Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Sep;143(3):1215–1222. doi: 10.1128/jb.143.3.1215-1222.1980

Analysis of caulobacter crescentus lipids.

A J De Siervo, A D Homola
PMCID: PMC294482  PMID: 7410318

Abstract

The lipids of Caulobacter crescentus, a procaryotic species which differentiates into stalked and swarmer cell types, were analyzed. Major lipid classes were purified by chromatography and identified by both chromatographic and chemical methods. Approximately half of the total lipid fraction of this organism consisted of glycolipis, which were primarily monoglucosyldiglyceride and an acylated glucuronic acid. Two of the phospholipids of C. crescentus were identified as phopshatidylglycerol and acylphosphatidylglycerol. Commonly occurring bacterial phospholipids, such as phosphatidylethanolamine and cardiolipin (diphosphatidylglycerol), were not detected. Monoglyceride and diglyceride were found in the neutral lipid fraction, which made up 10% of the total lipid. Quantitative lipid compositional studies, performed by the incorporation of [14C]acetate and [32P]orthophosphate into growing cultures, revealed that separated swarmer and stalked cells had similar lipid compositions. However, stationary-phase cultures, compared with logaritmic cultures, had decreased amounts of phosphatidylglycerol and diglyceride and increased amounts of acylphosphatidylglycerol and a glucuronic acid-containing glycolipid, glycolipid X. In addition, two glycolipids were only detected in stationary-phase cultures. These studies indicate that C. crescentus has a distinctive lipid composition compared with those of other procaryotic species which have been analyzed.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Cho K. S., Benns G., Proulx P. Formation of acyl phosphatidyl glycerol by Escherichia coli extracts. Biochim Biophys Acta. 1973 Dec 20;326(3):355–360. [PubMed] [Google Scholar]
  4. Contreras I., Shapiro L., Henry S. Membrane phospholipid composition of Caulobacter crescentus. J Bacteriol. 1978 Sep;135(3):1130–1136. doi: 10.1128/jb.135.3.1130-1136.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Siervo A. J. Alterations in the phospholipid composition of Escherichia coli B during growth at different temperatures. J Bacteriol. 1969 Dec;100(3):1342–1349. doi: 10.1128/jb.100.3.1342-1349.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Siervo A. J., Salton M. R. Biosynthesis of cardiolipin in the membranes of Micrococcus lysodeikticus. Biochim Biophys Acta. 1971 Jul 13;239(2):280–292. doi: 10.1016/0005-2760(71)90174-3. [DOI] [PubMed] [Google Scholar]
  7. De Siervo A. J., Salton M. R. Changes in phospholipid composition of Micrococcus lysodeikticus during growth. Microbios. 1973 Jun-Aug;8(29):73–78. [PubMed] [Google Scholar]
  8. Diervo A. J., Reynolds J. W. Phospholipid composition and cardiolipin synthesis in fermentative and nonfermentative marine bacteria. J Bacteriol. 1975 Jul;123(1):294–301. doi: 10.1128/jb.123.1.294-301.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evinger M., Agabian N. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol. 1977 Oct;132(1):294–301. doi: 10.1128/jb.132.1.294-301.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  11. Fischer W., Ishizuka I., Landgraf H. R., Herrmann J. Glycerophosphoryl diglucosyl diglyceride, a new phosphoglycolipid from Streptococci. Biochim Biophys Acta. 1973 Mar 8;296(3):527–545. doi: 10.1016/0005-2760(73)90113-6. [DOI] [PubMed] [Google Scholar]
  12. Griggs L. J., Post A., White E. R., Finkelstein J. A., Moeckel W. E., Holden K. G., Zarembo J. E., Weisbach J. A. Identification and quantitation of alditol acetates of neutral and amino sugars from mucins by automated gas-liquid chromatography. Anal Biochem. 1971 Oct;43(2):369–381. doi: 10.1016/0003-2697(71)90266-1. [DOI] [PubMed] [Google Scholar]
  13. Jones D. E., Smith J. D. Phospholipids of the differentiating bacterium Caulobacter crescentus. Can J Biochem. 1979 May;57(5):424–428. doi: 10.1139/o79-054. [DOI] [PubMed] [Google Scholar]
  14. McAllister D. J., De Siervo A. J. Identification of bisphosphatidic acid and its plasmalogen analogues in the phospholipids of a marine bacterium. J Bacteriol. 1975 Jul;123(1):302–307. doi: 10.1128/jb.123.1.302-307.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. POINDEXTER J. S. BIOLOGICAL PROPERTIES AND CLASSIFICATION OF THE CAULOBACTER GROUP. Bacteriol Rev. 1964 Sep;28:231–295. doi: 10.1128/br.28.3.231-295.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RENKONEN O. Determination of glycerol in phosphatides. Biochim Biophys Acta. 1962 Jan 29;56:367–369. doi: 10.1016/0006-3002(62)90580-2. [DOI] [PubMed] [Google Scholar]
  17. Randle C. L., Albro P. W., Dittmer J. C. The phosphoglyceride composition of Gram-negative bacteria and the changes in composition during growth. Biochim Biophys Acta. 1969;187(2):214–220. doi: 10.1016/0005-2760(69)90030-7. [DOI] [PubMed] [Google Scholar]
  18. SNYDER F., STEPHENS N. A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta. 1959 Jul;34:244–245. doi: 10.1016/0006-3002(59)90255-0. [DOI] [PubMed] [Google Scholar]
  19. Schmidt J. M., Stanier R. Y. The development of cellular stalks in bacteria. J Cell Biol. 1966 Mar;28(3):423–436. doi: 10.1083/jcb.28.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shaw J. M., Pieringer R. A. Biosynthesis of glucuronosyl diglyceride by particulate fractions of Pseudomonas diminuta. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1201–1205. doi: 10.1016/s0006-291x(72)80102-5. [DOI] [PubMed] [Google Scholar]
  21. Shaw N. Bacterial glycolipids. Bacteriol Rev. 1970 Dec;34(4):365–377. doi: 10.1128/br.34.4.365-377.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steiner M. R., Lester R. L. In vitro studies of phospholipid biosynthesis in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Feb 21;260(2):222–243. doi: 10.1016/0005-2760(72)90035-5. [DOI] [PubMed] [Google Scholar]
  23. Stern N., Tietz A. Glycolipids of a halotolerant, moderately halophilic bacterium. I. The effect of growth medium and age of culture on lipid composition. Biochim Biophys Acta. 1973 Jan 19;296(1):130–135. doi: 10.1016/0005-2760(73)90052-0. [DOI] [PubMed] [Google Scholar]
  24. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  25. VORBECK M. L., MARINETTI G. V. SEPARATION OF GLYCOSYL DIGLYCERIDES FROM PHOSPHATIDES USING SILICIC ACID COLUMN CHROMATOGRAPHY. J Lipid Res. 1965 Jan;6:3–6. [PubMed] [Google Scholar]
  26. White D. C., Frerman F. E. Extraction, characterization, and cellular localization of the lipids of Staphylococcus aureus. J Bacteriol. 1967 Dec;94(6):1854–1867. doi: 10.1128/jb.94.6.1854-1867.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wilkinson S. G. Lipids of Pseudomonas diminuta. Biochim Biophys Acta. 1969 Dec 17;187(4):492–500. doi: 10.1016/0005-2760(69)90046-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES