneous groups on the basis of the nucleotide homology of their respective replicase genes. The AB-PBRT technique was applied to a collection of multidrug-resistant A. baumannii clinical isolates carrying the bla<sub>OXA-58</sub> or bla<sub>OXA-23</sub> carbapenemase gene. A putative complete conjugative apparatus was identified on one plasmid whose selfconjugative ability was demonstrated in vitro. We showed that this conjugative plasmid type was widely diffused in our collection, likely representing the most important vehicle promoting the horizontal transmission of A. baumannii resistance plasmids.

The foundation of plasmid biology was largely built on the genetic analysis of plasmid strategies for broad-host-range replication in Gram-negative bacteria. Mechanisms which guarantee the autonomous replication, addiction systems based on toxin-antitoxin factors, partitioning systems ensuring stable inheritance during cell division, and other virulence and antimicrobial resistance determinants have been described for plasmids circulating in the Enterobacteriaceae family and Pseudomonas spp. (17). Enterobacterial plasmids have also been classified into homogeneous groups on the basis of their replication controls by conjugation (plasmid incompatibility) and molecular methods (Southern blot hybridization with replicon probes and PCR-based replicon typing) (5, 8, 10, 11). Currently, 27 incompatibility groups are recognized in the Enterobacteriaceae by the Plasmid Section of the National Collection of Type Cultures (Colindale, London, United Kingdom). In contrast, limited information is available on the plasmids circulating in Acinetobacter spp., even though Acinetobacter baumannii is an important pathogen in intensive care units (13, 28). Moreover, despite recent progress in the study of antibiotic resistance mechanisms in A. baumannii, little is known about the genetic factors that have driven the recent evolution of A. baumannii toward multidrug resistance. A. baumannii may develop resistance to carbapenems through plasmid-me-

\* Corresponding author. Mailing address: Department of Infectious, Parasitic and Immuno-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy. Phone: 39-06-49903128. Fax: 39-49387112. E-mail: alecara@iss.it. diated acquisition of carbapenem-hydrolyzing class D  $\beta$ -lactamases (CHDLs) (29). In particular, the *bla*<sub>OXA-58</sub> and *bla*<sub>OXA-23</sub> genes encoding the OXA-58 and OXA-23 CHDLs, respectively, have been reported from *A. baumannii* isolates collected from distant parts of the world in association with plasmids. The aim of the present study was to investigate the *A. baumannii* plasmids through the analysis and classification of plasmid replication systems and identification of *A. baumannii*specific mobilization and addiction systems. Finally, novel tools for detecting *A. baumannii* resistance plasmids are proposed and the plasmids are categorized into homogeneous families on the basis of the nucleotide homologies of their respective replicase genes.

### MATERIALS AND METHODS

In silico analysis of A. baumannii plasmids. An in silico comparative analysis of fully and partially sequenced Acinetobacter plasmids was performed at GenBank using the BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Fifteen fully sequenced and eight partially sequenced A. baumannii plasmids available at GenBank from six completed genomes from previous studies or identified in this study were analyzed (Table 1). Multiple-sequence alignments of the replicon nucleotide sequences have been performed using DNAMAN software (Lynnon BioSoft, Vaudreuil, Quebec, Canada) set for DNA quick alignment with a gap penalty of 7, a K-tuple of 3, 5 top diagonals, and a window size of 5. Multiple-sequence alignments of the coding sequences were performed by using the DNAMAN software set for protein quick alignment with a gap penalty of 3, a K-tuple of 1, five top diagonals, and a window size of 5.

*A. baumannii* PCR-based replicon typing (AB-PBRT) method. A total of 19 PCR amplifications were devised to detect 27 replicase genes, which were grouped into 19 homology groups (GRs) on the basis of their nucleotide sequence similarities (Table 1 and Fig. 1). These groups include five novel replicase genes (*aci3, aci4, aci5, aci7, and aci8* [Table 1]), cloned and sequenced as

<sup>&</sup>lt;sup>v</sup> Published ahead of print on 26 July 2010.

| Strain           | Plasmid (EMBL accession no.)                                      | Replicase<br>name                                        | Rep superfamily                                                          | Source of homology by BLASTp best hit <sup>a</sup>                                      | % amino acid<br>identity (EMBL<br>accession no.)                                 | Iterons <sup>b</sup> | Rep<br>group               | Reference         |
|------------------|-------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|----------------------------|-------------------|
| ACICU            | pACICU1 (NC_010605)                                               | Aci1                                                     | Rep-3 pfam01051                                                          | Klebsiella pneumoniae                                                                   | 71 (YP_001338806)                                                                | Pos                  | GR2                        | 19                |
|                  | pACICU2 (NC_010606)                                               | AciX<br>Aci6                                             | Rep-3 pfam01051<br>Rep pfam03090                                         | Neisseria lactamica<br>Pseudoalteromonas sp.                                            | 55 (ZP_05987942)<br>41 (YP_001887739)                                            | Pos<br>Neg           | GR10<br>GR6                |                   |
| SDF              | p1ABSDF (NC_010395)<br>p2ABSDF (NC_010396)<br>p3ABSDF (NC_010398) | p1ABSDF0001<br>p2ABSDF0001<br>p2ABSDF0025<br>p3ABSDF0002 | Rep-3 pfam01051<br>Rep-3 pfam01051<br>Rep-3 pfam01051<br>Rep-3 pfam01051 | Moraxella bovis<br>Moraxella bovis<br>Moraxella bovis<br>Klebsiella pneumoniae<br>pKPN5 | 59 (YP_001966359)<br>40 (YP_003289297)<br>50 (YP_003289297)<br>57 (YP_001338806) | Pos<br>Pos<br>Neg    | GR1<br>GR12<br>GR18<br>GR7 | 34                |
|                  |                                                                   | p3ABSDF0009                                              | Rep-3 pfam01051                                                          | Klebsiella pneumoniae<br>pKPN5                                                          | 45 (YP_001338806)                                                                | Pos                  | GR9                        |                   |
|                  |                                                                   | p3ABSDF0018                                              | Rep-3 pfam01051                                                          | Moraxella bovis                                                                         | 41 (YP_003289297)                                                                | Pos                  | GR15                       |                   |
| AYE              | p1ABAYE (NC_010401)                                               | p1ABAYE0001                                              | Rep-3 pfam01051                                                          | Enhydrobacter                                                                           | 33 (ZP_05619518)                                                                 | Pos                  | GR11                       | 34                |
|                  | p2ABAYE (NC_010402)                                               | p2ABAYE0001                                              | Rep-3 pfam01051                                                          | aerosaccus<br>Klebsiella pneumoniae                                                     | 71 (YP_001338806)                                                                | Pos                  | GR2                        |                   |
|                  | p3ABAYE (NC_010404)                                               | p3ABAYE0002                                              | Rep-3 pfam01051                                                          | Pasteurella multocida                                                                   | 31 (NP_848174)                                                                   | Neg                  | GR13                       |                   |
|                  | p4ABAYE (NC_010403)                                               | p4ABAYE0001                                              | Rep-1 pfam01446                                                          | Pseudomonas putida                                                                      | 43 (NP_064737)                                                                   | Neg                  | GR14                       |                   |
| ATCC 17078       | pAB1 (NC_009083)                                                  | A1S_3471                                                 | Rep-3 pfam01051                                                          | Klebsiella pneumoniae                                                                   | 59 (YP_001338806)                                                                | Pos                  | GR17                       | 32                |
| 17570            | pAB2 (NC_009084)                                                  | A1S_3472                                                 | Rep-3 pfam01051                                                          | Klebsiella pneumoniae<br>pKPN5                                                          | 71 (YP_001338806)                                                                | Pos                  | GR2                        |                   |
| Ab0057           | pAB0057 (NC_011585)                                               | AB57_3921                                                | Rep-3 pfam01051                                                          | Klebsiella pneumoniae                                                                   | 71 (YP_001338806)                                                                | Pos                  | GR2                        | 1                 |
| Ab49<br>AbABIR   | pAB49 (L77992; partial)<br>pABIR (EU294228)                       | repApAB49<br>RepA_AB                                     | Rep-1 pfam01446<br>Rep-3 pfam01051                                       | Bacillus cereus<br>Moraxella bovis                                                      | 38 (ZP_04189469)<br>40 (YP_003289297)                                            | Neg<br>Pos           | GR16<br>GR12               | Unpublished<br>35 |
| VA-566/00        | pABVA01 (NC_012813)                                               | Aci2                                                     | Rep-3 pfam01051                                                          | Klebsiella pneumoniae<br>pKPN5                                                          | 74 (YP_001338806)                                                                | Pos                  | GR2                        | 9                 |
| Ab19606          | pMAC02 (AY541809)                                                 | RepM-Aci9                                                | Rep-3 pfam01051                                                          | Klebsiella pneumoniae                                                                   | 57 (YP_001338806)                                                                | Pos                  | GR8                        | 12                |
| Ab02<br>Ab135040 | pAB02 (AY228470, partial)<br>p135040 (GQ861437, partial)          | repA_AB<br>rep135040                                     | Rep-3 pfam01051<br>Rep-3 pfam01051                                       | Moraxella bovis<br>Klebsiella pneumoniae                                                | 40 (YP_003289297)<br>58 (YP_001338806)                                           | Pos<br>Pos           | GR12<br>GR19               | Unpublished<br>18 |
| Ab736            | p736 (GU978996; partial)                                          | Aci7                                                     | Rep-3 pfam01051                                                          | Klebsiella pneumoniae                                                                   | 92 (YP_001338806)                                                                | Pos                  | GR3                        | This study        |
| Ab203            | P203 (GU978997; partial)                                          | Aci3                                                     | Rep-3 pfam01051                                                          | Klebsiella pneumoniae                                                                   | 85 (YP_001338806)                                                                | Pos                  | GR3                        | This study        |
| Ab844            | p844 (GU978998; partial)                                          | Aci4                                                     | Rep-3 pfam01051                                                          | Klebsiella pneumoniae                                                                   | 85 (YP_001338806)                                                                | Pos                  | GR4                        | This study        |
| Ab537            | p537 (GU978999; partial)                                          | Aci5                                                     | Rep-3 pfam01051                                                          | Klebsiella pneumoniae                                                                   | 72 (YP_001338806)                                                                | Pos                  | GR5                        | This study        |
| Ab11921          | p11921 (GU979000; partial)                                        | Aci8                                                     | Rep-3 pfam01051                                                          | Klebsiella pneumoniae<br>pKPN5                                                          | 46 (YP_001966359)                                                                | Pos                  | GR8                        | This study        |

TABLE 1. A. baumannii replicase genes analyzed in this study

<sup>a</sup> This comparison was performed by a BLASTP search excluding the sequence of the Acinetobacter spp.

<sup>b</sup> Pos, positive; Neg, negative.

described below, from plasmids carrying the  $bla_{OXA-58}$  genes from a collection of *A. baumannii* clinical isolates.

The primers used for AB-PBRT are listed in Table 2. The PCR amplifications were organized into six multiplexes, each recognizing three or four different homology groups (Table 2). Specificity and sensitivity tests were performed for each primer pair in simplex form and in multiplex form with genomic DNA extracted from the respective reference strain (Table 2). The multiplexes were also tested using single and mixed control DNA templates. All the PCRs were highly specific on each template, as expected. The PCRs for GR2, GR3, and GR8 recognize the related replicases Aci1/Aci2, Aci3/Aci7, and Aci8/Aci9, respectively. The replicase variants belonging to GR2, GR3, and GR8 can be recognized by DNA sequencing of the respective amplicon.

Each multiplex reaction mixture contained (final concentrations)  $1\times$  Immo-Buffer [16 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 67 mM Tris-HCl, pH 8.3, 0.01% Tween 20], 4.0 mM MgCl<sub>2</sub>, 0.4 mM deoxynucleoside triphosphate, 1.0 µM each primer, 5% dimethyl sulfoxide, 0.04 U/µl Immolase DNA polymerase (Bioline, Kondon, United Kingdom), and 200 to 400 ng of DNA template per reaction tube. Template DNA was prepared by total DNA extraction by the Wizard genomic DNA purification kit (Promega, Madison, WI), starting from 2 ml of LB broth cultures. PCR amplifications were performed with the following amplification scheme: 1 cycle of denaturation at 94°C for 7 min, followed by 30 cycles of denaturation at 95°C for 30 s, annealing at 52°C for 30 s, and elongation at 72°C for 1.5 min. The amplification was finished with an extension program of 1 cycle at 72°C for 5 min.

Positive controls. The PCR amplifications were tested with the ACICU, AYE, SDF, ATCC 19798, and Ab135040 reference strains and 20 nonclonally related A. baumannii isolates known to possess plasmids carrying the CHDL gene  $bla_{OXA-58}$  (n = 13, originating from France, Tunisia, Sweden, Turkey, Romania, and Belgium) or  $bla_{OXA-23}$  (n = 7, originating from Belgium, Monaco, Kingdom of Bahrain, Egypt, Algeria, Libya, and Saudi Arabia). Those carbapenem-resistant A. baumannii isolates had been characterized previously (23, 25, 26, 30) and belong to the INSERM U914 strain collection (Table 3). Plasmid typing was also performed with transformants and transconjugants obtained from the  $bla_{OXA-58}$ and bla<sub>OXA-23</sub>-positive plasmids (Table 3). All the amplicons obtained with the primers listed in Table 2 were cloned into a TA cloning vector (Invitrogen-Life Technologies, Milan, Italy) and transformed into competent Escherichia coli DH5a cells (MAX Efficiency DH5a chemically competent cells; Invitrogen-Life Technologies). Selection of the transformants was performed on LB agar plates containing ampicillin (100 µg/ml). The cloned amplicons were fully sequenced and used as positive controls for the multiplex PCRs in the AB-PBRT scheme.

**Plasmid transfer by transformation and conjugation.** Plasmid DNAs were purified from  $bla_{OXA-58}$ -positive *A. baumannii* isolates by using an Invitrogen PureLink HiPure plasmid filter midiprep kit and electrotransformed into recip-



FIG. 1. Multiple-sequence alignments and groups of homology of the replicase genes and their deduced amino acid protein sequences from *A*. *baumannii* plasmids.

ient strain *A. baumannii* BM4547 (22), and transformants were selected on ticarcillin-containing plates (50  $\mu$ g/ml). Mating-out assays were performed by using isolates harboring  $bla_{OXA-58}$  and  $bla_{OXA-23}$  plasmids as donors and rifampin-resistant recipient strain *A. baumannii* BM4547, as described previously (26). Briefly, one colony of each of the donor and recipient strains obtained after 24 h of growth was cultured separately under weak agitation in 1 ml tryptic soy broth at 37°C, and they were then used in the mating-out assays. Conjugation was done by incubating 800  $\mu$ l of the recipient strain with 200  $\mu$ l of the donor strain under low agitation at 37°C for an additional 3-h step. The transconjugants were then selected by plating 200  $\mu$ l of that mixture on agar plates containing ticarcillin (100  $\mu$ g/ml) and rifampin (50  $\mu$ g/ml).

The  $bla_{OXA-58}$  and  $bla_{OXA-23}$  genes were detected by PCR using previously described primer pairs (2, 7).

Identification and cloning of novel replicase genes from *A. baumannii* plasmids. Plasmid DNAs were purified from the *A. baumannii* transformants by the Invitrogen PureLink HiPure plasmid filter midiprep kit. EcoRI-restricted fragments were separated by 0.8% agarose gel electrophoresis. Plasmid DNA was transferred to a Hybond-N<sup>+</sup> membrane (Roche Diagnostics, Monza, Italy) by standard methods (31). Southern blot hybridization was carried out under lowstringency conditions (58°C) using the *aci1* amplicon from the pACICU1 plasmid as the probe, and the amplicon was labeled with digoxigenin (DIG)-11-dUTP by PCR using a DIG PCR probe synthesis kit (Roche Diagnostics, Monza, Italy). After hybridization with the probe, the hybridized DNA was detected with Nitro Blue Tetrazolium-5-bromo-4-chloro-3-indolylphosphate using a DIG nucleic acid detection kit (Roche Diagnostics).

The EcoRI-restricted fragments identified by cross-reaction with the *aci1* probe were separated by and eluted from the agarose gel by a Qiagen (Courtaboeuf, France) gel extraction kit and cloned into the EcoRI cloning site of the pUC18 vector, and the vector was transformed into competent *E. coli* DH5 $\alpha$  cells (MAX Efficiency DH5 $\alpha$  chemically competent cells; Invitrogen, Milan, Italy). Selection of the transformats was performed on LB agar plates containing ampicillin (100 µg/ml). The inserts were fully sequenced using standard and walking primers. The DNA sequences were determined by used of fluorescent dye-labeled dideoxynucleotides and an AB3730 automatic DNA sequencer (Perkin-Elmer, Foster City, CA).

**Nucleotide sequence accession numbers.** The DNA sequences of the *aci3*, *aci4*, *aci5*, *aci7*, and *aci8* replicase genes and the *aci9* replicase gene from plasmid AbA21 have been deposited in the EMBL GenBank under accession numbers GU978996 to GU979001, respectively.

## **RESULTS AND DISCUSSION**

**Detailed analysis and definitions of** *A. baumannii* **replicons.** The nucleotide and deduced protein sequences of 18 *A. baumannii* plasmids available in GenBank were analyzed. Twenty-

| Multiplex | Group | Primer<br>name   | Primer sequence                                                      | Amplicon<br>size (bp) | Replicase name<br>(short name) | Reference<br>strain/plasmid |
|-----------|-------|------------------|----------------------------------------------------------------------|-----------------------|--------------------------------|-----------------------------|
| 1         |       | gr1FW<br>gr1RV   | 5'-CATAGAAATACAGCCTATAAAG-3'<br>5'-TTCTTCTAGCTCTACCAAAAT-3'          | 330                   | p1ABSDF001 (p1S1)              | SDF-p1ABSDF                 |
|           | GR2   | gr2FW<br>gr2RV   | 5'-AGTAGAACAACGTTTAATTTTATTGGC-3'<br>5'-CCACTTTTTTTAGGTATGGGTATAG-3' | 851                   | Aci1<br>Aci2                   | ACICU-pACICU1<br>MAD        |
|           | GR3   | gr3FW<br>gr3RV   | 5'-TAATTAATGCCAGTTATAACCTTG-3'<br>5'-GTATCGAGTACACCTATTTTTTGT-3'     | 505                   | Aci3<br>Aci7                   | Ab599<br>Ab736              |
| 2         | GR5   | gr5FW<br>gr5RV   | 5'-AGAATGGGGAACTTTAAAGA-3'<br>5'-GACGCTGGGCATCTGTTAAC-3'             | 220                   | Aci5                           | Ab537                       |
|           | GR18  | gr18FW<br>gr18RV | 5'-TCGGGTTATCACAATAACAA-3'<br>5'-TAGAACATTGGCAATCCATA-3'             | 676                   | p2ABSDF00025 (p2S25)           | SDF-p2ABSDF                 |
|           | GR7   | gr7FW<br>gr7RV   | 5'-GAACAGTTTAGTTGTGAAAG-3'<br>5'-TCTCTAAATTTTTCAGGCTC-3'             | 885                   | p3ABSDF002 (p3S2)              | SDF-p3ABSDF                 |
| 3         | GR9   | gr9FW<br>gr9RV   | 5'-GCAAGTTATACATTAAGCCT-3'<br>5'-AAAAATAAACGCTCTGATGC-3'             | 191                   | p3ABSDF0009 (p3S9)             | SDF-p3ABSDF                 |
|           | GR4   | gr4FW<br>gr4RV   | 5'-GTCCATGCTGAGAGCTATGT-3'<br>5'-TACGTCCCTTTTTATGTTGC-3'             | 508                   | Aci4                           | Ab844                       |
|           | GR11  | gr11FW<br>gr11RV | 5'-GGCTATTCAAAACAAAGTTAC-3'<br>5'-GTTTCCTCTCTTACACTTTT-3'            | 852                   | p1ABAYE0001 (p1AYE)            | AYE-p1ABAYE                 |
| 4         | GR12  | gr12FW<br>gr12RV | 5'-TCATTGGTATTCGTTTTTCAAAACC-3'<br>5'-ATTTCACGCTTACCTATTTGTC-3'      | 165                   | p2ABSDF0001 (p2S1)             | SDF-p1ABSDF                 |
|           | GR10  | gr10FW<br>gr10RV | 5'-TTTCACTAGCTACCAACTAA-3'<br>5'-ACACGTTGGTTTGGAGTC-3'               | 371                   | AciX                           | ACICU-pACICU1               |
|           | GR13  | gr13FW<br>gr13RV | 5'-CAAGATCGTGAAATTACAGA-3'<br>5'-CTGTTTATAATTTGGGTCGT-3'             | 780                   | p3ABAYE0002 (p3AYE)            | AYE-p3ABAYE                 |
| 5         | GR8   | gr8FW<br>gr8RV   | 5'-AATTAATCGTAAAGGATAATGC-3'<br>5'-GACATAGCGATCAAATAAGC-3'           | 233                   | Aci8<br>repM (Aci9)            | Ab11921<br>pMAC02           |
|           | GR14  | gr14FW<br>gr14RV | 5'-TTAAATGGGTGCGGTAATTT-3'<br>5'-GCTTACCTTTCAAAACTTTG-3'             | 622                   | p4ABAYE0001 (p4AYE)            | AYE-p4ABAYE                 |
|           | GR15  | gr15FW<br>gr15RV | 5'-GGAAATAAAAATGATGAGTCC-3'<br>5'-ATAAGTTGTTTTTGTTGTATTCG-3          | 876                   | p3ABSDF0018 (p3S18)            | SDF-p3ABSDF                 |
| 6         | GR16  | gr16FW<br>gr16RV | 5'-CTCGAGTTCAGGCTATTTTT-3'<br>5'-GCCATTTCGAAGATCTAAAC-3'             | 233                   | repApAB49 (pAB49)              | pAB49                       |
|           | GR17  | gr17FW<br>gr17RV | 5'-AATAACACTTATAATCCTTGTA-3'<br>5'-GCAAATGTGACCTCTAATATA-3'          | 380                   | A1s_3471 (A1S3471)             | ATCC 17978-pAB1             |
|           | GR6   | gr6FW<br>gr6RV   | 5'-AGCAAGTACGTGGGACTAAT-3'<br>5'- AAGCAATGAAACAGGCTAAT-3'            | 662                   | Aci6                           | ACICU-pACICU2               |
|           | GR19  | gr19FW<br>gr19RV | 5'- ACGAGATACAAACATGCTCA-3'<br>5'- AGCTAGACATTTCAGGCATT-3'           | 815                   | rep135040                      | Ab135040                    |

TABLE 2. Primers used to detect the replicase gene groups in the A. baumannii PCR-based replicon typing scheme

two intact replicons were identified *in silico* (Table 1). Each replicon included the origin of replication (*ori*) and the replicase gene (*rep*). *A. baumannii* replicons differ from all those previously described in other prokaryotic species, indicating

that *A. baumannii* possesses its own plasmid types. For 17 out of the 22 replicons, the *rep* genes were preceded by four direct and perfectly conserved repeats that, in analogy with the basic replicons of plasmids, may be defined as "iterons" (Table 1 and

|                                                                                             | Mu                               | ltiplex 1         |                 | 4               | Multiplex 2      |                     | M                   | ultiplex 3           |                  | Ā                  | fultiplex 4        |                  | Μ                 | fultiplex 5                   |                      | Multip           | lex 6            |            |
|---------------------------------------------------------------------------------------------|----------------------------------|-------------------|-----------------|-----------------|------------------|---------------------|---------------------|----------------------|------------------|--------------------|--------------------|------------------|-------------------|-------------------------------|----------------------|------------------|------------------|------------|
| in OX,                                                                                      | A GR2 (851 bp)                   | GR3<br>(505 bp)   | GR1<br>(330 bp) | GR7<br>(885 bp) | GR18<br>(676 bp) | GR5<br>(220 bp)     | GR11<br>(852 bp) (: | GR4<br>508 bp) (     | GR9<br>191 bp) ( | GR13<br>(780 bp) ( | GR10<br>(371 bp) ( | GR12 (165 bp) (8 | GR15<br>376 bp) ( | GR14 GR8<br>(622 bp) (233 bp) | GR6<br>(662 bp)      | GR17<br>(425 bp) | GR16<br>(233 bp) | GF<br>(815 |
| 58                                                                                          | Acil<br>p2AYE (Acil)<br>A1S_3472 | Aci3 <sup>b</sup> | p1S1            | p3S2            | p2S1             |                     | plAYE               |                      | p3S9             | p3AYE              | AciX               | p2S25 1          | p3S18             | p4AYE                         | Aci6                 | A1S3471          |                  |            |
| T 143<br>58<br>58<br>58                                                                     | (Aci1)<br>Aci1                   |                   |                 |                 |                  | [Aci5] <sup>c</sup> |                     | [Aci4]               |                  |                    |                    | p2S25            |                   | Aci9<br>Aci9                  | Aci6                 |                  | pAB49            | R          |
| 27<br>28<br>28<br>28<br>28                                                                  | Acil                             |                   |                 |                 |                  | [Aci5]              |                     | [Aci4]               |                  |                    |                    | c7S2d            |                   | Aci8<br>Aci8                  |                      |                  |                  |            |
| 0 00 00<br>0 00 00<br>0 00 00                                                               | CivV                             | Aci3<br>Aci3      |                 |                 |                  | [Aci5]              |                     | [Aci4]               |                  |                    |                    | 2000             |                   |                               | Acif                 |                  |                  |            |
| 5 00 00 0<br>0 00 00 0                                                                      | 704                              | Aci3              |                 |                 |                  | [Aci5]<br>Aci5      |                     | Aci4<br>Aci4<br>Aci4 |                  |                    |                    | C7C7d            |                   |                               |                      |                  |                  |            |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Aci2                             | CIDA              |                 |                 |                  | [CIDA]              |                     | [ACI4]<br>[Aci4]     |                  |                    |                    |                  |                   |                               | Aci6                 |                  |                  |            |
| 28.56                                                                                       |                                  | Aci7<br>Aci7      |                 |                 |                  | [Aci5]              |                     | [Aci4]               |                  |                    |                    |                  |                   |                               | Aci6                 |                  |                  |            |
| 58<br>58<br>58                                                                              | Aci1<br>Aci1                     |                   |                 |                 |                  | [Aci5)]             |                     | [Aci4]               |                  |                    |                    |                  |                   |                               | Aci6                 |                  | pAB49            |            |
| 58 28                                                                                       | Aci1<br>Aci1                     |                   |                 |                 |                  | [Aci5)]             |                     | [Aci4]               |                  |                    |                    |                  |                   |                               | Aci6                 |                  | pAB49            |            |
| 066<br>58<br>58<br>58                                                                       | Acil                             | Aci3              |                 |                 |                  | [ A 2:57            |                     | [V:0 V]              |                  |                    | AcıX               |                  |                   |                               | Ac16                 |                  |                  |            |
| 0 00 00                                                                                     |                                  | Aci3<br>Aci3      |                 |                 |                  | [CIDA]              |                     | [ACI4]               |                  |                    |                    |                  |                   |                               |                      |                  |                  |            |
| 20 20<br>20 20<br>20 20                                                                     | Aci2                             | Aci3<br>Aci3      |                 |                 |                  | [Aci5]              |                     | [Aci4]               |                  |                    |                    | p2S25            |                   |                               |                      |                  |                  |            |
| $J^a = 23$                                                                                  |                                  |                   |                 |                 |                  | [Aci5]              |                     | [Aci4]               |                  |                    |                    | p2S25            |                   |                               | Aci6<br>Aci6         |                  |                  |            |
| 0<br>23<br>23                                                                               |                                  |                   |                 |                 |                  | [Aci5]              |                     | [Aci4]               |                  |                    |                    | p2S25            |                   |                               | Aci6<br>Aci6         |                  |                  |            |
| 53 53<br>53 53                                                                              | -                                |                   |                 |                 |                  | [Aci5]              |                     | [Aci4]               |                  |                    |                    | c7S2d            |                   |                               | Aci6<br>Aci6         |                  |                  |            |
| 53 53                                                                                       | Acil                             |                   |                 |                 |                  | [Aci5]              |                     | [Aci4]<br>Aci4       |                  |                    |                    |                  |                   |                               | Ació<br>Ació<br>Ació |                  |                  |            |
| 23<br>23<br>ent                                                                             | Aci1                             |                   |                 |                 |                  | [Aci5]              |                     | [Aci4]               |                  |                    |                    |                  |                   |                               | Aci6<br>Aci6         |                  |                  |            |

<sup>6</sup> The acr3 gene was not identified in the whole-genome sequencing of the SDF strain. <sup>c</sup> Brackets indicate that Aci4 and Aci5 replicases are present in the recipient strain.

| Replicon(s)                                    | Iteron sequence               | No. of direct repeats | Distance from iteron to <i>rep</i> start codon (bp) |
|------------------------------------------------|-------------------------------|-----------------------|-----------------------------------------------------|
| p1ABSDF0001                                    | 5'-CAATAAGTACACCTTTATCTTG-3'  | 4                     | 50                                                  |
| pACICU1-Aci1, p2ABAYE0001,<br>A1S 3472 pAB0057 | 5'-ATATGTCCACGTTTACCTTGCA-3'  | 4                     | 53                                                  |
| pABVA01-Aci2                                   | 5'-TTTACCTTGCAATATGACACCG-3'  | 3                     | 66                                                  |
| Ab203-Aci3                                     | 5'-TAAAACGAGGTTTACCTTGCAT-3'  | 4                     | 57                                                  |
| Ab736-Aci7                                     |                               |                       |                                                     |
| Ab844-Aci4                                     | 5'-ATATGACTACGTTTACCTACCA-3'  | 4                     | 107                                                 |
| Ab537-Aci5                                     | 5'-ATATGACTACGTTTACCTACCA-3'  | 4                     | 105                                                 |
| Ab11921-Aci8                                   | 5'-TAGGTTTATCGACCCATAAAAT-3'  | 4                     | 91                                                  |
| pA21-Aci9                                      | 5'-TAAAACTAGGTTTATCGACCCT-3'  | 4                     | 96                                                  |
| pMAC-Aci9                                      | 5'-ATAAAACTAGGTTTATCGACCC-3'  | 4                     | 97                                                  |
| p3ABSDF0009                                    | 5'-TATCTATACGTTTATGCAGTCT-3'  | 4                     | 60                                                  |
| pACICU1-AciX                                   | 5'-CATTCAATCACAGATTCCATTC-3'  | 4                     | 80                                                  |
| p1ABAYE0001                                    | 5'-AAAGGGTACAAATAGCATGAT-3'   | $4^a$                 | 90                                                  |
| p2ABSDF0001, pAB02                             | 5'-GGATTGACTACTAACTATGAC-3'   | 4                     | 41                                                  |
| pABIR                                          | 5'-CTAACTATGACGGATTGACTA-3'   | 4                     | 55                                                  |
| p3ABSDF0018                                    | 5'-TATGAGGGATTGACTACTAAC-3'   | 4                     | 32                                                  |
| pAB1                                           | 5'-ATTTCTTTGCATTTGACTACA-3'   | 4                     | 10                                                  |
| p2ABSDF0025                                    | 5'-TAACTATGAGGGATTGACGCA-3'   | 5                     | 15                                                  |
| p135040                                        | 5'-CATAT CTATACGTTTATCGACC-3' | 4                     | 89                                                  |

TABLE 4. Iterons in A. baumannii replicons

<sup>a</sup> Imperfect.

Table 4). Iterons have been identified not only on many prokaryotic plasmids but also on chromosomes, phages, and eukaryotic *ori* genes (6, 27). In enterobacterial plasmids, each replicase protein binds to the reiterated iterons at the *ori* site and stimulates DNA replication by interacting with the host proteins (DNAK, DNAJ, RNApol) required for replication initiation. However, no iterons were identified in association with the replicase genes for five plasmids. For these plasmids, one can speculate about alternative mechanisms of replication control, presumably based on regulation of *rep* translation mediated by an inhibitory antisense RNA, as previously described for IncI1 and IncF plasmids (14).

Similar to plasmids described from other species (33), *A. baumannii* pACICU1, p2ABSDF, and p3ABSDF were multireplicon plasmids, since they carried more than one replicon (Table 1). Interestingly, the iterons and replicase genes of replicons from given plasmids showed weak sequence identities, likely to minimize the effect of competition of the replicase protein on its relative binding sites (6, 27). Plasmids pABIR and pABVA01 also showed two replicons, one that was functional, which was considered in this study, and one whose replicase gene was truncated by an insertion sequence (EMBL accession no. EU294228).

On the basis of the nucleotide sequence identities deduced from the *in silico* analysis, the 22 replicase genes were grouped into homology groups. Each group showed replicase genes showing less than 74% nucleotide identity (Table 1 and Fig. 1). Plasmids p2ABSDF, pABIR (carrying the  $bla_{OXA-58}$  gene), and pAB02 (carrying the  $bla_{OXA-24/OXA-40}$  gene) carried highly related replicons which were included in the same homology group, designated GR12, showing conserved replicase gene and iteron sequences (>84% nucleotide identity; Fig. 1 and Table 4). This group also contains other plasmids carrying the  $bla_{OXA-24/OXA-40}$  gene that were recently identified and that showed *rep* gene sequences identical to the *rep* gene sequences of pAB02 (pMMCU1 [EMBL accession no. GQ342610], pMMCU2 [EMBL accession no. GQ476987], and pMMD [EMBL accession no. GQ904226]; the sequence of plasmid pMMCU1 is included in the tree in Fig. 1 for comparison).

Conserved replicons were observed for plasmids pACICU1, p2ABAYE, pAB2, pAB0057, pABVA01, and pMAD; and all have been included in GR2. Two variants (*aci1* and *aci2*) showing 78% nucleotide identity were included in this group (Fig. 1). This group also contains plasmid pMMCU3 (EMBL accession no. GQ904227), carrying the *bla*<sub>OXA-24/OXA-40</sub> gene, which had a *aci2 rep* gene sequence identical to that of pABVA01 (9, 24). The *aci1* and *aci2* replicase genes showed different iteron sequences (Table 4).

Most of the replicase proteins belonged to the Rep-3 superfamily, identified by the pfam0151 conserved domain (NCBI nonredundant Clusters of Orthologs [COG]; http://www.ncbi .nlm.nih.gov/COG/), and showed variable amino acid similarities with the replicase proteins of plasmid pKPN5, recently identified in Klebsiella pneumoniae strain MGH 78578 (GenBank accession no. CP000650.1), and with plasmids identified in Moraxella bovis, Pasteurella multocida, and Neisseria lactamica (Table 1). It may be hypothesized that these replicase genes actually derive from a common ancestor of the Rep-3 superfamily group (Table 1). Two replicase proteins from plasmids p4ABAYE and pAB49 belonged to the Rep-1 superfamily (pfam01446) and showed significant homologies with plasmids from Pseudomonas putida and Bacillus cereus. The replicase from plasmid pACICU2 was peculiar since it belonged to an undefined Rep superfamily (pfam03090) whose closest homologous plasmid was identified from a Pseudoalteromonas sp. (Table 1).

Setup of a novel *A. baumannii* PCR-based replicon typing scheme. PCR amplifications were devised to recognize the replicase genes identified *in silico* and were successfully tested with the ACICU, AYE, SDF, ATCC 19798, and Ab135040 *A. baumannii* strains (Tables 2 and 3). Those PCRs were then used to test 20 clinical isolates carrying the plasmid-mediated carbapenem-hydrolyzing *bla*<sub>OXA-58</sub> and *bla*<sub>OXA-23</sub> oxacillinase

| Predicted function                      | Plasmid | CDS <sup>a</sup> protein identifier | Protein name, putative function                                            | Source of homology           | % best<br>hit |
|-----------------------------------------|---------|-------------------------------------|----------------------------------------------------------------------------|------------------------------|---------------|
| Plasmid partitioning                    | pACICU1 | P006                                | ParA, putative partition protein                                           | Moraxella bovis              | 73            |
| 1 0                                     | pACICU1 | P007                                | Probable copy no. control protein                                          | Moraxella bovis              | 56            |
|                                         | pACICU2 | P0040                               | ParB, involvement in plasmid partition                                     | Collimonas fungivorans       | 44            |
|                                         | pACICU2 | P0047                               | ParA, putative partition protein                                           | uncultured bacterium         | 34            |
|                                         | pACICU2 | P0048                               | ParB-like nuclease domain                                                  | Caminibacter mediatlanticus  | 39            |
|                                         | p3ABAYE | p3ABAYE0112                         | ParB- nuclease domain                                                      | Ralstonia eutropha           | 41            |
|                                         | p3ABAYE | p3ABAYE0113                         | ParA, putative partitioning protein                                        | Chromobacterium violaceum    | 38            |
| Toxin-antitoxin systems                 | pACICU1 | P009                                | Antitoxin StbE, prevent-host-death protein                                 | Burkholderia ubonensis       | 57            |
|                                         | pACICU1 | P0010                               | Toxin RelE/StbE family                                                     | Burkholderia ubonensis       | 61            |
|                                         | p1ABAYE | p1ABAYE0004                         | Antitoxin, prevent-host-death protein                                      | Burkholderia cenocepacia     | 56            |
|                                         | p1ABAYE | p1ABAYE0005                         | Toxin, Txe/YoeB family                                                     | Burkholderia ambifaria       | 70            |
|                                         | p2ABSDF | p2ABSDF0030                         | Toxin, RelE family protein                                                 | Haemophilus somnus           | 62            |
|                                         | p2ABSDF | p2ABSDF0031                         | Antitoxin, RelB homolog of RelB/DinJ family                                | Haemophilus somnus           |               |
| Restriction and antirestriction systems | pACICU1 | P008                                | Type I site-specific DNase, HsdR family                                    | Chlorobium limicola          | 33            |
| 2                                       | pACICU2 | P0046                               | Type I restriction enzyme M subunit                                        | Haemophilus influenzae       | 28            |
|                                         | p3ABAYE | p3ABAYE0069                         | Type II restriction/modification enzyme                                    | Polaromonas sp.              | 52            |
|                                         | p2ABSDF | p2ABSDF0015                         | HpaII restriction endonuclease                                             | Flavobacterium psychrophilum | 49            |
|                                         | p2ABSDF | p2ABSDF0016                         | HpaIIM-like cytosine-specific<br>methyltransferase, modification<br>enzyme | Haemophilus arainfluenzae    | 79            |
|                                         | p3ABSDF | p3ABSDF0013                         | Type II restriction/modification enzyme                                    | Bacillus megaterium          | 55            |
|                                         | p3ABSDF | p3ABSDF0014                         | Methyltransferase cytosine,<br>modification enzyme                         | Bacillus megaterium          | 46            |
|                                         | p3ABSDF | p3ABSDF0015                         | Bfii restriction endonuclease                                              | Bacillus firmus              | 63            |
|                                         |         |                                     |                                                                            |                              |               |

TABLE 5. Plasmid maintenance and addiction systems identified in silico on A. baumannii plasmids

<sup>a</sup> CDS, coding sequence.

genes (Table 3). Mating-out assays were initially performed with several bla<sub>OXA-58</sub>-positive A. baumannii isolates as donors, but no transconjugants were obtained. However, all the bla<sub>OXA-58</sub>-positive plasmids except one (from strain Ab120066) were successfully transferred by electroporation into A. baumannii BM4547 (Table 3). Transformants showed resistance to ticarcillin and reduced susceptibility to carbapenems as a result of  $bla_{OXA-58}$  gene expression. Four out of seven  $bla_{OXA-23}$ positive plasmids were successfully transferred by conjugation into A. baumannii BM4547 and included in this study (Table 3) (26). All the A. baumannii isolates and their respective transformants and transconjugants were previously tested by the PCR-based replicon typing method described for the Enterobacteriaceae (5), but all of them gave negative results, indicating that those plasmids were not corresponding to those known to circulate among the *Enterobacteriaceae* (data not shown).

Twelve strains and their respective  $bla_{OXA-58}$  or  $bla_{OXA-23}$ transformant or transconjugant strains were successfully typed by the PCR amplifications devised with the 22 *A. baumannii* replicase genes identified *in silico* in previously characterized plasmids (Table 1). Four  $bla_{OXA-58}$ -positive strains and their respective transformants (strains Ab203, Ab537, Ab587, and Ab692) were negative by all these PCRs. Furthermore, strains Ab11921, Ab844, Ab736, and Ab599 were positive by the GR12 and/or GR6 PCR, but their respective transformants, carrying the  $bla_{OXA-58}$  gene, were negative for all the *A. baumannii* replicase genes identified *in silico*, suggesting that other replicons were present on these  $bla_{OXA-58}$ -positive plasmids.

Five novel replicase genes (aci3, aci4, aci5, aci7, and aci8

[Table 1]) were identified and subsequently cloned and sequenced from the bla<sub>OXA-58</sub>-positive strains: the aci8 rep gene from plasmid p11921 was 74% homologous to the repM replicase gene from plasmid pMAC02 and was included in GR8; aci3 and aci7 corresponded to novel replicase genes identified in plasmids from isolates Ab203, Ab537, Ab587, Ab599 (aci3), and Ab736 (aci7). The aci3 and aci7 rep genes showed 87% nucleotide identity with each other and identical iteron sequences and were grouped into a novel homology group designated GR3; the aci4 and aci5 replicase genes from isolates Ab844 and Ab537, respectively, were classified in the novel groups GR4 and GR5, respectively, being highly divergent from all the other replicase genes (Fig. 1; Table 1). Noteworthy is the finding that the BM4547 strain used as the susceptible recipient for transformation and conjugation was positive for the aci4 and aci5 replicase genes, probably due to the integration of a multireplicon plasmid within the bacterial chromosome, since no extrachromosomal plasmids were identified for that strain (data not shown). Southern blot hybridization experiments performed with plasmid DNA purified from the 844T transformant confirmed that this  $bla_{OXA-58}$  plasmid possessed the aci4 replicase gene (data not shown).

In conclusion, the AB-PBRT scheme for *A. baumannii* plasmid typing showed that donor strains often carried more than one plasmid type. However, each transformant or transconjugant carrying the  $bla_{OXA-58}$  or  $bla_{OXA-23}$  gene carried only a single replicon that was also identified from its corresponding donor strain by the AB-PBRT scheme.

AB-PBRT applied to our collection of A. baumannii strains

| Plasmid                          | CDS protein<br>identifier        | Conjugal transfer or mobilization protein name and function                                                                      | Source of homology                                         | Amino acid<br>identity (%<br>best hit) |
|----------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|
| pACICU2                          | P0058                            | Type IV secretory pathway, VirD4, TraD component                                                                                 | Burkholderia cenocepacia                                   | 40                                     |
|                                  | P0059                            | TraI, relaxase-helicase for conjugative transfer                                                                                 | Pseudomonas sp.                                            | 40                                     |
|                                  | P0070                            | TraA, conjugal transfer protein                                                                                                  | Acidithiobacillus ferrooxidans                             | 36                                     |
|                                  | P0071                            | TraL, putative membrane protein                                                                                                  | Acidovorax sp.                                             | 40                                     |
|                                  | P0072                            | TraE, conjugative transfer protein                                                                                               | Burkholderia <sup>•</sup> cenocepacia                      | 30                                     |
|                                  | P0074                            | TraB, pilus assembly family protein                                                                                              | Acidovorax sp.                                             | 33                                     |
|                                  | P0075                            | DsbC precursor protein, disulfide isomerase                                                                                      | Burkholderia thailandensis                                 | 53                                     |
|                                  | P0076                            | TraV, membrane lipoprotein lipid attachment site                                                                                 | Acidovorax sp.                                             | 44                                     |
|                                  | P0077                            | TraC, conjugative transfer protein                                                                                               | Burkholderia <sup>•</sup> cenocepacia                      | 41                                     |
|                                  | P0079                            | TraW, conjugative transfer protein precursor                                                                                     | Burkholderia cenocepacia                                   | 46                                     |
|                                  | P0080                            | TraU, conjugative transfer protein precursor                                                                                     | Burkholderia cenocepacia                                   | 65                                     |
|                                  | P0081                            | Conjugative transfer protein                                                                                                     | Burkholderia cenocepacia                                   | 43                                     |
|                                  | P0082                            | TraN, conjugal transfer mating pair stabilization                                                                                | Acidovorax sp.                                             | 37                                     |
|                                  | P0083                            | TraF, conjugative transfer protein                                                                                               | Burkholderia <sup>•</sup> cenocepacia                      | 48                                     |
|                                  | P0085                            | TraH, conjugative transfer protein                                                                                               | Burkholderia cenocepacia                                   | 70                                     |
|                                  | P0086                            | TraG, domain containing protein                                                                                                  | Burkholderia thailandensis                                 | 32                                     |
|                                  | P0088                            | DNA-directed DNA polymerase UmuC                                                                                                 | <i>Acinetobacter</i> sp. strain ATCC 27244                 | 57                                     |
|                                  | P0089                            | DNA-directed DNA polymerase RumB                                                                                                 | Acinetobacter baumannii<br>ATCC 17978                      | 56                                     |
| n1ABAYE                          | p1ABAYE0006                      | Putative mobilization protein, MobS-like                                                                                         | Rhizobium leguminosarum                                    | 40                                     |
| p                                | p1ABAYE0007                      | TraA, putative mobilization protein, MobL-like                                                                                   | Sinorhizobium meliloti                                     | 43                                     |
| p1ABSDF                          | p1ABSDF0002                      | Putative mobilization protein, MobS-like                                                                                         | Psychrobacter psychrophilus                                | 69                                     |
| p2ABSDF                          | p2ABSDF0026<br>p2ABSDF0028       | Putative mobilization protein, MobS-like<br>Putative mobilization protein, MobL-like                                             | Polaromonas naphthalenivorans<br>Agrobacterium tumefaciens | 46<br>45                               |
| p3ABSDF                          | p3ABSDF0010<br>p3ABSDF0011       | Putative mobilization protein, MobS-like<br>Putative mobilization protein, MobL-like                                             | Psychrobacter psychrophilus<br>Agrobacterium tumefaciens   | 69<br>46                               |
| pMAC02<br>pMMCU1, pMMD<br>pMMCU2 | pMAC_11<br>pMMCU1p5<br>pMMCU2_06 | Putative mobilization protein, MobA-like<br>Putative mobilization protein, MobA-like<br>Putative mobilization protein, MobA-like | Escherichia coli<br>Escherichia coli<br>Escherichia coli   | 43<br>49<br>49                         |

TABLE 6. Conjugal transfer and mobilization systems identified in silico on A. baumannii plasmids

demonstrated that the  $bla_{OXA-58}$ -positive plasmids differed, with six of them showing replicons belonging to GR3, including both the *aci3* and *aci7* replicase genes. A previously unidentified replicase of GR3 was also identified in the SDF strain. Three  $bla_{OXA-58}$ -positive plasmids carried the *aci1* or *aci2* replicase gene, belonging to GR2, and two plasmids carried the *aci8* or *aci9* gene, belonging to GR8. Interestingly, the AbA21 plasmid showed a replicase 99% homologous to the *repM-aci9* gene of pMAC02 but carried a different iteron sequence (Table 4). All isolates carrying the  $bla_{OXA-23}$  gene showed a positive PCR result for the *aci6* replicase gene, which was originally identified on plasmid pACICU2.

*In silico* analysis of *A. baumannii* plasmid maintenance and inheritance. As extrachromosomal elements, plasmids bear the burden of ensuring their own segregation at cell division and employ various strategies, such as active partition systems and postsegregational killing mechanisms. These systems have never been described for *A. baumannii* plasmids. A careful annotation of the coding sequences from fully sequenced plasmids allowed the identification of putative ParA and ParB (3) partitioning proteins on plasmids pACICU1, pACICU2, and p3ABAYE (Table 5).

Plasmids pACICU1, p1ABAYE, and p2ABSDF encoded putative postsegregational killing systems. In particular, the

orthologs of the RelBE toxin-antitoxin system of plasmids from *Escherichia coli* (20) were identified on pAUCU1 and p2ABSDF, while the orthologs of the Txe system of plasmid pRUM of *Enterococcus faecium* (16) were identified on the p1ABAYE plasmid (Table 5).

Plasmids pACICU1, pACICU2, p3ABAYE, p2ABSDF, and p3ABSDF also encoded putative restriction and antirestriction systems, including type I and type II restriction/modification enzymes, the HpaII and Bfi endonucleases, and their specific antirestriction methyltransferases (Table 5).

*A. baumannii* plasmid transferability. Bacterial conjugation is one of the fundamental processes used for gene dissemination in nature. A putative conjugative system was identified only for plasmid pACICU2 (Table 6). This system is homologous to a conjugative system identified for uncharacterized plasmids of *Burkholderia cenocepacia* and *Burkholderia thailandensis*, suggesting a potential common origin of ancestor plasmids among these bacteria. The conjugative system of plasmid pACICU2 also showed a protein equivalent to the relaxasehelicase (TraI) belonging to a novel clade of the MOB<sub>F</sub> family of relaxase proteins previously described for other transmissible plasmids from the prokaryotic kingdom (15, 21).

Even if plasmid pACICU2 was a unique plasmid endowed

with a conjugative apparatus, plasmids p1ABAYE, p1ABSDF, p2ABSDF, p3ABSDF pMMCU1, pMMCU2, pMAC02, and pMMD showed some orthologs of the MobS-MobL or MobA mobilization proteins that are characteristic of a number of small plasmids that are mobilizable by self-transmissible plasmids. These proteins are required for recognizing and cleaving the *nic* site, directing the complex to the transferosome determined by the conjugative element (14).

The transconjugants obtained from the  $bla_{OXA-23}$ -positive isolates harbored the aci6 replicase gene of pACICU2 that was confirmed to be located on the bla<sub>OXA-23</sub>-positive plasmid by Southern blot hybridization (data not shown). These results clearly indicate that plasmids similar to pACICU2 are present in those isolates and are able to self-conjugate. These pACICU2-related plasmids harbored the carbapenem resistance gene bla<sub>OXA-23</sub>, which, however, was absent from the original fully sequenced pACICU2 plasmid (19). Noteworthy is the fact that the aci6 replicase gene was also identified from 7 out of 13  $bla_{OXA-58}$ -positive isolates but did not correspond to the replicon associated with this resistance gene. These findings open a new and interesting scenario describing the transmission of resistance plasmids into A. baumannii, since the pACICU2-like plasmids seem to be widely diffused and are likely responsible for both bla<sub>OXA-58</sub> plasmid mobilization and *bla*<sub>OXA-23</sub> plasmid self-conjugation.

Conclusion. The present study is the first to characterize the main features of the plasmids circulating among A. baumannii strains. Through an in silico analysis complemented by several experimental cloning experiments, 27 replicase genes have been identified. Primer sequences have been defined in order to characterize those 27 replicase genes, and a PCR-based methodology has been proposed to detect them in a convenient way. A multiplex approach has been set up by defining 19 distinct groups in 6 multiplexes, each of them grouping either three or four primer pairs that may allow faster and cheaper screening. Indeed, plasmid typing is a useful tool for studying their respective circulation and spread among members of the Acinetobacter genus and eventually among isolates of other genera. Through the epidemiological survey that has been conducted here, we exemplified what kind of approach that methodology can deserve. Here, we traced the diffusion of the carbapenem-hydrolyzing oxacillinase genes bla<sub>OXA-23</sub> and bla<sub>OXA-58</sub>, known to be the sources of resistance to carbapenems in A. baumannii worldwide. Interestingly, we showed that the current worldwide diffusion of the  $bla_{OXA-23}$  gene was mainly related to a single plasmid type and, conversely, that the diffusion of the bla<sub>OXA-58</sub> gene was related to several unrelated plasmid types.

We aim to provide an easy, rapid, and reliable tool for investigating the plasmid epidemiology of *A. baumannii*. That kind of approach of performing plasmid typing will be useful and informative when studies focus on dissemination of specific markers only, such as a given antibiotic resistance gene, contributing to the better tracing of specific plasmids among a diversity of *A. baumannii* genetic backgrounds. This can be done in a way similar to that previously set up for the *Enterobacteriaceae* family that is now applied worldwide, and the corresponding so-called PBRT method is nowadays the main technique used to trace resistance plasmids among strains belonging to that family and improve knowledge of the evolution of drug resistance (4).

## ACKNOWLEDGMENTS

We thank T. Naas for providing several *A. baumannii* isolates, C. Giske for the gift of one *A. baumannii* isolate, and M. G. Smith for providing the ATCC 19798 strain.

This work was funded by grants from the Italian Ministero della Salute and French Ministère de l'Education Nationale et de la Recherche; by INSERM (U914), Université Paris XI, Paris, France; and mostly by the European Community (DRESP2, LSHM-CT-2003-503-335, and TROCAR, HEALTH-F3-2008-223031).

#### REFERENCES

- Adams, M. D., K. Goglin, N. Molyneaux, K. M. Hujer, H. Lavender, J. J. Jamison, I. J. MacDonald, K. M. Martin, T. Russo, A. A. Campagnari, A. M. Hujer, R. A. Bonomo, and S. R. Gill. 2008. Comparative genome sequence analysis of multidrug-resistant *Acinetobacter baumannii*. J. Bacteriol. 190: 8053–8064.
- Bertini, A., L. Poirel, S. Bernabeu, D. Fortini, L. Villa, P. Nordmann, and A. Carattoli. 2007. Multicopy bla<sub>OXA-58</sub> gene as a source of high-level resistance to carbapenems in *Acinetobacter baumannii*. Antimicrob. Agents Chemother. 51:2324–2328.
- Bignell, C., and C. M. Thomas. 2001. The bacterial ParA-ParB partitioning proteins. J. Biotechnol. 91:1–34.
- Carattoli, A. 2009. Resistance plasmid families in *Enterobacteriaceae*. Antimicrob. Agents Chemother. 53:2227–2238.
- Carattoli, A., A. Bertini, L. Villa, V. Falbo, K. L. Hopkins, and E. J. Threlfall. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63:219–228.
- Chattoraj, D. K. 2000. Control of plasmid DNA replication by iterons: no longer paradoxical. Mol. Microbiol. 37:467–476.
- Corvec, S., L. Poirel, T. Naas, H. Drugeon, and P. Nordmann. 2007. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene bla<sub>OXA-23</sub> in Acinetobacter baumannii. Antimicrob. Agents Chemother. 51:1530–1533.
- Couturier, M., F. Bex, P. L. Bergquist, and W. K. Maas. 1988. Identification and classification of bacterial plasmids. Microbiol. Rev. 52:375–395.
- D'Andrea, M. M., T. Giani, S. D'Arezzo, A. Capone, N. Petrosillo, P. Visca, F. Luzzaro, and G. M. Rossolini. 2009. Characterization of pABVA01, a plasmid encoding the OXA-24 carbapenemase from Italian isolates of *Acinetobacter baumannii*. Antimicrob. Agents Chemother. 53:3528–3533.
- Datta, N., and R. W. Hedges. 1971. Compatibility groups among fi-R factors. Nature 234:222–223.
- Datta, N. 1975. Epidemiology and classification of plasmids, p. 9–15. *In D.* Schlessinger (ed.), Microbiology. American Society for Microbiology, Washington, DC.
- Dorsey, C. W., A. P. Tomaras, and L. A. Actis. 2006. Sequence and organization of pMAC, an *Acinetobacter baumannii* plasmid harboring genes involved in organic peroxide resistance. Plasmid 56:112–123.
- Fondi, M., G. Bacci, M. Brilli, M. C. Papaleo, A. Mengoni, M. Vaneechoutte, L. Dijkshoorn, and R. Fani. 2010. Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome. BMC Evol. Biol. 10:59.
- Frost, L. S., K. Ippen-Ihler, and R. A. Skurray. 1994. Analysis of the sequence and gene products of the transfer region of the F sex factor. J. Microbiol. Rev. 58:162–210.
- Garcillán-Barcia, M. P., M. V. Francia, and F. de la Cruz. 2009. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol. Rev. 33:657–687.
- Grady, R., and F. Hayes. 2003. Axe-Txe, a broad-spectrum proteic toxinantitoxin system specified by a multidrug-resistant, clinical isolate of *Enterococcus faecium*. Mol. Microbiol. 47:1419–1432.
- 17. Helinski, D. R. 2004. Introduction to plasmids: a selective view of their history, p. 1–21. *In* B. E. Funnell and G. J. Philips (ed.), Plasmid biology. ASM Press, Washington, DC.
- Higgins, P. G., L. Poirel, M. Lehmann, P. Nordmann, and H. Seifert. 2009. OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in *Acin*etobacter baumannii. Antimicrob. Agents Chemother. 53:5035–5038.
- Iacono, M., L. Villa, D. Fortini, R. Bordoni, F. Imperi, R. J. Bonnal, T. Sicheritz-Ponten, G. De Bellis, P. Visca, A. Cassone, and A. Carattoli. 2008. Whole-genome pyrosequencing of an epidemic multidrug-resistant *Acineto-bacter baumannii* strain belonging to the European clone II group. Antimicrob. Agents Chemother. 52:2616–2625.
- Kim, Y., X. Wang, Q. Ma, X. S. Zhang, and T. K. Wood. 2009. Toxinantitoxin systems in *Escherichia coli* influence biofilm formation through YjgK (TabA) and fimbriae. J. Bacteriol. **191**:1258–1267.
- Lawley, T., B. M. Wilkins, and L. S. Frost. 2004. Bacterial conjugation in Gram-negative bacteria, p. 203–226. *In* B. E. Funnell and G. J. Philips (ed.), Plasmid biology. ASM Press, Washington, DC.
- 22. Marchand, I., L. Damier-Piolle, P. Courvalin, and T. Lambert. 2004. Ex-

pression of the RND-type efflux pump AdeABC in *Acinetobacter baumannii* is regulated by the AdeRS two-component system. Antimicrob. Agents Chemother. **48**:3298–3304.

- Marqué, S., L. Poirel, C. Héritier, S. Brisse, M. D. Blasco, R. Filip, G. Coman, T. Naas, and P. Nordmann. 2005. Regional occurrence of plasmidmediated carbapenem-hydrolyzing oxacillinase OXA-58 in *Acinetobacter* spp. in Europe. J. Clin. Microbiol. 43:4885–4888.
- Merino, M., J. Acosta, M. Poza, F. Sanz, A. Beceiro, F. Chaves, and G. Bou. 2010. OXA-24 carbapenemase gene flanked by XerC/XerD-like recombination sites in different plasmids from different *Acinetobacter* species isolated during a nosocomial outbreak. Antimicrob. Agents Chemother. 54:2724– 2727.
- Mugnier, P. D., K. M. Bindayna, L. Poirel, and P. Nordmann. 2009. Diversity of plasmid-mediated carbapenem-hydrolysing oxacillinases among carbapenem-resistant *Acinetobacter baumannii* isolates from Kingdom of Bahrain. J. Antimicrob. Chemother. 63:1071–1073.
- Mugnier, P. D., L. Poirel, T. Naas, and P. Nordmann. 2010. Worldwide dissemination of the bla<sub>OXA-23</sub> carbapenemase gene of Acinetobacter baumannii. Emerg. Infect. Dis. 16:35–40.
- Paulsson, J., and D. K. Chattoraj. 2006. Origin inactivation in bacterial DNA replication control. Mol. Microbiol. 61:9–15.
- Peleg, A. Y., H. Seifert, and D. L. Paterson. 2008. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21:538–582.
- 29. Poirel, L., T. Naas, and P. Nordmann. 2010. Diversity, epidemiology, and

genetics of class D beta-lactamases. Antimicrob. Agents Chemother. 54: 24-38.

- Poirel, L., W. Mansour, O. Bouallegue, and P. Nordmann. 2008. Carbapenem-resistant *Acinetobacter baumannii* isolates from Tunisia producing the OXA-58-like carbapenem-hydrolyzing oxacillinase OXA-97. Antimicrob. Agents Chemother. 52:1613–1617.
- Sambrook, J. E., F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Smith, M. G., T. A. Gianoulis, S. Pukatzki, J. J. Mekalanos, L. N. Ornston, M. Gerstein, and M. Snyder. 2007. New insights into *Acinetobacter baumannii* pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 21:601–614.
- Sykora, P. 1992. Macroevolution of plasmids: a model for plasmid speciation. J. Theor. Biol. 159:53–65.
- 34. Vallenet, D., P. Nordmann, V. Barbe, L. Poirel, S. Mangenot, E. Bataille, C. Dossat, S. Gas, A. Kreimeyer, P. Lenoble, S. Oztas, J. Poulain, B. Segurens, C. Robert, C. Abergel, J. M. Claverie, D. Raoult, C. Médigue, J. Weissenbach, and S. Cruveiller. 2008. Comparative analysis of *Acinetobacters*: three genomes for three lifestyles. PLoS One 19:e1805.
- 35. Zarrilli, R., D. Vitale, A. Di Popolo, M. Bagattini, Z. Daoud, A. U. Khan, C. Afif, and M. Triassi. 2008. A plasmid-borne bla<sub>OXA-58</sub> gene confers imipenem resistance to *Acinetobacter baumannii* isolates from a Lebanese hospital. Antimicrob. Agents Chemother. 52:4115–4120.