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Abstract

With the increasing amount of data made available in the chemical field, there is a strong need for systems capable of
comparing and classifying chemical compounds in an efficient and effective way. The best approaches existing today are
based on the structure-activity relationship premise, which states that biological activity of a molecule is strongly related to
its structural or physicochemical properties. This work presents a novel approach to the automatic classification of chemical
compounds by integrating semantic similarity with existing structural comparison methods. Our approach was assessed
based on the Matthews Correlation Coefficient for the prediction, and achieved values of 0.810 when used as a prediction of
blood-brain barrier permeability, 0.694 for P-glycoprotein substrate, and 0.673 for estrogen receptor binding activity. These
results expose a significant improvement over the currently existing methods, whose best performances were 0.628, 0.591,
and 0.647 respectively. It was demonstrated that the integration of semantic similarity is a feasible and effective way to
improve existing chemical compound classification systems. Among other possible uses, this tool helps the study of the
evolution of metabolic pathways, the study of the correlation of metabolic networks with properties of those networks, or
the improvement of ontologies that represent chemical information.
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Introduction

The recent publication of large-scale chemical information,

made available by PubChem, ChEMBL and ChEBI, for instance,

increased the focus of the scientific community on the problem of

chemical comparison. With the amount of chemical data being

published and produced today, it has become increasingly

necessary to devise automatic systems capable of handling this

information. The creation of an effective and accurate system that

can compare and classify chemical compounds is useful in a

number of different applications. For instance, it can help the

understanding of the evolution of metabolic pathways, [1]; it can

improve the information retrieval of disease, phenotype, and other

models that contain references to chemical compounds; it

enhances the study and development of pharmacophores [2,3];

and it can also aid in toxicology, e.g. to estimate whether a given

compound is or has the potential to be harmful to animals or

humans without attempting a potentially harmful in vivo experi-

ment [4].

The best approaches existing today are based on the structure-

activity relationship premise (SAR), which states that biological

activity of a molecule is strongly related to its structural or

physicochemical properties. While the existing methods prove that

this assumption generally holds, it is not always true. For instance,

while L-amino acids are used to synthesize proteins, their stereo-

isomers, D-amino acids, are much less frequent in nature and their

role is totally different [5]. From a biological point of view, they

are distinct; however, to capture their structural differences, one

needs to use three-dimensional methods (like optical methods [6]),

and even with that consideration the structural similarity will be

high, because both molecules have the same atoms and bonds. A

possible solution involves simulating the docking between

molecules and a protein pocket to determine whether they should

interact in vivo [7], but this method needs the three-dimensional

structure of the protein, and is only valid when the property of

interest is caused by a protein binding mechanism (an example of a

binary classification where no protein is involved is, although a

simple one, the determination of liposolubility of chemical

compounds). On the other hand, both clavulanic acid and 3-

carboxyphenyl phenylacetamidomethylphosphonate are b-lacta-

mase inhibitors, despite their different structures (see Figure 1). To

address this problem, we propose the use of the semantics of a

chemical compound in the context of biological relevance, which

we used to improve the existing methods, through the develop-

ment of a novel hybrid metric that takes into account both

structural and semantic information. We dubbed the novel

approach Chym, for Chemical Hybrid Metric. We extract

semantic information from ChEBI, the Chemical Entities of

Biological Interest ontology, an ontology containing more than

23,000 terms, which can be used at the base of semantic similarity

[8]. Our proposal states that considering semantic similarity

improves the performance of classification algorithms.

Most automatic classification methods implemented currently

use either (i) the chemical structure as the foundation of the

comparison [9,10], or (ii) physicochemical properties like the

molecular weight, the octanol-water partitioning coefficient etc.

[11–14].
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Direct structure comparison methods
One of the main advantages of approach (i) is its ability to

compare two or more molecules on demand, i.e., one can

theoretically draw an arbitrary molecule and compare it to a

whole database of structures without any prior knowledge about its

function or properties.

There have been attempts to use graph comparison algorithms

applied to the chemical structure of two molecules. One way of

doing this is to restrict the similarity problem to the search for the

maximum common sub-graph [15]. The general topology of the

molecule can be used as the base of chemical similarity measures

as well, where, for instance, a molecule can be represented as the

matrix of the number of bonds between any two atoms and

compared based on those matrices [16].

More often, though, structural similarity is calculated with the

aid of fingerprints. A fingerprint, in this context, is a bitstring, a

sequence of 0’s and 1’s, where each bit represents the presence or

absence of a given feature or substructure. There are several ways

to construct the fingerprint. For instance, for Daylight fingerprints,

all the distinct linear fragments, up to a certain size, are identified

from the graph and then converted into numbers ni (usually, a

hash function is applied to the fragment followed by a modulo

function, effectively obtaining a number in the required range).

The nth
i bits in the fingerprint are then set to 1 [17,18]. Other

methods assign a particular substructure to each one of the bits of

the fingerprint. Two molecules can then be quickly compared

based on the number of common bits in the fingerprints, for

example, through the Jaccard-Tanimoto coefficient [19].

Comparison from physicochemical properties
For approach (ii), one has to compute the describing proper-

ties (if possible), to gather them from literature or to conduct

experiments to obtain them.

For example, in [11], the authors used Artificial Neural

Network (ANN) and Support Vector Machine (SVM) to

distinguish compounds capable of crossing the blood-brain barrier

(BBB) from those that do not cross it. Each compound is described

as a 9-dimensional vector, where each element is a physicochem-

ical property of the molecule (molecular weight, volume, total

surface area etc.). An ANN is composed of a number of artificial

neurons (a conceptual object that receives several input values and

combines them non-linearly to produce a single output) arranged

in layers, where the first layer gets as input the descriptors of the

molecule and the last layer outputs the classification; the SVM

method consists of finding the hyper-surface that best separates the

active compounds’ vectors from the inactive compounds’ [20].

In [2], the authors used a three-dimensional representation of

molecules and applied an approach named ‘‘four-point pharmaco-

phore’’. This approach builds millions of descriptors, each being a

different spatial arrangement of 4 features with the respective

distances between them, and then determines whether the compound

contains each of the descriptors, effectively constructing a bitstring

which can be used like fingerprints, as previously described. In their

work, the four-point pharmacophore model was used to predict

whether compounds are substrates of the P-glycoprotein (P-gp). A

SVM approach was also attempted on this set [21].

The work of [13] applies the concept of decision forests to

predict whether a chemical compound binds to an estrogen
receptor. A decision tree consists of several if-then statements,

operating over the descriptors, which ultimately come together to

create a tree with several branches. The last limbs of the tree

classify the compound as active or inactive. A decision forest is

then an ensemble of several decision trees, where each tree is

constructed from the set of descriptors still not used in previous

trees, so as to minimize the fraction of misclassifications, and the

final output is a combination of the outputs of the trees [13].

Figure 1. Chemical structure of two semantically related compounds. The two represented molecular structures, clavulanic acid (A) and 3-
carboxyphenyl phenylacetamidomethylphosphonate (B), are different, and yet they both inhibit b-lactamase.
doi:10.1371/journal.pcbi.1000937.g001

Author Summary

Among the existing systems capable of computationally
comparing chemical compounds, the majority use only
structural and physicochemical properties. However, with
the emergence of ChEBI and other chemical compound
databases, it has become feasible to create a system that
can use the relevance of compounds in a biological
context as well. This setting enables the distinction of
molecules with different roles in nature but similar
structures, or similar roles and different structures. ChEBI
is organized as an ontology that classifies chemical
compounds, which we use to derive a semantic similarity
measure that reflects the biological relevance of mole-
cules. In an effort to use as much information as possible,
we introduce Chym, a system that integrates structural
and semantic information in a single hybrid metric, and we
show the accuracy of the system in three distinct
classification problems, which consist in deciding whether
a compound crosses the blood brain barrier, is a P-
glycoprotein substrate or an estrogen receptor ligand.
Chym outperforms the previous attempts to solve these
three problems, with a maximum accuracy of 90.0%.

Semantic Similarity of Compounds
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Random forests also use decision trees as its basis, as shown by

[12]. In their work, they used random forests to classify

compounds as active or inactive in several sets, including the

BBB, P-gp and estrogen sets above. Unlike the decision tree

approach, however, the descriptors used in each tree are randomly

drawn from the set of all descriptors, rather than drawn from the

set of unused descriptors.

These previous works (as well as the present study) validate their

approaches by using the comparison algorithms as classification

systems and consistently report performance as the fraction of cor-

rectly classified compounds: (true positiveztrue negative)=total.
Table 1 presents the accuracy values obtained from those systems. To

evaluate the effectiveness of our approach, we took the data of these

previous studies and compared the outcome of our measure to those

results.

Semantic properties
The semantic information of an object, i.e., its meaning in a

predetermined context, is not easily handled by computers, mainly

because meaning is mostly described in terms of natural language.

For this reason, comparing the semantics of two objects (in this

case, two chemical compounds), is not a straightforward task, and

is only possible if the semantics of both objects are described under

a common schema [22]. In this work, we used the ChEBI ontology

(see below) to semantically describe chemical compounds, and

under that common schema, we were able to derive a semantic

similarity metric.

An ontology is a representation of terms and the relationship

between them, and is usually visualized as a directed graph where

nodes are the terms and the directed edges are the relationships

[23]. A common type of relationship in ontologies is the ‘‘is a’’

relationship. It expresses the fact that one term’s meaning

subsumes the other’s meaning, or, in other words, one term (the

child) is a subclass of another term (the parent). Thus, some

ontologies can be interpreted as directed acyclic graphs (DAG),

where a term can have several parents and children; in such a

graph, the deeper a term is, the more specific is its meaning. In the

context of ontologies, a semantic measurement between two terms

measures their proximity in the ontology. One of the simplest ways

to compare two terms is to count the minimum number of

relations that must be crossed to get from one compound to the

other [24]. Another approach, used in DAGs, is to find the closest

common ancestor of both terms; the distance between them is then

the maximum number of relations from one of the two terms being

compared to the common ancestor. It is worth noting that a

measure can be a distance (as the terms get closer, the distance

decreases) or a similarity (as the terms get closer, the similarity

increases). Here we will consider only similarity measures.

In this work, we used both the ontology as a graph and a

concept known as information content. The information content is

an abstract concept that reflects the specificity of a particular object

[25]. From information theory, the information content of an

object can be evaluated as the negative logarithm of the

probability of finding that object [24]. When calculating

information content, it should be noted that a function is only

meaningful if each term’s occurrence contains all its children’s

occurrences too. In an ontology like ChEBI, this means that for

more abstract terms the probability embraces many terms,

decreasing its information content, which, in turn, reflects its low

specificity. The probability function we will use is based on the

number of pathways each compound participates in. The reason

behind this choice is that counting the number of pathways gives a

measure of specificity (compounds or chemical classes that are

more specific will be found in less pathways), but it is not biased

against the problems that Chym tries to solve.

Results

To validate the effectiveness of Chym as a classification tool, we

tested it on the sets presented in Table 1 and compared our results

with the ones in that table. Since the results of chemical

classification algorithms are usually reported in terms of accuracy

(the fraction of correctly classified compounds), we report accuracy

of Chym. However, for binary classification problems, Matthews

Correlation Coefficient (MCC) is a better performance indicator

[26]. Therefore, we use this coefficient as the main measure of

Chym’s performance.

Sources of data sets
In the three sets retrieved from the previous works presented in

the introduction, the compounds were listed by name only, with

no information on structure. The first step in the assessment of

Chym was, therefore, to translate that list of names into ChEBI

identifiers. The task of getting the identifiers was accomplished by

string matching techniques, since there was no structural

information to make the search. We split the names into bags of

words, where a word is a sequence consisting of only letters or only

numbers, to determine whether two names refer to the same

chemical entity. We used not only the preferred names of the

compounds but also the synonyms stored in the ChEBI database.

Only compounds present in the ontology and with a described

molecular structure in the ChEBI database were considered.

Because ChEBI is continually growing, we estimate that older

compounds in the ontology are usually more correctly annotated

and tend to have lower identifiers. So, in case of more than one

possibility, we chose the lowest ChEBI id.

Since the ontology does not contain all the possible molecules,

we were not able to get a full mapping between names and ChEBI

compounds, which means that our sets were shorter versions of the

original ones. We refer to our smaller sets as purged versions and

denote them as BBBp, P-gpp and estrogenp. Table 2 shows the

fraction of compounds in each of the three sets that are present in

the ontology.

The results of this table show a significant reduction in the size

of all three sets after converting the names into ChEBI identifiers.

Facing these values, we chose to directly compare our results only

to the ones obtained with the blood-brain barrier, because (i) it is

the set with higher percentage of ChEBI coverage, (ii) after

purging, it remains the biggest set, and as such is more fit to be

Table 1. Performance of previous works.

Dataset Classification system Accuracy Reference

BBB Artificial Neural Networks 75.7% [11]

Random Forest 80.9% [12]

Support Vector Machines 81.5% [11]

P-gp Four-point Pharmacophore 62.7% [2]

Support Vector Machines 79.4% [21]

Random Forest 80.6% [12]

estrogen Decision Forest *80% [13]

Random Forest 82.8% [12]

This table summarizes the performance of several classification methods used
on the BBB, P-gp and estrogen problems.
doi:10.1371/journal.pcbi.1000937.t001
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broken into testing and training sets without losing too much

information, and (iii) it is the set with a more balanced distribution

of active vs. inactive compounds. We will also apply Chym to the

two other sets, but the analysis will not be as deep.

Validation process
The BBB set is first described in [11], where the authors use an

artificial neural network (ANN) and a support vector machine

(SVM) to classify several chemical compounds as either able to

cross the blood-brain barrier (active) or unable to do so (inactive).

The paper showed that SVMs are more effective in this particular

classification problem than ANNs (see Table 1). The set was

further used by [12], where a random forest was grown to classify

the compounds. The authors of this work showed the effectiveness

of this system in several chemical compound sets, but the results

obtained for the BBB set in particular were not better than the

ones obtained with SVM. For this reason, we compared our results

to the 81.5% accuracy reported by [11] (cf. Table 1). It is worth

mentioning again that we report accuracy only for comparison

purposes, but the real performance indicator should be MCC,

which is also reported in the tables with the results.

In order to make an unbiased comparison between Chym and

SVMs, we addressed the validation process in three steps, which

were devised so that only one specification of the process changed

in each step:

1. The SVM model described in [11] was used to replicate the

results reported in that paper with the original set;

2. The same SVM model was used in our purged set, BBBp;

3. Finally, we replaced the SVM model with our Chym approach.

It must be mentioned here that Chym is actually a collection of

24 metrics, each having a real parameter, a, that balances the

metric between structural and semantic information. We used a
values from 0 to 1 in steps of 0.01, making a total of 24|101~2424
metrics (to understand the reason for these numbers, refer to the

section Methods). The metric that yields the highest Matthews

Correlation Coefficient is reported on the tables, alongside the

MCC and accuracy values achieved with that same metric.

For the SVM approach, we retrieved the compounds’ properties

from the article as 9-dimensional vectors and used the SVMlight

[27] software with a radial basis function kernel, as described in

[11].

Moreover, to decrease the potential bias in our analysis, we

implemented two different validation methods. The first one is a

leave-multiple-out process, described in [11] and here dubbed

‘‘LMO25’’. LMO25 follows this algorithm:

1. 25 active compounds and 25 inactive compounds are randomly

removed from the set. They now form the testing set;

2. The remaining set is used to train the model;

3. The compounds in the testing set are classified according to the

model learned in the previous step. Performance (as MCC and

accuracy) is recorded;

4. Steps 1–3 are repeated 30 times, and an average of the

performance indicators is recorded.

The second validation approach is k-fold cross-validation,

which is more widely used and well documented [28]. It starts by

partitioning the compounds in the original set into k approxi-

mately equal-sized, stratified sets, meaning that the proportion of

active inactive compounds is maintained in the partitions. Then

each partition is used as testing group once, with the other k{1
partitions being used to train the model. Accuracy and MCC

values are recorded for each partition and averaged in the end of

the k iterations. To remove the noise coming from the initial

partition, we performed this method n times and averaged the

accuracy and MCC obtained. This validation approach was also

applied to the P-gpp and estrogenp sets. We used k~10 and n~10
throughout the whole analysis [28].

The last step in the assessment of Chym was to predict some

new active compounds in each of the three sets. We calculated an

activity coefficient for all compounds in the ChEBI ontology

annotated with a structure, based on the active compounds in the

respective purged sets, and the best metric for each problem, and

retrieved the ones whose coefficient was higher. For a discussion

about the methods used to calculate this value, refer to section

Methods.

Performance
Table 3 shows the main results of the validation process,

including the attempt to replicate the results of [11]. Given that we

have 24 different metrics, each one tuned with a real parameter a,

Chym had to select one of the possibilities. The best combination

for this problem with the 10-fold cross-validation approach was

FP3 fingerprint format with semantic similarity calculated for all

the ontology with a simGIC method, with 29% of weight to

structure and 71% to semantics (a~0:29). The same metric was

pre-chosen for the LMO25 approach, even though Chym could

have found that the best metric with this approach was not this

one. The parameters of Chym’s best metric (in this case FP3,

simGIC, the whole ontology and the value of a) are explained in

more detail in the Methodology section below. The results

presented in the table show the superiority of Chym when

compared with the SVM approach. Moreover, when we compare

the two sections of the table with each other, it is possible to see

Table 2. Fraction of compounds in the ChEBI ontology.

Testing set ChEBI coverage

active inactive overall

BBB 74/180 79/144 47.2%

P-gp 57/109 24/87 41.3%

estrogen 42/132 59/101 43.3%

Fraction of names found in the ChEBI ontology for each set of molecules.
Coverage for active and inactive compounds is detailed.
doi:10.1371/journal.pcbi.1000937.t002

Table 3. Replication of the results of BBB.

Set Approach Validation method Accuracy MCC

BBB SVM LMO25 81.3% 0.630

BBBp SVM LMO25 73.8% 0.484

BBBp Chym LMO25 89.6% 0.800

BBB SVM 10-fold 81.2% 0.625

BBBp SVM 10-fold 74.1% 0.492

BBBp Chym 10-fold 90.0% 0.810

For the LMO25 method, the accuracy values are the mean of 30 experiments, as
explained in the previous section. The Chym results were obtained for FP3
fingerprint format, simGIC semantic method using the entire ontology, and
a~0:29.
doi:10.1371/journal.pcbi.1000937.t003
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that the validation method does not significantly affect the results.

Since the 10-fold approach is more widely used, at least when

compared to the LMO25, we performed the main analysis of our

results with this method.

In its second part, Table 3 shows the results of using 10-fold

cross-validation instead of LMO25. Here we show that the

accuracy of the SVM method used previously decreases

significantly when some of the compounds in the set are removed.

However, the same purged set can be used by Chym, and still

achieve an accuracy *10% superior to the one originally

reported, with an associated Matthews Correlation Coefficient

increase of almost 0.2 units. One possible explanation for this is

the effect of the retention of chemotypes. Information on the

chemotypes is implicitly contained in the ontology, which may

buffer the effect of removal of individual molecules. It would be

interesting to make an analysis of chemotypes, for example

through Murcko scaffolds [29,30]. However, the fact that the data

sets were retrieved by name and not by structure invalidates this

approach. But the SVM approach’s accuracy decreases 6–8%

when used on the purged set, which seems to suggest that the

chemotype retention is not prominent.

Table 4 shows the performance of Chym when applied to the

data sets used. The ‘‘Chym parameters’’ column specifies the

parameters of the best metrics in terms of which fingerprint

format, semantic method, ontology and a value are best suited for

that set (cf. Table S1, Table S2, Table S3 in the Supporting

Material, available online for the results obtained for all metrics).

This table reinforces the prediction power of Chym, since its

performance with the P-gpp and estrogenp sets, which are also

about 60% smaller than the original ones, is still higher than (for

the P-gp set) or comparable to (for the estrogen set) the value

obtained with the random forest approach, the best method

applied so far to those sets (cf. Table 1). Although there does not

seem to be any improvement in the estrogen problem, we must

underline that we have used a smaller set, and we believe the

performance would increase with a more complete ChEBI

ontology. On the other hand, using the values reported in the

work about random forests [12], it is possible to recalculate the

MCC value obtained with that method, 0.647. The value of 0.673

achieved with Chym represents a slight increase.

Table 5 and Figure 2 show the MCC of three Chym systems

against a values. For each set, the parameters used with the Chym

system are the ones which reached maximum accuracy for some

value of a. It is visible that, in the three Chym systems, the

accuracy starts by increasing at first, reaching a maximum, and

decreasing again. This shows that using the hybrid measure is

better than using only purely structural or semantic metric. When

this same analysis is applied to other Chym parameters, we can

observe the same behavior, which confirms the idea that, even if

one system is not very accurate, the crossing of structural and

semantic information increases the prediction power of Chym.

Finally, Table 6 shows the most active ChEBI compounds, as

defined by the activity coefficient, retrieved for each problem. In

each problem, we retrieved all the ChEBI compounds in the

ontology and with a molecular structure (more than 15000) and

ranked them by activity coefficient. The table reports the first three

whose classification has been previously determined in a

publication and shows that those compounds are, in fact, active

compounds (they cross the blood-brain barrier, are substrates to P-

glycoprotein or ligands to the estrogen receptor), which also

contributes to the idea that the Chym method is effective. The

entire ranked lists of compounds are available as Table S4, Table

S5, Table S6.

Discussion

The work presented in this paper shows compelling evidence

that using semantic information in chemical classification

algorithms improves their performance. To show that, we used

three sets of compounds previously described and used as input in

other classification methods. On those sets, Chym achieves higher

performance for class prediction when compared to previously

existing methods, with Matthews Correlation Coefficient as high

as 0.810, corresponding to an accuracy of 90.0%. Parallel to this

result, we also showed that the use of a hybrid metric that uses

both structural and semantic information is better suited for this

kind of problems than a system which uses only one of these types

of information. Some issues should, however, be discussed in order

to complete the analysis of this tool.

The properties that are relevant to decide whether a molecule

should be classified as active or inactive depend obviously on the

problem being solved. As such, the best metric for a problem is not

necessarily the same for other problems. Thus, selecting the best

metric is not much different than selecting the appropriate

descriptors for SVM, random forest or the other approaches

presented before. While it may be argued that the value of a is

inherent to Chym’s method, it does reflect the relative amount of

structural and semantic information that must be used to correctly

classify compounds. Choosing the appropriate value for this and the

other parameters can be seen, from the point of view of usage, as a

task similar to choosing the appropriate descriptors that better

reflect the important characteristics of the molecules (those that

yield the best results). For instance, as specified in Table 4, while the

FP3 fingerprint format is good at detecting some substructures that

are important in the BBB problem, it misses the relevant structures

in the other problems. Furthermore, the BBB problem is better

solved with a stronger focus on the semantic information, and the a
value of the best metric reflects this, as evident in Figure 2.

Table 4. Results of the classification system derived from the Chym comparison method.

Set Chym Best previous attempt

Parameters MCC Accuracy Approach MCC Accuracy

BBBp FP3, simGIC, all, 0.29 0.810 90.0% SVM 0.628 81.5%

P-gpp FP4, simUI, role, 0.72 0.694 87.3% Random Forests 0.591 80.6%

estrogenp FP4, simGIC, role, 0.45 0.673 82.6% Random Forests 0.647 82.8%

Chym parameters are ‘‘fingerprint format, semantic method, branch of the ontology used, a’’. The validation process used was 10-fold. Matthews Correlation Coefficient
values reported here was not directly retrieved from the papers where the attempts are described, but were estimated based on the values of true positives, false
positives, true negatives and false negatives given in those papers.
doi:10.1371/journal.pcbi.1000937.t004
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On another note, our high performance could be due to a

possible term in the ontology that classified compounds as able to

cross the blood-brain barrier, as substrates to the P-glycoprotein or

as estrogen receptor ligands. Admittedly, if there were such terms

in the ontology, Chym would be biased and would report high

accuracy values because it would be using the information it was

trying to validate as a means to prove its effectiveness. As it turns

out, no term in the ontology refers to the words ‘‘brain’’, ‘‘barrier’’,

‘‘P-glycoprotein’’ or ‘‘permeability’’ (the meaning of the P in P-

glycoprotein). ‘‘Estrogen receptor’’ appears twice, in ‘‘estrogen

receptor modulator’’ and ‘‘estrogen receptor antagonist’’, but these

two terms have only a total of 5 descendants in the ontology, and

none of them is present in the set estrogenp. This fact suggests that

Chym can be used in many classification and similarity problems,

even if they are not well represented in the ontology.

The reason for this fact is that, although the information to

solve the classification problem is not explicitly stated in the

ontology, the proximity of terms in the ontology (their semantic

similarity) is a good indicator that they should behave similarly.

For instance, both the compounds ChEBI:8069, phenobarbital,

and ChEBI:49575, diazepam, cross the blood brain barrier.

Moreover, they share many of their ancestors. Their semantic

similarity, as measured with a simGIC method in the whole

ontology, is 0.324, and their structural similarity, as measured with

the FP3 format, is 0.667. With an a~0:29 (these are the

parameters chosen for the BBB problem, cf. Table 4), this results

in a similarity of 0.423, well above the mean similarity between the

active compounds in the BBBp set, 0.238. The compounds are

both annotated as sedative drugs, and Chym was then able to

determine that ChEBI:51137, mianserin, another sedative drug,

also crosses the BBB (see Table 6).

Still in respect to the results presented in Table 6, a further

analysis showed that ChEBI:5078, flavonol, was ranked 14th in the

list of estrogen receptor ligands (activity coefficient~0:265, higher

than the threshold calculated for that problem), but [31] showed

that this compound is not an estrogen receptor ligand. However,

the class of compounds named flavonoids, into which flavonol is

classified, is known to contain several compounds that bind to the

estrogen receptor [32,33]. Moreover, this compound shares most

of galangin’s ancestry, 58 common ancestors out of 61 total

ancestors (galangin is also on that table). This means that the

ChEBI ontology is not yet able to differentiate between these two

compounds, and so it produces a false positive. As a matter of fact,

the similarity between these two compounds in the metric chosen

for the estrogen problem is 0.716, while the mean similarity

between all the active compounds is 0.216, demonstrating that

ChEBI assigns high similarity to these molecules.

As discussed in the Methodology, the ChEBI ontology contains

three partially overlapping branches. One concern raised by this

fact is that the molecular structure more or less reproduces the

structural information used in the first part of the metric. Although

the information being used is indeed the same, the ontology

Figure 2. The effect of the parameter a in the performance of Chym. For each dataset, the best metric was stripped of the a parameter. This
incomplete metric was completed with all values of a and then each one was used to determine performance. The figure shows the variation of
performance (as measured by the Matthews Correlation Coefficient) against the value of a. There is a maximum in the plot for every dataset,
consisting of the best metric: a~0:29, a~0:72, a~0:45 for the BBB (red open circles), P-gp (green closed circles) and estrogen (blue closed squares)
datasets respectively).
doi:10.1371/journal.pcbi.1000937.g002

Table 5. The effect of the alpha parameter in Chym’s
performance as measured by the Matthews Correlation
Coefficient.

Alpha BBBp P-gpp estrogenp

0.0 0.66837 0.47723 0.26418

0.1 0.74508 0.54799 0.33957

0.2 0.78206 0.54634 0.42900

0.3 0.79941 0.63492 0.50817

0.4 0.75904 0.63774 0.60167

0.5 0.73267 0.61939 0.63670

0.6 0.68652 0.60764 0.66318

0.7 0.64528 0.57530 0.67470

0.8 0.57281 0.54896 0.60161

0.9 0.52186 0.49979 0.64252

1.0 0.51764 0.48429 0.61333

The Chym parameters used are the ones in Table 4, except that instead of a
single alpha value, we present results for several values. Validation was
performed with a 10-fold approach. Bold values are the maximum for each
column.
doi:10.1371/journal.pcbi.1000937.t005
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explores the structural properties from a totally new perspective

(namely, a semantic perspective), that would be otherwise unusable

in a similarity measure: purely structural comparison methods are

probably unable to use the fact that both glucose and fructose are

monosaccharides to compare them. So, even if there seems to be a

duplication of information, the different approaches used yield

similarity values that can be combined to produce a more robust

score (as Chym does).

Another concern raised about the use of ChEBI ontology is the

subatomic branch. This branch was never chosen by itself as the

best branch of the ontology, which is not surprising, for two

reasons. First, it is not much richer than the molecular structure or

role branches, since only 35 ChEBI terms are unique to this

branch of the ontology. Secondly, each of these 35 terms is either

an ancestor to all chemical compounds used in the input set (as

happens with electron, for instance, which is part of the atom,

which is part of every molecular structure) or ancestor to none of

the chemical compounds (photon, for instance). This means that

this branch does not offer any kind of resolution.

However, like any other classification algorithm, Chym has its

limitations. The most important drawback of this method is that it

can only compare structures that are annotated in the ChEBI

ontology. Of course that any chemist or other scientist wishing to

use Chym may annotate the compound they are trying to study in

ChEBI by creating a ‘‘non-official’’ node. There is, however, a

large number of classes, which could potentially introduce a

difficulty in selecting the most appropriate position for the

compound; this annotation is also unfeasible for a large number

of compounds. This severely impairs applications like drug

discovery, or toxicology analysis.

In spite of this limitation, Chym introduces the comparison of

chemical compounds through their semantics, which is an

important technique that can be used in projects where

comparison and or classification of known chemical compounds

is needed. One instance of such project is the search for a possible

correlation between strains of bacteria and their virulence. One

could be interested in determining differences in metabolic

networks of said strains and compare the differences with the

different amount of virulence of those strains; the comparison of

metabolic networks would benefit from the metrics explored here.

Other applications include the comparison of models, for instance

models of diseases containing references to molecules responsible

for the disease or to drugs known to improve the condition of

patients. On the other hand, the semantic similarity applied to

ChEBI (developed and explored in this work) can also be useful in

ontology managing, as happens in GO [34], where semantic

similarity is used to automatically annotate other molecules in the

ontology and automatically improve the ontology. This would in

turn be useful in information retrieval and automatic reasoning

methodologies.

In the future, it would be interesting to try other hybrid metrics,

especially other structural comparison algorithms. For instance,

since SVM and random forests seem to perform well, perhaps a

system where the structural part of the comparison is done

through one of these methods would outperform the actual version

of Chym.

Methods

In order to develop and validate our hybrid similarity for

chemical compounds, the Chemical hybrid metric (Chym), we

built a model based both on fingerprints and on the semantic

similarity measures developed for the Gene Ontology (GO) [35].

Structural similarity
To calculate the structural similarity between two molecules, we

need a representation of their structures. Because ChEBI contains

a list of structures in SMILES, MDL and InChI chemical file

formats, these are the formats used. For each distinct molecule, we

prefer a SMILES representation of the structure. If one does not

exist, we use MDL. The rationale for this choice is the wide use of

SMILES over MDL. InChI was not used since every molecule

with a structure in this format had at least one of the other formats

as well.

For each structure, three fingerprints were calculated. These

formats were computed with the OpenBabel software [36,37], and

as such we used the names and files provided by it:

FP2 All non-branched (linear or possibly circular) frag-

ments of up to 7 atoms are calculated from the initial

structure. Each fragment is assigned a number from

0 to 1020 by means of a hash function and the

corresponding bit in the fingerprint is set to 1.

FP3 The molecule is analyzed and, if a specific pattern

is identified, its corresponding bit in the fingerprint

Table 6. The activity coefficients of the most active compounds in ChEBI when compared to the active compounds in each set.

Set Rank Compound Coefficient Ref.

ID Name

BBBp 1 50931 (Z)-chlorprothixene 0.289 [44]

BBBp 2 51137 mianserin 0.280 [45]

BBBp 3 251412 adinazolam 0.279 [46]

P-gpp 7 53290 (S)-donepezil 0.373 [47]

P-gpp 15 31181 aklavinone 0.368 [48]

P-gpp 16 48723 (-)-lobeline 0.366 [49]

estrogenp 2 27917 luteone 0.277 [50]

estrogenp 4 5262 galangin 0.274 [51]

estrogenp 5 50399 39,49,7-trihydroxyisoflavone 0.274 [52]

For each compound, a reference showing that the compound is indeed active is given. The thresholds for each problem, as determined by the algorithm detailed in the
Methodology section, are 0.243 (BBB), 0.272 (P-gp) and 0.231 (estrogen).
doi:10.1371/journal.pcbi.1000937.t006
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is set. The patterns are defined in a file that is part of

the OpenBabel software.

FP4 This format is conceptually the same as the FP3

format but with different patterns, which are

defined in a different file.

Given two molecules and the corresponding fingerprints (ai)
and (bi), the similarity score between them is calculated according

to the Jaccard-Tanimoto coefficient [17,38,39]:

simstructural~
#fiDai~1 ^ bi~1g
#fiDai~1 _ bi~1g ð1Þ

where ai and bi are the ith bit in each of the fingerprints.

Obviously, comparison of fingerprints is only valid if the

fingerprints were obtained by the same method. This equation is

valid only if the denominator is different from 0. It was verified

that all fingerprints calculated had at least one bit set to 1, thus

making the denominator always positive.

From equation 1, it can be seen that the structural similarity will

run from 0, when no bit is 1 for both molecules (total disparity), to

1, when the 1-bits in the two molecules are the same (equal

fingerprints).

Semantic similarity
Following the application of semantic measures for the GO

[35], we developed a similar approach but instead of proteins, we

work with chemical compounds. As has been stated above, there

are a number of ways to measure semantic similarity based on an

ontology. We chose to use the same ones as [35]. In the next

paragraphs, consider c, c1 and c2 as chemical compounds and

asc (c) as the set of ancestors of the chemical compound c,

including c itself.

simUI is a graph-based measure, which means that it considers

the compounds and all their ancestors in the graph of the

ontology. It is defined as follows [40]:

simUI(c1, c2)~
#fasc (c1)\ asc (c2)g
#fasc (c1)| asc (c2)g ð2Þ

It is known, however, that for ontologies where term specificity

is not well correlated with term depth, methods based on

information content (IC) are preferable [35]. Let p(c) be the

frequency of usage of the term c in some corpus. The information

content of a term can be given by [41]:

IC(c)~{ log p(c) ð3Þ

Intuitively, equation 3 means that a very frequent term conveys

less information and vice-versa. Notice that the frequency of a

term c subsumes the frequency of the terms that derive from c.

This means that the frequency of the term amino acid includes the

frequency of terms L-serine or carnitine, a c-amino acid.

Therefore, less specific terms are less informative. Chym makes

use of this equation, where the terms are the nodes of the ChEBI

ontology, viz chemical compounds or chemical classes.

simGIC is a combination of the graph-based simUI metric

with the information content properties of compounds. The

concept behind the equation is the same as the one behind simUI,

but now each ancestor is weighted according to its information

content, which reflects its specificity. simGIC is calculated through

equation 4 [35].

simGIC(c1, c2)~

P
t[ asc (c1)\ asc (c2) IC(t)

P
t[ asc (c1)| asc (c2) IC(t)

ð4Þ

It is worth underlining here that the concept of information

content is just a method to give weight to the compounds in the

ontology. If two compounds share many ancestors, simUI will

attribute a high similarity between them, but, for example, if most

of those ancestors are unspecific, the similarity should be lowered

accordingly; by weighting the ancestors, simGIC achieves this

effect. For example, compounds ChEBI:17802, pseudouridine,

and ChEBI:31747, kanosamine, share 30 or their 37 ancestors, but

the most specific of those is ChEBI:23008, carbohydrate, already a

very abstract term in the ontology. simGIC takes into account this

fact. Considering the similarity values between all pairs of

compounds that appear in the corpus at least once, the mean

similarity measured with simUI is 0.431 and the mean similarity

with simGIC is 0.048. Those two compounds share a simUI

similarity value of 0.811, about twice the mean value, but by

weighting the ancestors, simGIC assigns a similarity of 0.023,

about half of the mean value.

For both metrics, the similarity value is between 0 and 1 because

an intersection of two sets is always a subset of their union.

Hybrid metric
Until this point, we presented two orthogonal metrics to

measure the similarity between two chemical compounds. Our

intent, however, is to join them together to produce a hybrid

metric that takes into account both structural and semantic

information.

Since both measures explained above always fall in the closed

interval ½0, 1�, we propose the following definition for our hybrid

similarity:

simhybrid~a:simstructuralz(1{a):simsemantic ð5Þ

where a is a real number from 0 to 1. When a~1, the identity

degenerates into pure structural similarity and with a~0, into

pure semantic similarity.

Chym approach to classification
One of the possible uses of Chym is the application of this

similarity metric to classify compounds. Ideally, we want to be able

to get a set of chemical compounds that possess a common

property as input, and then determine whether other chemical

compounds also possess that property. This is also the approach

used in SVM and random forests, for example, where the input

serves as a training set that is used to create a classification model.

In Chym, the model consists of a threshold that is used to decide

whether a compound is active or inactive.

Given a training set of compounds, some sharing a common

property (which we call active compounds), and some lacking that

property (inactive compounds), the following algorithm is used to

predict whether a compound in the validation set is active or

inactive:

1. Within the training set, compare each compound with all

active compounds. The comparison of an active compound

with itself is excluded, since this value (which is always 1) could

introduce a bias into the rest of the algorithm.
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2. For each of the compounds in the training set, determine its

activity coefficient, which is the unweighted average of the results

in step 1. A compound will be classified as active if its activity

coefficient is above a threshold, which still needs to be

calculated.

3. Determine the threshold of activity, t. To do this, Chym uses all

the coefficients calculated in step 2 as potential thresholds, and

classifies the compounds in the training set as active or inactive

accordingly. The coefficient that minimizes the number of

misclassifications in the test set is chosen. This ends the training

step.

4. For all compounds in the validation set, Chym calculates their

activity coefficient as the average of similarities between the

compound and all active compounds in the training set, and

classifies it as active if the activity coefficient is greater than or

equal to the threshold of activity t, and as inactive otherwise.

From the algorithm above, it can be seen that the inactive

compounds are only used to adjust the value of the threshold,

while the active compounds are used both in the adjustment of

that value and in the determination of the activity coefficient of the

validation compounds.

Data sources
Chemical Entities of Biological Interest (ChEBI) is a

freely available database of small molecular entities (distinct

isotopes, atoms, ions, molecules etc.). These entities may be

products of nature or synthetic products used to intervene in

biological processes [8].

The ontology also includes classes of molecular entities and

partial molecular entities, enabling ChEBI to be organized as an

ontology, structuring molecular entities into classes and defining

the relations between them. Several relationship types exist in

ChEBI, with a number of them reciprocal in nature. The ontology

is subdivided into three separate sub-ontologies:

N Molecular structure, in which the entities are classified

according to composition and structure.

N Role, in which entities are classified according to their role

within a biological context.

N Subatomic particle, which classifies particles smaller than

atoms.

As of the time of the computations (January 2010, release 64),

the graph of this ontology contained 23,545 nodes representing

chemical compounds, which represents approximately 4% of the

whole ChEBI database. As stated above, some terms are not

chemical compounds but parts of compounds, such as functional

groups, that make the ontology structure possible. Also, for each

individual chemical compound, there may be several identifiers,

which come from different annotations that were later identified as

the same compound.

Chym’s branches are partially overlapping. For instance, the

term glucose is classified as a molecular structure, as having the

role of macronutrient and as having part electron, which means

that it is present in three branches. Including glucose, 21676 nodes

(92%) are part of the three branches.

Besides the ontology, the ChEBI database is enriched with an

extensive list of synonyms and manually curated cross-references

to other non-proprietary databases, as well as a list of chemical

structures.

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a

collection of databases categorized into systems information,

genomic and chemical information. The different KEGG databases

are highly integrated in an effort to constitute a computer

representation of the biological system [42].

One of the main components of KEGG is the KEGG PATHWAY

database, which contains a collection of graphical representations

of known pathways. Each metabolic entry integrates information

from other databases in KEGG, such as the intervening enzymes

(KEGG ENZYME), chemical reactions (KEGG REACTION) and chemical

compounds present in the pathway (KEGG COMPOUND).

KEGG COMPOUND is a chemical structure database for metabolic

compounds and other chemical substances that are relevant to

biological systems. We use entries in the KEGG COMPOUND database

as annotations of the compounds present in the metabolic

pathways (KEGG PATHWAY entries). The existence of a mapping

between ChEBI and KEGG COMPOUND allows us to integrate

information from both databases.

Implementation
The methods used to structurally compare compounds are

implemented by the software, OpenBabel [36,37]. We used

version 2.2.3, which was downloaded and installed on December

2009.

The semantic similarity was not as straightforward. As in [43],

we had to reorganize the ChEBI ontology so that it could fulfill our

purposes. All cyclic relationships (‘‘is tautomer of’’ etc.) were

removed, and the other relationships were merged into a single

‘‘is a’’-like relationship. Also, ChEBI identifiers pointing to the

same chemical compounds were merged into a single node. Thus,

we produced three independent DAGs, one for each branch of the

main ontology, and a forth DAG resulting from merging the other

three. With this modification, we can directly calculate simUI

similarities with equation 2.

To calculate the IC-based metric (simGIC), we had to find a

corpus where the compounds are referenced. We chose KEGG

PATHWAY because it is not connected to any of the problems solved

by Chym. This has the advantage of avoiding a potential bias that

could boost Chym’s results. To map a ChEBI identifier into a

KEGG identifier, we used the ChEBI cross-references. Sometimes,

however, these references were ambiguous (one ChEBI id pointing

to two or more KEGG COMPOUND ids). For this reason, whenever a

ChEBI id c had more than one KEGG COMPOUND reference, we

used them all to determine the number of pathways in which c
participates. With this corpus, the value of p(c) from equation 3 is

the fraction of pathways where the compound c or any of its

descendants appear.

Since there are 3 fingerprint formats, and semantic similarity

can be calculated based on 4 different DAGs and with 2 different

methods, the approach we are presenting here is able to use

3|4|2~24 different similarity metrics, each with a real

parameter a.

Supporting Information

Table S1 Performance indicators for every metric used by

Chym, when solving the BBB problem. The table is sorted so that

the metric with higher Matthews Correlation Coefficient appears

first in the list.

Found at: doi:10.1371/journal.pcbi.1000937.s001 (0.19 MB

TXT)

Table S2 Performance indicators for every metric used by

Chym, when solving the Pgp problem. The table is sorted so that

the metric with higher Matthews Correlation Coefficient appears

first in the list.

Found at: doi:10.1371/journal.pcbi.1000937.s002 (0.19 MB

TXT)
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Table S3 Performance indicators for every metric used by

Chym, when solving the estrogen problem. The table is sorted so

that the metric with higher Matthews Correlation Coefficient

appears first in the list.

Found at: doi:10.1371/journal.pcbi.1000937.s003 (0.19 MB

TXT)

Table S4 Activity coefficient of every compound in the ChEBI

ontology, when the dataset from the BBB problem is used to train

Chym. Only compounds with a structure were considered.

Found at: doi:10.1371/journal.pcbi.1000937.s004 (0.66 MB

TXT)

Table S5 Activity coefficient of every compound in the ChEBI

ontology, when the dataset from the Pgp problem is used to train

Chym. Only compounds with a structure were considered.

Found at: doi:10.1371/journal.pcbi.1000937.s005 (0.66 MB

TXT)

Table S6 Activity coefficient of every compound in the ChEBI

ontology, when the dataset from the estrogen problem is used to

train Chym. Only compounds with a structure were considered.

Found at: doi:10.1371/journal.pcbi.1000937.s006 (0.66 MB

TXT)

Author Contributions

Conceived and designed the experiments: JDF FMC. Performed the

experiments: JDF. Analyzed the data: JDF. Wrote the paper: JDF FMC.

References

1. Tohsato Y, Nishimura Y (2008) Metabolic pathway alignment based on

similarity between chemical structures. Information and Media Technologies 3:

191–200.

2. Penzotti JE, Lamb ML, Evensen E, Grootenhuis PDJ (2002) A computational

ensemble pharmacophore model for identifying substrates of P-glycoprotein.

J Med Chem 45: 1737–1740.

3. Fukunishi Y, Mikami Y, Takedomi K, Yamanouchi M, Shima H, et al. (2006)

Classification of Chemical Compounds by Protein-Compound Docking for Use

in Designing a Focused Library. J Med Chem 49: 523–533.

4. Richard AM, Gold LS, Nicklaus MC (2006) Chemical structure indexing of

toxicity data on the internet: moving toward a flat worldCurr. Opin Drug Discov

Devel 9: 314–325.

5. Wolosker H, Dumin E, Balan L, Foltyn VN (2008) D-amino acids in the brain:

D-serine in neurotransmission and neurodegeneration. FEBS Journal 275:

3514–3526.

6. Mehta A, Rief M, Spudich J, Smith D, Simmons R (1999) Single-molecule

biomechanics with optical methods. Science 283: 1689–1695.

7. Dias R, de Azevedo Jr. WF (2008) Molecular docking algorithms. Curr Drug

Targets 9: 1040–1047.

8. De Matos P, Alcantara R, Dekker A, Ennis M, Hastings J, et al. (2009) Chemical

entities of biological interest: an update. Nucleic Acids Res. pp D249–D254.

9. Nikolova N, Jaworska J (2004) Approaches to measure chemical similarity-a

review. QSAR Comb Sci 22: 1006–1026.

10. Raymond JW, Gardiner EJ, Willett P (2002) Heuristics for similarity searching of

chemical graphs using a maximum common edge subgraph algorithm. J Chem

Inf Comput Sci 42: 305–316.

11. Doniger S, Hofmann T, Yeh J (2002) Predicting CNS permeability of drug

molecules: comparison of neural network and support vector machine

algorithms. J Comput Biol 9: 849–864.

12. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, et al. (2003) Random

forest: a classification and regression tool for compound classification and QSAR

modeling. J Chem Inf Comput Sci 43: 1947–1958.

13. Tong W, Hong H, Fang H, Xie Q, Perkins R (2003) Decision forest: combining

the predictions of multiple independent decision tree models. J Chem Inf

Comput Sci 43: 525–531.

14. Kearsley SK, Sallamack S, Fluder EM, Andose JD, Mosley RT, et al. (1996)

Chemical Similarity Using Physiochemical Property Descriptors. J Chem Inf

Comput Sci 36: 118–127.

15. Le SQ, Ho TB, Phan TTH (2004) A novel graph-based similarity measure for

2D chemical structures. Genome Inform 15: 82–91.

16. Fukunishi Y, Nakamura H (2009) A Similarity Search Using Molecular

Topological Graphs. J Biomed Biotechnol 2009.

17. Flower DR (1998) On the properties of bit string-based measures of chemical

similarity. J Chem Inf Comput Sci 38: 379–386.

18. Raymond JW, Willett P (2002) Effectiveness of graph-based and fingerprint-

based similarity measures for virtual screening of 2D chemical structure

databases. J Comput Aided Mol Des 16: 59–71.

19. Jaccard P (1901) Étude comparative de la distribution florale dans une portion

des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37:
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