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Abstract

CpG islands (CGIs) are vertebrate genomic landmarks that encompass the promoters of most genes and often lack DNA
methylation. Querying their apparent importance, the number of CGIs is reported to vary widely in different species and
many do not co-localise with annotated promoters. We set out to quantify the number of CGIs in mouse and human
genomes using CXXC Affinity Purification plus deep sequencing (CAP-seq). We also asked whether CGIs not associated with
annotated transcripts share properties with those at known promoters. We found that, contrary to previous estimates, CGI
abundance in humans and mice is very similar and many are at conserved locations relative to genes. In each species CpG
density correlates positively with the degree of H3K4 trimethylation, supporting the hypothesis that these two properties
are mechanistically interdependent. Approximately half of mammalian CGIs (.10,000) are ‘‘orphans’’ that are not associated
with annotated promoters. Many orphan CGIs show evidence of transcriptional initiation and dynamic expression during
development. Unlike CGIs at known promoters, orphan CGIs are frequently subject to DNA methylation during
development, and this is accompanied by loss of their active promoter features. In colorectal tumors, however, orphan CGIs
are not preferentially methylated, suggesting that cancer does not recapitulate a developmental program. Human and
mouse genomes have similar numbers of CGIs, over half of which are remote from known promoters. Orphan CGIs
nevertheless have the characteristics of functional promoters, though they are much more likely than promoter CGIs to
become methylated during development and hence lose these properties. The data indicate that orphan CGIs correspond
to previously undetected promoters whose transcriptional activity may play a functional role during development.
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Introduction

In the decade since the human genome sequence was published

[1,2], annotation of its landmarks and functional domains has been

a priority. Protein coding genes have been quite comprehensively

identified and mapped, but full annotation of the genome is far from

complete. In addition to genes, there are DNA sequence categories

of likely functional importance, including non-coding transcription

units, conserved elements and regions of variant base composition,

whose biological significance is not well understood. Into the latter

category fall CpG islands (CGIs), which comprise about 1% of the

genome and display an elevated G+C base composition spanning

approximately 1000 base pairs. Their distinguishing feature is a

high frequency of the dinucleotide CpG, but beyond this they do not

share long range sequence similarity [3]. In the human genome,

CGIs have approximately 1 CpG every 10 base pairs, which is

about 10 times more frequent than the surrounding DNA. The high

density of CpG shared by CGIs is partly explained by a G+C-rich

base composition, but also depends critically on the lack of the CpG

deficiency that is typical of the bulk genome. These dense CpG

clusters are usually devoid of CpG methylation, whereas the bulk

genome is methylated at 70–80% of CpGs. The lack of methylation

in the germline [4] means that CGIs do not suffer accelerated

mutational loss of CpGs caused by deamination of 5-methylcytosine

[5,6]. Over evolutionary time, this has given rise to the observed

contrast between a CpG-deficient bulk genome and relatively CpG-

rich CGIs. Clustering of unmethylated CpGs has allowed the CGIs

to be biochemically isolated as a relatively homogeneous fraction of

DNA [3,7] or chromatin [8].

CGIs encompass the transcription start site (TSS) of approxi-

mately 60% of human protein coding genes. Extensive genome-

wide mapping of histone modifications by chromatin immuno-

precipitation (ChIP) has established that trimethylation of lysine

4 of histone H3 (H3K4me3) is a signature mark coinciding

with most promoter CGIs, even when the associated gene is not

expressed [9–11]. A potential biological rationalisation for the

maintenance of unmethylated CpGs at many promoters has

recently emerged from studies of proteins that interact preferen-

tially with CGIs. The protein Cfp1 contains a CXXC domain that

specifically binds to CpG only when it is unmethylated and co-

localises with almost all CGIs in the mouse genome. Cfp1 is a

component of the Set1 complex which trimethylates histone H3

lysine 4 and its depletion drastically affects levels of this modi-

fication at CGIs [12–14]. Importantly, insertion of a promoterless
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stretch of CpG-rich DNA into the mouse genome is sufficient

to recruit Cfp1 and create a novel peak of H3K4me3 [14].

Complementing this predisposition to form H3K4me3 chromatin

is the intrinsic reluctance of CGIs to assemble nucleosomes [15].

Both these features appear to pre-adapt CGIs for active promoter

function.

The notion that CGIs facilitate promoter function fits well with

their presence at TSSs, but is challenged by two observations that

appear to weaken the link with genes. Firstly, genomic analysis has

indicated that the number of CGIs in humans and mice is very

different, with mice apparently possessing little more than half the

number present in humans [16,17]. Lack of evolutionary

conservation would argue against a central role in promoter

function. A second reason to query the importance of CGIs has

come from the use of CXXC Affinity Purification (CAP) to identify

a large fraction of CGIs. Mapping showed that many CGIs in the

human genome are not coincident with annotated promoters, but

are either intergenic or within the body of coding regions (intragenic)

[7]. To clarify these issues we have compiled a comprehensive CGI

map for three developmentally distinct human and mouse tissues

(sperm, whole blood and cerebellum). The results show that, con-

trary to previous conclusions, the numbers of CGIs in human and

mouse are very similar. Moreover, in both organisms approximately

half of all CGIs are remote from annotated promoters. These

‘‘orphan’’ CGIs co-localise with peaks of H3K4me3 and evidence

suggests that a large proportion recruit RNA polymerase II

(RNAPII) and give rise to novel transcripts. We find that de novo

methylation during development predominantly affects orphan

CGIs in both humans and mice, with few protein-coding gene

promoters being methylated. This contrasts with the situation in

colorectal tumors, where cancer-specific de novo methylation affects

both CGI categories equally, with a strong preference for those

marked in ES (embryonic stem) cells by H3K27me3 – the chromatin

modification that is associated with polycomb-mediated repression

[18–21]. Our findings sustain the notion that all CGIs correspond

with promoters and that many orphan CGIs are associated with

novel transcripts that may have regulatory significance.

Results

Similar abundance and distribution of CpG islands in
human and mouse

CGIs are characteristic of most human and mouse gene pro-

moters, but biochemical and computational studies have suggested

that the total number in the mouse genome is over one third less

than for human [16,17]. To check this observation we compre-

hensively mapped all human and mouse CGIs using CAP to

enrich for DNA fragments containing clusters of unmethylated

CpGs, in conjunction with high throughput sequencing (CAP-seq)

[7]. DNAs from three developmentally distinct tissues, sperm

(germline), blood (mesoderm) and cerebellum (ectoderm) were

studied. Initial CAP-seq analysis appeared to confirm the lower

number of CGIs in mice, but closer examination of syntenic

chromosomal regions indicated that the mouse harboured CpG-

rich regions that were not efficiently recovered under our CAP

conditions (Figure S1A). Bisulfite sequencing established that these

regions were in fact unmethylated in the mouse genome and do

therefore correspond to potential CGIs (Figure S1B). As the CpG

density of the entire mouse CGI set was found to be lower than in

human (p-value ,2.2610216; Welch Two Sample t-test; Figure

S1C), we concluded that the salt-wash conditions prior to CAP

elution were too stringent to allow retrieval of relatively CpG-

deficient mouse CGIs. Reduction from 600 mM to 560 mM NaCl

corrected this disparity and generated prominent sequence read

peaks with minimal intervening background (Figure 1 and Figure

S1D). This optimisation resulted in the identification of an

additional 7,638 CGIs in mouse which were missed under the

more stringent CAP conditions (an increase of ,50%). Applica-

tion of the lower stringency wash conditions to CAP of human

sperm DNA, however, only identified a further 179 additional

CGIs (an increase of 0.7%), indicating that virtually all human

CGIs were captured under the previous conditions. (data not

shown).

To assess the integrity of the CAP-seq data we compared the

average sequence coverage for contiguous 1 kb windows across the

whole mouse genome in a panel of CAP purified samples. Figure

S2 depicts pairwise comparisons of mouse sperm, blood and

cerebellum and includes technical replicates for sperm and

cerebellum. The strong correlation between technical replicates

indicates that the variance observed between tissues represents

bona fide biological differences (Figure S2). The similarity of CAP-

seq profiles highlights the constitutively hypomethylated state of

most CGIs irrespective of the tested tissue (Figure 1A and 1B and

Figure S2). By combining regions of substantial CAP-seq

enrichment in each tissue (see Materials and Methods) we

identified nearly equivalent CGI compliments of 25,495 and

23,021 CGIs in human and mouse, respectively. In the case of

human CGIs, these findings are similar to the results from DNA

sequence-based prediction methods, which indicated 27,000

CGIs. In mice, however, previous estimates were much lower at

15,500 than those generated by CAP (Figure 2A) [17]. This

discrepancy is probably due to the lower average CpG-richness of

mouse CGIs compared with human CGIs, as confirmed by CpG

density plots (p-value ,2.2610216; Welch Two Sample t-test;

Figure 2B). About one fifth of mouse CGIs failed to meet the

minimum bioinformatic criterion for CpG density (CpG o/e = 0.6;

dashed black line; [17], although they were significantly more CpG-

rich than bulk genomic DNA (CpG o/e in human = 0.21; dashed

red line).

The compositional difference between human and mouse CGIs

was apparent when CAP-seq profiles at regions of conserved synteny

were compared. As shown in Figure 2C, two mouse CGIs at

positions conserved in human and mouse (red arrows) failed to meet

the standard sequence criteria employed by most prediction

algorithms [17,22]. It is noteworthy that other regions within these

loci approach the CpG density of CGIs, but are not retained by CAP

because they are methylated (confirmed by methylation analysis - see

below). CAP-seq, which relies on clustering of unmethylated CpGs,

Author Summary

In the decade since the sequence of the human genome
was announced, efforts have been made to annotate all
genes with their regulatory sequences. CpG islands are
short regions containing the sequence CG at high density
that map to regions controlling the expression of most
human genes (known as promoters). Using a biochemical
method, we have identified and mapped all CpG islands in
the human and mouse genomes and find that over half are
remote from known gene promoters—so-called ‘‘orphans.’’
Mice, which were thought to possess far fewer CpG islands
than humans, turn out to have a very similar number.
Surprisingly, orphan CpG islands in both species often mark
hitherto unknown promoters. The activity of these novel
promoters is particularly dynamic during normal develop-
ment, as they are often silenced by DNA methylation. In
colorectal cancers, however, aberrant DNA methylation
affects all CpG islands equally.

Orphan CpG Islands Identify Novel Promoters
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is evidently a more accurate assay for CGIs than bioinformatic

methods that do not take into account CpG methylation status.

We next determined the location of human and mouse CGIs with

respect to annotated genes. Approximately half (12,278 in human

and 11,932 in mouse) mapped to annotated gene promoters, the

remainder being evenly distributed between intra- and intergenic

regions (black asterisks in Figure 2C; see also Figure 1 and

Figure 2D). We provisionally refer to CGIs remote from annotated

promoters as ‘‘orphan-CGIs’’, pending a more complete under-

standing of their roles. Comparison of the sequence composition of

annotated promoter CGIs and orphans showed a slightly reduced

CpG density in the latter, although the difference compared to bulk

genomic DNA remained large (Figure 2E). Taking the data

together, we conclude that, while human and mouse CGIs are

compositionally distinct, their abundance and genomic distributions

are largely equivalent.

Many orphan CGIs have promoter-like characteristics
The majority of annotated CGI promoters are highly enriched

for both di- and tri-methylated H3K4 in mouse ES cells

[11,23,24]. To determine if this characteristic is shared by orphan

CGIs, we compared the H3K4me3 profile of ES cells with that of

CGIs in human and mouse. Sequence reads for both CGIs (blue)

and H3K4me3 (green) illustrate the tight association between

these marks, including intergenic and intragenic orphan CGIs in

each species (Figure 3A and B). To assess this phenomenon

globally we intersected CGIs with peaks of H3K4me3 (see

Materials and Methods). Consistent with previous reports, over

90% of annotated promoter-associated CGIs in mouse and human

ES cells coincide with peaks of H3K4me3 [11,23]. In addition,

about 40% of inter- and intragenic orphan CGIs are associated

with H3K4me3 peaks in both species (Figure 3C).

It has been reported that clusters of unmethylated CpG can

recruit H3K4me3, a modification associated with sites of tran-

scriptional initiation, via the CpG binding protein Cfp1 [14].

Consistent with these findings we confirmed that the majority

of H3K4me3 enriched loci map to CGIs in human and mouse

ES cells (74.6 and 84.1% respectively). Based on this result we

postulated that the magnitude of H3K4me3 modification may

mirror the CpG density at hypomethylated CGIs. Analysis of

CGIs, binned according to CpG density, revealed a striking

correlation between CpG density and H3K4me3 abundance in

mouse and human ES cells (Figures 3D and 3E and Figure S3).

The direct relationship between CpG density and H3K4me3

provides support for the notion that CpG plays a causal role in

attracting this chromatin mark. Separate analysis of annotated

promoter and orphan CGIs confirmed this relationship for both

classes (Figure 3E). Visual inspection suggests that many CpG-

deficient orphans which score as H3K4me3-negative possess this

modification at levels below the detection limit of ChIP-seq.

Figure 1. Typical CAP-seq profiles for human and mouse tissues. (A, B) CAP-seq read density profiles (blue) for sperm, blood and cerebellum
of human chr17: 43,061,000–43,596,500 (A) and mouse chr1: 136,095,000–136,630,500 (B). Genes (Refseq) are annotated below the CAP-seq profiles
with those mapped to the positive and negative strand displayed above and below the chromosome (grey line) respectively. Non-promoter CGIs are
denoted by asterisks. See also Figure S1.
doi:10.1371/journal.pgen.1001134.g001

Orphan CpG Islands Identify Novel Promoters
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Figure 2. Similar numbers of CGIs in humans and mice, but differing CpG densities. (A) Numbers of human (pink) and mouse (black) CGIs
identified by CAP-seq (CAP) and sequence based prediction (Predicted) [17]. Total numbers are noted above each bar. (B) Histogram depicting the
CpG observed/expected (o/e) values for all human (pink) and mouse (black) CGIs. Statistical significance (**) was determined using a Welch Two
Sample t-Test. The human genome average CpG o/e value of 0.21 (broken red line) and the standard CGI prediction threshold minimum of 0.6
(broken black line) are indicated. (C) CAP-seq (blue) and CpG o/e (black; 400 bp window with a 10 bp slide) profiles for syntenic regions of human
(chr16: 16,933,500–17,785,000) and mouse (chr3: 88,960,000–88,995,000) genomes. CGIs missed by standard sequence prediction parameters in
mouse are indicated (red arrows). Sequence profiles are displayed as for Figure 1. (D) Categorisation of CGIs with respect to annotated genes (Refseq)
in human and mouse. Categories indicated are human and mouse annotated transcription start site associated (h/m-ATSS), human and mouse
intragenic (h/m-Intra) and human and mouse intergenic (h/m-Inter). (E) Box plots representing the relative CpG o/e values of CGIs at different

Orphan CpG Islands Identify Novel Promoters
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Do orphan CGIs represent previously un-annotated promoters?

Earlier studies identified unforeseen transcripts originating from

orphan CGIs located within the bodies of protein-coding genes [25–

27]. At a more global level, intergenic sites of H3K4me3 have been

linked with conserved ncRNAs [28,29]. To test whether orphan CGIs

mark unanticipated sites of transcriptional initiation we mapped sites

of RNAPII recruitment in ES cells using ChIP-seq with an antibody

specific for the hypo-phosphorylated (initiating) form [30]. Approx-

imately 21% of human orphan CGIs were associated with RNAPII

peaks, pointing to promoter activity in this cell type (Figure 4A). To

further test for transcription from orphan CGIs, we compared their

localisation with published datasets relating to gene prediction and

Figure 3. Trimethylated H3K4 is the signature chromatin mark at CGIs and is grossly proportional to CpG density. (A, B) Sequence
read profiles for H3K4me3 in ES cells (green) and CAP-seq in sperm (blue) are depicted for human chr17: 7,054,500–7,203,500 (A) and mouse chr10:
80,726,000–80,874,000 (B). (C) Bar plot indicating the percentage (displayed within each bar) of H3K4me3 positive CGIs in human (pink) and mouse
(black). Categories of CGI position relative to genes are represented as for Figure 2E. (D) Box plots of H3K4me3 reads per base (averaged across
500 bp with a 100 bp slide) spanning 5 kb surrounding all mouse CGIs at the following CpG densities (CpGs per 100 bp): ,5, 5–6, 6–7, 7–8, 8–9 and
.9, in ascending order from the top. Box plots represent the distribution of the central 50% of the data (filled box) and the median (black bisecting
line). The numbers of islands in each category (n) is noted in parenthesis. Figure S3 shows equivalent data for human CGIs. (E) Summary plot relating
the CpG density of each bin to the mean H3K4me3 read value for the central 2 kb of regions displayed in (D). Plots illustrate the relationship for all
CGIs (green) and orphan CGIs (blue).
doi:10.1371/journal.pgen.1001134.g003

genomic locations with respect to genes in human (pink) and mouse (black). Genome average and CGI prediction threshold CpG o/e values are
indicated as in (B). CGIs distribution was categorised as either annotated transcription start site (ATSS), intragenic (Intra) or intergenic (Inter). Box plots
represent the central 50% of the data (filled box), the median value (central bisecting line) and the whiskers (1.56 the inter-quartile range).
doi:10.1371/journal.pgen.1001134.g002

Orphan CpG Islands Identify Novel Promoters

PLoS Genetics | www.plosgenetics.org 5 September 2010 | Volume 6 | Issue 9 | e1001134



RNA sequencing. For gene prediction we extracted alternative gene

sets hosted by the Ensembl and USCS genome browsers (Figure 4A)

[31,32]. Mapped RNA was assessed using published datasets based on

nuclear run on (NRO) and Cap Analysis of Gene Expression (CAGE)

[33,34]. NRO provides a ‘snap shot’ of all nascent RNA in the

nucleus by the controlled incorporation of BrU and immunoprecip-

itation with an antibody against the modified base. NRO-seq in

human lung fibroblast cells revealed transcriptional profiles with

prominent peaks corresponding to TSSs (as illustrated for ZNF557

and TTLL1; Figure 4B) [34]. CAGE is an independent RNA-based

approach which uses methylguanosine cap capture to generate short

sequence tags corresponding to the 59 termini of mature RNAs.

CAGE tags generated by deep sequencing of a panel of 12 embryonic

and somatic cell types was compared to the human CGI set

(Figure 4A) [33]. Each type of dataset implicated a partially

overlapping subset of orphan islands in transcription initiation

(Figure 4A). Altogether 42% of human orphan CGIs showed

evidence for promoter activity by one or more of these criteria. If

the presence of a coincident peak of H3K4me3 is included as a

marker of promoter function, this proportion increases to 60%

(Figure 4A). For example, two intergenic orphan CGIs that are

H3K4me3 positive and coincide with sites of RNAPII, NRO and

CAGE enrichment are shown in Figure 4B (black asterisks).

To determine if orphan CGIs have tissue specific promoter

activity we compared sites of RNAPII occupancy in mouse brain

[14] and ES cells. In total, 2,227 (20%) orphan CGIs displayed

enrichment for RNAPII in both tissues, with an additional 2,624

(23.7%) being specific to only one tissue (Figure 4C; orphans with

tissue specific RNAPII association are indicated by red and blue

lines). It is interesting to note that RNAPII occupancy at CGIs

associated with annotated promoters display an 87% overlap,

whereas coincidence between the two tissues drops to 46% at

orphan CGIs. This suggests that orphans display a more tissue

restricted expression profile than do annotated promoters as

exemplified in Figure 4D. We propose that the absence of

promoter signatures at about half of orphan CGIs probably

reflects the relatively small number of tissues tested so far. Analysis

of additional tissues would likely identify additional novel

promoters. Indeed, most or all orphan CGIs may correspond to

previously unidentified sites of transcriptional initiation.

Reciprocal screening identifies preferential methylation
of orphan CGIs

Although the majority of CGIs are unmethylated, a significant

fraction becomes methylated in somatic cells [4,7]. We used MBD

(methyl-binding domain) affinity purification (MAP; [3,7]) to

establish the patterns of DNA methylation associated with orphan

and annotated promoter CGIs in the same human and mouse

tissues that were used for CAP. DNA from each tissue was MAP-

selected to enrich DNA sequences with more than 1 methyl-CpG

per 100 bp (Figure S4). MAP and CAP data generated reciprocal

maps of methylated and unmethylated CGIs respectively. Where

MAP-seq signal was high, we observed a reciprocal depletion

of the CAP-seq profile as determined by pairwise scatter plots

(Figure S5) and illustrated for a CGI located within the HAPLN4

gene (Figure 5A). Comprehensive genome-wide analysis showed

that human and mouse methylate almost identical proportions of

CGIs in the two somatic tissues (10.6 and 10.7% respectively;

Figure 5B). Both species show a strong preference for methylating

orphan CGIs, with intragenic CGIs being even more likely than

intergenic CGIs to be methylated (21–26% compared with 13–

15%). By contrast, relatively few annotated promoter CGIs

become methylated (2.8 and 2.4% in human and mouse

respectively), as noted previously (Figure 5B) [7,35].

To determine if DNA methylation at orphan CGIs has been

conserved over evolutionary time between mice and humans, we

identified CGIs associated with single-copy orthologous genes and

examined their methylation status. We mapped all human

methylated CGIs to their orthologous sequences in mouse and

determined their methylation status in mouse blood and cerebel-

lum. This analysis showed considerable inter-species conservation as

40% of annotated promoter CGIs and 64% of intragenic orphan

CGI were methylated in mice at locations orthologous to the human

methylated CGIs (Figure 5C). Intergenic orphans CGIs were not

assessed due to difficulties in unambiguously mapping syntenic

regions lacking annotated genes. The results demonstrate conser-

vation of CGI methylation even at sites distal to gene promoters. For

example, Figure 5D and E shows a cluster of orphan CGIs located

within the HOXA locus that exhibits a closely related pattern of

blood-specific DNA methylation in each species.

There is extensive evidence that CGI methylation inhibits

transcriptional activity when coincident with gene promoters

[36,37]. To determine the effect of methylation at orphan CGIs,

we compared published H3K4me3 and RNAPII ChIP-seq data

from mouse brain [14] with methylated and unmethylated sets.

Unmethylated orphan CGIs were associated with both H3K4me3

and RNAPII, whereas methylated CGIs detected by MAP lacked

both H3K4me3 and RNAPII (Figure 6A). As CGIs are generally

unmethylated in both sperm and ES cells [4,24], we compared

sperm CAP and MAP profiles with data from ES cell chromatin.

An orphan CGI downstream of the Mett12 gene was shown to be

associated with RNAPII and H3K4me3 in ES cells but not in

brain where the orphan CGI is heavily methylated (Figure 6B;

black asterisk). Given the frequent association between orphan

CGIs and novel TSSs, these data indicate that DNA methylation

correlates with transcriptional silencing at these loci.

Orphan CGIs are not preferentially methylated in
colorectal carcinomas

Silencing of tumour suppressor genes by unscheduled de novo

methylation of their promoter CGIs has been proposed as a

primary event leading to unchecked proliferation in neoplastic

cells [38–41]. Do the sites methylated in cancer represent disease-

specific events or do they recapitulate CGI methylation seen

during normal development [39]? To address this question, we

performed MAP-seq on DNA from ten primary biopsy samples

comprising matched colon mucosa (C3,C5,C6,C9 and C10) and

colorectal cancer tumors (T3,T5,T6,T9 and T10). MAP-seq

profiles identified 1,734 CGIs which were heavily methylated in

at least three of the five cancer biopsies but hypomethylated in all

normal mucosal samples. Separating out cancer-specific from

mucosal CGI methylation events, it was apparent that many of the

former were shared by all tumors (39%). This finding highlights

the relative homogeneity of CGI methylation in different

colorectal tumors (Figure S6). Examples at the POU4F1 and

PDX1 genes are shown (Figure 7A and Figure S7; CGIs repre-

sented as blue boxes). Tumors largely preserved the CGI methylation

profile seen in normal mucosa, but additional tumour-specific CGI

methylation differed from that in normal tissues by not being

preferentially targeted to orphans (Figure 7B). In fact the proportion

of intergenic, intragenic and annotated promoter CGIs in the

tumour-specific category were approximately equal (Figure 7B).

Therefore the novel CGI methylation events accompanying cancer

do not recapitulate those seen during normal development.

It has been reported that CGIs that are aberrantly methylated

in neoplastic cells coincide with sites targeted by polycomb in

human ES cells [42–45]. We asked if the distribution of CGI

methylation in the colonic mucosa and colorectal tumour samples

Orphan CpG Islands Identify Novel Promoters
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Figure 4. Many orphan CGIs demarcate sites of transcriptional initiation with tissue-restricted activity. (A) A heat map indicating the
association of human orphan CGIs (n = 13,217) with predicted gene TSSs (Pred’; grey; data from USCS and Ensembl), RNAPII peaks in human ES cells
(orange), nuclear run-on transcripts in human lung fibroblasts (NRO; grey; [34], transcripts detected by multiple tissue Cap Analysis of Gene
Expression (CAGE; purple bars; [33]) and H3K4me3 peaks in human ES cells (green). The percentage of overlap is noted within the plot and the
complete set of orphan CGIs which overlap a TSS by at least one of the above criteria is indicated (All; black). (B) Examples of orphan CGIs which co-
localise with signatures of transcriptional initiation. Mapped sequence reads for Sperm CAP (blue), hES H3K4me3, hES RNAPII, NRO and CAGE are
displayed for human chr19: 7,020,000–7,071,000 (left panel) and chr22: 41,721,500–41,819,500 (right panel). Sequence profiles are colour coded as in
(A). (C) Heat map depicting the association of RNAPII with orphan CGIs (n = 11,089) in mouse ES cells and brain. Orphan CGIs associated with RNAPII
only in ES cells or only in brain are indicated (red and blue lines respectively) and the total percentage expressed is indicated (dashed arrow). (D)
Profiles for sperm CAP (blue) and ES cell and brain RNAPII (orange) are depicted for mouse chr10: 62,302,000–62,435,000 showing two orphan CGIs
(asterisks) which are differentially associated with RNAPII in mouse ES cells and brain.
doi:10.1371/journal.pgen.1001134.g004

Orphan CpG Islands Identify Novel Promoters
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reflects differential association with histone H3K27 trimethylation

in ES cells, a modification deposited by the Polycomb Repressive

Complex 2 (PRC2) [18–21]. Approximately 16% of all CGIs are

H3K27me3 positive in human ES cells [46] and these sites are not

over-represented among the CGIs methylated in blood, cerebel-

lum or normal colon (Figure 7C). On the other hand, 56% of

tumour-specifically methylated CGIs are derived from CGIs that

were H3K27 trimethylated in embryonic cells (Figure 7C).

Examples of embryonic H3K27me3 domains that give rise to

methylated CGIs in tumors are shown in Figures 7A and Figure

S7. These findings emphasise the distinction between tumour-

specific CGI methylation and that found in normally developing

Figure 6. Somatic methylation is incompatible with H3K4me3 and RNAPII occupancy at orphan CGIs. (A) Composite box plots showing
sequence read density for brain RNAPII (orange), brain H3K4me3 (green), cerebellum MAP (red) and cerebellum CAP (blue) in mouse. Plotted as for
Figure 3D. (B) Sequence profiles of CAP, MAP, H3K4me3 and RNAPII for mouse (chr11: 104,982,000–105,056,000) in ES cells and sperm (left panel) and
brain and cerebellum (right panel) depict the loss of RNAPII and H3K4me3 associated with a gain of DNA methylation in cerebellum. Sequence
profiles are colour coded as for (A).
doi:10.1371/journal.pgen.1001134.g006

Figure 5. Reciprocal screening identifies inter-species conservation of CGI methylation even at sites distal to annotated promoters.
(A) CAP- (blue) and MAP-seq (red) profile for human chr19: 19,218,000–19,264,000. (B) Bar plot representing the percentage of methylated CGIs at
different genomic locations for human (pink) and mouse (black). Categories are displayed as in Figure 2E and individual percentages for each are
noted within the plot. (C) Preferential methylation at CGIs whose location is evolutionarily conserved between humans and mice. Bar plot depicting
the percentage of mouse CGIs which are somatically methylated (All) compared with the percentage of CGIs with identifiable human orthologues
(conserved). The percentage of methylation (indicated within the plot) is displayed for CGIs associated with annotated transcriptional start sites
(ATSS; black) and orphan CGIs associated with gene bodies (Intragenic; grey). (D, E) Example of conserved orphan CGI methylation in the HOXA locus.
CAP- (blue) and MAP-seq (red) profiles spanning the first three genes in the HOXA locus in human (D) and mouse (E). Regions displayed are human
chr7: 27,098,000–27,128,000 and mouse chr6: 52,104,000–52,130,000.
doi:10.1371/journal.pgen.1001134.g005
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human somatic tissues and reinforce the link between polycomb

domains and tumour-specific CGI methylation. The proportions

of orphan and annotated promoter CGIs that are H3K27me3-

associated in ES cells is relatively similar (20% and 14% respectively),

accounting for the comparable numbers of tumour-specifically

methylated CGIs in each category.

Discussion

Equivalent CpG island complements in human and
mouse

In order to detect all CGIs in human and mouse tissues, we used

CXXC-affinity purification in combination with deep sequencing

to identify clusters of unmethylated CpG (CAP-seq). This protocol

has the advantage that fluctuations in base composition that can

erroneously register as CGIs using algorithmic methods are not

recovered by CAP unless they are free of CpG methylation. As the

vast majority (,99%) of genomic DNA is both CpG-deficient and

heavily methylated (70–80%), false-positive identification of CGIs

is minimal. The absence of significant background signal in CAP-

seq profiles verifies that CGIs represent a discrete fraction of the

mammalian genome that is conserved during evolution. Compu-

tational prediction methods suggest that the human genome

contains almost twice as many CGIs as mouse [17], but this

difference reflects a bias of sequence-based prediction methods due

to the somewhat lower average CpG density of mouse CGIs. In

fact humans and mice have similar numbers of CGIs (25,500 and

23,000 respectively). We found that an almost identical proportion

Figure 7. Distinct characteristics of normal and tumour-specific CGI methylation. (A) MAP-seq profiles (red) for five colon mucosa (C3, C5,
C6, C9 and C10) and five matched colorectal tumour (T3, T5, T6, T9 and T10) biopsy samples corresponding to human chr13: 78,052,000–78,123,500.
CGIs (blue bars) and sites of hES H3K27 trimethylation (hES H3K27me3; black bars; [46] are represented). See also Figure S7. (B) Bar plot representing
the percentage of autosomal CGI methylation in colon (red bars), colon and tumour (dark grey) and tumour only (light grey) relative to gene position
(categorised as for Figure 2E). (C) Bar plot indicating the percentage of all autosomal (blue) and methylated autosomal CGIs (red) which co-localise
with domains of H3K27me3 in human ES cells. Percentages and number of CGIs (n) are displayed within the plot. Tumour specific denotes CGIs that
are methylated in at least three colorectal carcinoma samples, but not in any of the normal colon samples.
doi:10.1371/journal.pgen.1001134.g007
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of gene promoters are embedded within CGIs in each species

(59% in human and 60% in mouse).

Although broadly similar, the number of CGIs in humans

exceeds that in mouse by ,2,500. Specific examples contributing

to this difference are known; for example the human a-globin gene

is CGI-associated, whereas this is replaced in mouse by a

methylated CpG-deficient promoter [47]. A recent study identified

a novel orphan CGI embedded within the transcription unit of

human Retinoblastoma (RB1) gene. This CGI, which is absent in

mouse, is an imprinted promoter that gives rise to a transcript

regulating RB1 transcription in cis [48]. Therefore despite the

relative similarity between the CGI compliments in human and

mouse there remain functionally important differences.

Active chromatin and transcriptional initiation at most
CpG islands

More than half of all CGIs in human and mouse (more than

10,000) can be classed as orphans that are remote from annotated

promoters, being either embedded within coding regions or

between transcription units. Trimethylation of H3K4, a signature

chromatin modification associated with sites of transcriptional

initiation [10], is present at over 40% of these unattached CGIs in

mouse ES cells, raising the possibility that many are unknown

promoters. Interestingly, the magnitude of H3K4me3 modifica-

tion at CGIs is directly correlated with the density of hypomethy-

lated CpG clustering. This is true at both annotated promoter

CGIs and orphans and is consistent with the observation that

artificial clusters of unmethylated CpG are sufficient to generate

novel peaks of H3K4me3 in transgenic ES cells [14].

There is evidence that CGIs are intrinsically poor substrates for

nucleosome assembly and therefore have a reduced requirement

for chromatin remodelling to induce transcription [15]. Given the

frequent association with H3K4me3 even at orphan CGIs [14], it

seems possible that all CGIs might provide a platform on which

transcriptional initiation can occur. Indeed many non-coding

transcripts, including Xist, Tsix, Air and HOTAIR, are transcribed

from CGIs embedded within or between the coding regions of

other genes [49–51]. Additionally, several thousand conserved

non-coding RNAs were identified by assessing sites of H3K4me3

juxtaposed to extended domains of H3K36me3 [28,29]. By

combining data from gene prediction annotations, sites of RNAPII

occupancy and nascent transcript mapping, we confirmed that

5548 (42%) and 4851 (44%) of orphan CGIs co-localised to sites of

transcriptional initiation in human and mouse respectively. The

different methods produced overlapping sets, but each also

revealed novel orphan promoters not seen by other methods

(Figure 4A). This variability may reflect differences in technical

sensitivity, RNA turnover or different CGI promoter usage

between cell types as illustrated in Figures 4C and 4D. In support

of the latter interpretation is the finding that many orphan CGIs

are positive for RNAPII and H3K4me3 in brain but not ES cells

(912 and 1046 respectively). Pending a comprehensive transcrip-

tional analysis of numerous embryonic and somatic tissues, it is

reasonable to assume that 42 and 44% are minimum estimates of

the number of orphan CGIs with promoter activity in human and

mouse. Based on the data so far, we propose that most or all

orphan CGIs correspond to promoters with tissue-restricted

patterns of expression. It is likely that the products of orphan

CGI promoters are non-coding RNAs, though some may

represent alternative transcription start sites of protein-coding

genes. We considered the possibility that orphan CGIs include

transcribed enhancer elements of the kind recently identified by

Kim et al (2010). This seems unlikely, however, as only 440 out of

28,004 enhancers (1.6%) map within 100 bp of orphan CGIs (data

not shown).

CGI methylation is conserved even at sites distal to
annotated gene promoters

Orphan CGIs resemble annotated promoter CGIs in their

sequence properties, promoter-like chromatin state and general

lack of DNA methylation. Their enhanced propensity to become

methylated during development, however, is distinctive. To

visualise CGI methylation, we applied the reciprocal technologies

of CXXC and MBD affinity purification to DNA from human and

mouse tissues. Using this positive-negative screen, we established

that both human and mouse methylated about 11% of all CGIs in

the somatic cell types that were tested. Strikingly, the great

majority of CGI methylation events occurring in these normal

tissues involve orphan CGIs. Annotated promoter CGIs, by

contrast, are infrequently methylated during development. Among

orphans, we found that intragenic CGIs were almost twice as likely

as intergenic CGIs to become methylated. An intriguing possibility

is that many intragenic orphans represent alternative promoters

which are utilised in a spatially or temporally restricted fashion, as

described for Pax6 [26]. The high frequency of methylation at this

sub-class of orphan CGIs may serve to regulate the expression of

such alternative transcripts. The functional significance of the

resulting transcripts is a matter of speculation, but one attractive

possibility is that they encode non-coding RNAs that are involved

in regulation of protein coding gene expression. In this case, highly

regulated expression patterns may be required to facilitate tissue-

specific programmes of gene expression.

Conservation of methylation patterns at orphan CGIs in

humans and mice, which diverged from a common ancestor

about 75 million years ago, suggests a functional role for these

putative promoters. The phenomenon is illustrated by the HOXA

locus where a conserved domain of orphan CGIs showed blood-

specific methylation in both species. This aligns with previous

suggestions that developmental genes, typified by HOX, are

enriched for methylated CGIs [7]. The functional role of CGI

methylation at these sites remains unclear. If all CGIs represent

transcription start sites, it is conceivable that methylation at these

sites may serve to repress regulatory non-coding RNAs such as

HOTAIR [49]. Consistent with this hypothesis we found that

somatic acquisition of DNA methylation correlates with a

precipitous depletion of RNAPII and the active histone modifi-

cation H3K4me3 at orphan CGIs. This suggests that orphan CGI

promoters are regulated by DNA methylation in the same manner

as for annotated CGI promoters.

Sites of CGI methylation distinguish normal and
neoplastic colon cells

In cancer, aberrant silencing of tumour suppressor genes often

coincides with the abnormal acquisition of CGI methylation

[38,39,41,42,45]. It has been proposed that such abnormal CGI

methylation is instructed by polycomb silencing, as sites of DNA

methylation in tumors are frequently trimethylated at H3K27 in

ES cells [42,43,45]. In strong support of this link, we observed a

three-fold over-representation of H3K27me3-associated CGIs

among the tumour-specifically methylated CGI complement of

malignant colorectal cancers. A link that might predispose sites of

H3K27me3 to DNA methylation has been proposed [52] yet the

mechanistic interplay between these repressive systems remains

uncertain, as polycomb repression and CGI methylation appear to

be alternative silencing mechanisms in ES cells, with little target

site overlap [23,24]. Recent evidence, however, suggests that
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breast cancer cells possess an altered PRC2 binding pattern

reminiscent of embryonic fibroblasts [53]. If this disrupted

chromatin pattern is typical of all neoplastic cells it could facilitate

direct crosstalk between sites of H3K27me3 and the DNA

methylation machinery.

Colorectal tumour-specific CGI methylation affects annotated

promoter and orphan CGIs equally. In contrast, normal colon

showed a typical somatic distribution of methylated CGIs as seen

in blood and cerebellum, whereby orphan CGIs were preferen-

tially methylated (Figure 7B). Interestingly, there was no

discernable preference for methylation of H3K27me3 sites in

these normal tissues. We conclude that abnormal CGI methylation

that has arisen in cancer is distinct from that which occurs during

development. It has been proposed that DNA methylation serves

to lock in a pseudo-pluripotent state via acquisition of DNA

methylation at CGIs subject to embryonic polycomb repression,

thereby facilitating cellular proliferation in neoplastic cells

[42,43,45]. This scenario involves methylation of CGIs not

normally regulated by this mechanism and it highlights the

distinction between developmental CGI methylation and that

associated with cancer.

Concluding remarks
Our results establish that CGIs represent a distinctive fraction of

the mammalian genome that is conserved between humans and

mice. The relationship between CpG density and degrees of

H3K4me3 supports a role for CpG in signalling a ‘‘promoter-

friendly’’ chromatin conformation. Although about half of CGIs in

both species are not previously annotated, our data suggests that

these nevertheless represent thousands of functional promoters,

often as novel genes for non-coding RNAs. In terms of

transcription and DNA methylation, expression of orphan CGI

promoters is more highly developmentally regulated than CGIs at

annotated protein-coding genes. This observation raises the

possibility that the resulting transcripts play functionally important

roles during development.

Materials and Methods

Ethics statement
Work involving the use of human post-mortem brain samples

was approved by the Lothian Research Ethical Committee (Ref.

2003/8/37). All donors consented to the use of this material for

DNA extraction and all samples were anonymized prior to DNA

extraction. DNA from normal and neoplastic colon tissues were

prepared under ethics 08/S1101/41 through the Edinburgh

Experimental Cancer Medicine Centre. All mouse work was

carried out in accordance with Home Office regulations. No

liscenced procedures were required for this work.

Preparation of human and mouse tissues
Human whole semen (n = 3; aged 24, 26 and 61), whole male

blood (n = 3; aged 24, 26 and 61) and whole female blood (n = 5)

was collected from healthy donors. Human semen was centrifuged

at 5000 g for 5 min then washed three times in PBS to yield pure

sperm. All donors consented to the use of this material for DNA

extraction and all samples were anonymized prior to DNA

extraction. Approximately 500 mg of human cerebellum was

provided for three males (aged 41, 50 and 54) and three females

(aged 44, 49 and 51) by the MRC Sudden Death Brain Bank,

Edinburgh.

Mouse blood was extracted from male (n = 9; aged 30 weeks)

and female (n = 8; aged 15 weeks) wild type C57Bl/6J mice. Testis

(n = 4) and cerebella (n = 3 for male and female) were dissected

from a subset of mice used for blood extraction. Testes were

dounce homogenised on ice in 310 mM sucrose, 3 mM MgCl2,

10 mM potassium phospahate (pH 6) and 0.05% v/v Triton X-

100 and cells were then centrifuged at 800 g for 20 min at 4uC.

Cells were resuspended in water and subjected to 3610 bursts of

sonication on ice at setting 2 with a duty cycle of 20% using a

Branson digital sonifer. Sonicated cells were then pelleted twice

through a 2 ml 1.5 M sucrose cushion at 1000 g for 30 min at

4uC. Pelleted cells were visually inspected to ensure the presence of

pure sperm heads.

DNA extraction
All human and mouse tissues were pooled prior to DNA

extraction. DNA was extracted from 10 mls of whole blood using

the Genomic-tip 500/G kit according to manufacturers instruc-

tions (Qiagen; 10262). Purified sperm cells were incubated in 6 M

guanidinium hydrochloride, 30 mM sodium citrate, 0.5% w/v

sarkosyl, 0.2 mg/ml proteinase K, 0.2 mg/ml RNase A and

0.3 M b-mercaptoethanol and incubated at 55uC for 4 hours.

DNA was isopropanol precipitated as previously described [54].

300 mg of frozen, cerebella were ground into a fine powder and

lysed as for sperm. Lysed material was then extracted once with

phenol:chloroform:isoamyl alcohol and once with isoamyl alco-

hol:chloroform and phased using MaxTract High density columns

according to manufacturers instructions (Qiagen; 129065). DNA

was then extracted from the aqueous phase by the addition of 5

volumes of isopropanol. All DNA was resuspended in 1x TE

buffer.

Cultured cells
Human Shef 4 ES cells [55] were a gift from Dr Andrew Smith

(Institute for Stem Cell Research, University of Edinburgh).

Mouse ES cells (E14 TG2a) were grown as previously described

[56].

Bisulfite sequencing
Bisulfite sequencing was performed as previously described [7].

DNA was sonicated using a Diagenode Bioruptor for 10 seconds

on high setting prior to bisulfite treatment.

DNA chromatography: MAP and CAP
MAP was performed using two sequential rounds of chroma-

tography as previously described [57]. For CAP, DNA was

prepared as for MAP-seq and recombinant CXXC was expressed

and purified as previously described [7]. To remove bacterial

DNA, 100 mg of purified CXXC was incubated at room

temperature for 90 min with 700 units of DNaseI supplemented

with 1x DNaseI reaction buffer (Fermentas; EN0521). CXXC was

bound to nickel charged sepharose beads at 50 mg/ml bead

volume (GE Healthcare; 17-0575-01). DNA was bound to the

CXXC matrix in 0.1 M NaCl containing column buffer, washed

at 600 mM NaCl or 560 mM NaCl and then eluted using buffer

containing 1 M NaCl. CAP was performed once per sample as this

generated sufficient enrichment for Solexa sequencing. Eluted

fractions were pooled, concentrated and precipitated as for MAP

[57]. A minimum of two independent technical replicates were

performed for each DNA sample.

Chromatin immunoprecipitation (ChIP)
ChIP was performed on human and mouse ES cells as

previously described [58]. For each immunoprecipitation, cross-

linked chromatin from approximately 10 million cells was

incubated with either 1.5 mg of anti-H3K4me3 (ab8580; Abcam)
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or 5 mg of anti-RNA Polymerase II (ab817; Abcam) antibodies for

16 hrs at 4uC. For each immunoprecipitation two independent

replicates were performed.

Library preparation and Illumina Solexa sequencing
MAP and CAP input DNA was ligated to solexa sequencing

adaptors prior to purification as previously described for MAP

[57]. CAP, MAP and ChIP solexa libraries were prepared as

previously described [57]. Solexa sequencing was carried out at

the Wellcome Trust Sanger Institute. Single end reads were

mapped to human and mouse reference genome builds (hg18 -

NCBI36 and mm9 - NCBIm37 respectively) using MAQ (http://

maq.sourceforge.net/). Reads with a mapping score greater or

equal to 30 where retained.

Analysis of high-throughput sequence data
Mapped solexa sequence in the form of. WIG files was

processed and analysed using a set of novel tools based on R

and perl scripts interfaced with the Galaxy server (http://main.g2.

bx.psu.edu/) [59]. Individual replicate solexa lanes were visually

inspected using the interactive genome browser [60] and

combined to generate single datasets for each biological sample.

An overview of all solexa sequencing data is provided in Table S1.

The parameters applied in each analysis step are outlined in Table

S1. They are; read height (H), length in bp (L) and gap permitted

in the length parameter (G). The gap parameter allows for small

interruptions in regions which are otherwise represented by

contiguous sequence reads.

Data normalization. Raw sequencing data was normalised

in order to make samples from the same purification directly

comparable. Like samples (i.e. all CAP) were scaled to a constant

approximating the ‘‘average’’ read number for that purification in

order to account for variable sequence depth. In the case of MAP

samples, background was removed prior to normalisation as

background reads could skew the normalisation procedure.

Parameters applied for normalisation are outlined in Table S1.

Peak-finding. Peaks of enrichment were identified using H,

L and G parameters as outlined in Table S1. Peak-finding was

calibrated for each purification to identify regions of known DNA

methylation or histone modification state. CAP-seq peak-finding

was tailored to identify hypomethylated CGIs previously

identified, however the high signal-to-noise ratio obtained meant

that varying these parameters did not greatly alter the efficiency of

CGI identification. Conversely, MAP-seq peak finding was

calibrated to identify well characterised methylated CGIs such as

those on the inactive X chromosome in females. For each data

type the parameters were kept consistent between all like sample

for both species.

Regions of CAP-seq enrichment in sperm, blood and cerebel-

lum were combined to give a comprehensive set of CGIs for both

human and mouse. For mouse CGIs, CAP-seq enriched regions

identified at both high and low stringency (see above) were

combined to account for the relative CpG deficiency of mouse

CGIs (the subset of CGIs only identified under stringent conditions

are outlined in Dataset S2). CGIs +/2100 bp were intersected

with additional genomic features such as predicted genes, domains

of H3K4me3 and RNAPII binding. Where required, published

datasets were converted to mm9 and hg18 using the liftover tool in

galaxy [59]. CGIs were classified as promoter associated, intra-

and intergenic based on their overlap +/2100 bp with Refseq

annotated genes (33,258 and 25,767 in Human and Mouse

respectively). CGIs were designated as promoter associated if they

overlapped the 59 end of an annotated gene (+/2100 bp).

Global analysis of sequence data. To determine the

relationship between technical replicates and experimental

variables, the mean read depth was calculated for every

contiguous 1 kb window in the human and mouse genomes.

Pair-wise plots were generated for each comparison of interest and

the correlation was assessed by calculating the Pearson correlation

coefficient using the ‘cor’ function in R.

Identification of differentially methylated CGIs. To

accurately identify differentially methylated CGIs, a sensitive

‘‘sliding window’’ analysis was carried out on MAP-Seq samples.

For each CGI the average number of reads per base was

calculated for a 100 bp window with a 20 bp slide. Values for each

window were then compared between sperm (hypomethylated

reference) and each of the somatic tissue samples. This gave a ratio

for each window. If both windows being compared contained less

than 4 reads this ratio was set to 1 in order to remove bias due to

small fluctuations at low read depth.

Differentially methylated CGIs were defined as those containing

9 out of 10 contiguous windows with a log2 ratio of .2. CGIs

were then scored as 21 (less methylated than sperm), 0 (same

methylation as sperm) and 1 (more methylated than sperm). These

parameters were verified using CGIs on the X chromosome which

are methylated specifically in females.

All analytical results are summarised in Datasets S1 and S2 for

human and mouse respectively. High-throughput sequencing data

have been deposited in the Gene Expression Omnibus (GEO)

under the accession number: GSE21442.

Supporting Information

Dataset S1 Summary of Human CGI data. Summary of all

analysed data with respect to Human CGIs.

Found at: doi:10.1371/journal.pgen.1001134.s001 (8.56 MB

XLS)

Dataset S2 Summary of Mouse CGI data. Summary of all

analysed data with respect to Mouse CGIs.

Found at: doi:10.1371/journal.pgen.1001134.s002 (6.47 MB

XLS)

Figure S1 Preliminary characterisation of Human and Mouse

CAP-seq results. (A) Sperm CAP-seq read density profiles (blue)

for human and mouse sperm generated by washing DNA bound

to the CXXC column with 600 mM NaCl prior to elution. CpG

density (black; 300 bp windows with a 10 bp slide) at 4 human

and mouse syntenic chromosomal locations is shown below the

read profiles. Genes (Refseq) are annotated below the CAP-seq

profiles with those mapped to the positive and negative strand

displayed above and below the chromosome (grey line)

respectively. The CpG density of 5 CpGs per 100 bp (dashed

black line) is indicated for reference. Mouse regions assessed

by bisulfite sequencing are indicated (bisulfite; grey bars). (B)

Bisulfite sequencing of four putative mouse CGI island

promoters. Open circles represent unmethylated CpG sites.

Each column represents a single PCR amplicon and horizontal

lines represent single sequenced DNA clones. Vertical strokes

represent the relative CpG position within each amplicon. (C)

Histogram depicting the CpG observed/expected (o/e) values for

all human (pink) and mouse (black) CGIs identified by CAP with

washing at 600 mM NaCl. Statistical significance (**) was

determined using a Welch Two Sample t-Test and CpG o/e

values of 0.21 (broken red line; human genome average) and 0.6

(broken black line; standard CGI prediction parameter) are

indicated. (D) Sperm CAP-seq read density profiles (blue) for

mouse sperm generated by washing with the optimised NaCl
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concentration (560 mM) in comparison with CpG density (black;

300 bp windows with a 10 bp slide).

Found at: doi:10.1371/journal.pgen.1001134.s003 (0.19 MB PDF)

Figure S2 Pairwise analysis of mouse CAP-seq data. Scatter

plots of CAP-seq data representing the mean sequence read depth

for every contiguous 1 kb window in the mouse genome. Each

pairwise comparison was assessed by calculating a Pearson

correlation coefficient, which is presented above each plot. Tissue

and replicate status for pairwise comparisons are noted above and

to the left of the plots.

Found at: doi:10.1371/journal.pgen.1001134.s004 (1.26 MB PDF)

Figure S3 Proportional relationship between CpG density and

H3K4me3 at Human CGIs. Box plots of H3K4me3 reads per

base (averaged across 500 bp with a 100 bp slide) spanning 5 kb of

all human CGIs at different CpG densities (CpGs per 100 bp).

CpG density categories applied are #5, 5–6, 6–7, 7–8, 8–9 and

.9 CpGs per 100 bp, arranged in ascending order from top to

bottom. Box plots represent the distribution of the central 50% of

the data (filled box) and the median (black bisecting line). The

numbers of islands in each category (n) is noted in parenthesis.

Found at: doi:10.1371/journal.pgen.1001134.s005 (0.04 MB PDF)

Figure S4 Characterisation of MAP enrichment. Histograms

representing the CpG density of MAP-enriched genomic loci in

human (hMAP) and mouse (mMAP). The vertical dashed red line

represents the lower tenth percentile of the data indicating that the

majority of characterised MAP enriched DNA fragments have a

CpG density of at least 1 and 1.3 CpGs per 100 bp in human and

mouse respectively.

Found at: doi:10.1371/journal.pgen.1001134.s006 (0.05 MB PDF)

Figure S5 Global scatter plots reveal a reciprocal relationship

between CAP- and MAP-seq data for human sperm, blood, and

cerebellum. Scatter plots display pairwise comparisons of CAP-

and MAP-seq data for every contiguous 1 kb window in the

human genome using normalised data for human sperm, blood

and cerebellum. Plots are represented as for Figure S2.

Found at: doi:10.1371/journal.pgen.1001134.s007 (0.12 MB PDF)

Figure S6 Pairwise comparisons of MAP-seq data reveal

consistent tumour-specific methylation. Scatter plots displaying

pairwise comparisons of MAP-seq data for every colon (C) and

colorectal tumour (T) sample screened by MAP-seq. Data

represents the mean sequence depth for every 1 kb window in

the human genome. Data is presented as for Figure S2.

Found at: doi:10.1371/journal.pgen.1001134.s008 (4.94 MB PDF)

Figure S7 Tumour-specific CGI methylation associated with

PDX1. MAP-seq profiles (red) for five colon mucosa (C3, C5, C6,

C9 and C10) and five matched colorectal tumour (T3, T5, T6, T9

and T10) biopsy samples for human chr13: 27,325,000–

27,402,000. CGIs (blue bars) and sites of hES H3K27 trimethyla-

tion (hES H3K27me3; black bars; [46] are represented).

Found at: doi:10.1371/journal.pgen.1001134.s009 (0.05 MB PDF)

Table S1 Sample information and data analysis parameters.

Summary of the sequence and analysis statistics for each biological

sample presented.

Found at: doi:10.1371/journal.pgen.1001134.s010 (0.04 MB

XLS)
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