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The combining of genome-wide association (GWA) data across populations represents a major challenge for massive
global meta-analyses. Genotype imputation using densely genotyped reference samples facilitates the combination of data
across different genotyping platforms. HapMap data is typically used as a reference for single nucleotide polymorphism
(SNP) imputation and tagging copy number polymorphisms (CNPs). However, the advantage of having population-
specific reference panels for founder populations has not been evaluated. We looked at the properties and impact of
adding 81 individuals from a founder population to HapMap3 reference data on imputation quality, CNP tagging, and
power to detect association in simulations and in an independent cohort of 2138 individuals. The gain in SNP imputation
accuracy was highest among low-frequency markers (minor allele frequency [MAF] < 5%), for which adding the pop-
ulation-specific samples to the reference set increased the median R2 between imputed and genotyped SNPs from 0.90 to
0.94. Accuracy also increased in regions with high recombination rates. Similarly, a reference set with population-specific
extension facilitated the identification of better tag-SNPs for a subset of CNPs; for 4% of CNPs the R2 between SNP
genotypes and CNP intensity in the independent population cohort was at least twice as high as without the extension. We
conclude that even a relatively small population-specific reference set yields considerable benefits in SNP imputation, CNP
tagging accuracy, and the power to detect associations in founder populations and population isolates in particular.

[Supplemental material is available online at http://www.genome.org. The data are available at the European Genome-
phenome Archive (http://www.ebi.ac.uk/ega), under accession no. EGAS0000000030 and at ftp://ftp.fimm.fi/pub/
FIN_HAPMAP3.]

In the next generation of genome-wide association studies

(GWAS), large consortia combine GWA results from platforms that

have different single nucleotide polymorphism (SNP) marker res-

olutions and the capability for copy number polymorphism (CNP)

discovery and genotyping (Cooper et al. 2008). The challenge of

having data of different SNP resolutions across GWA studies can be

overcome by genotype imputation: the inference of missing and

unobserved data from the local linkage disequilibrium (LD) struc-

ture of a high-resolution reference sample (Li and Abecasis 2006;

Marchini et al. 2007). Similarly, information on CNPs can be in-

ferred from the variation of SNPs that correlate with CNP signal

intensities in a reference set genotyped with a high-density array

with good CNP coverage (Locke et al. 2006; McCarroll et al. 2006;

Redon et al. 2006). The strategy of inferring CNPs from SNP data

may assist future CNP studies by allowing for the determination of

CNPs using a specific set of tagging SNPs instead of costly CNP

detection and genotyping pipelines.

In studies using samples of European origin, the SNP impu-

tation and CNP-tagging reference panel has typically been the 60

CEPH (Utah residents with ancestry from Northern and Western

Europe, abbreviation: CEU) samples from HapMap Phase 2 (The

International HapMap Consortium 2003, 2007). Recently, addi-

tional HapMap populations were genotyped with two commer-

cially available chips, the Illumina Infinium Human1M-single and

Affymetrix Genome-Wide Human SNP Array 6.0 (The Interna-

tional HapMap 3 Consortium 2010). This new HapMap3 data set

of 1184 samples offers better genomic information due to its in-

creased sample size and the SNP and CNP data from the high-

density genotyping arrays. The design of HapMap3 allows for the

extension of the reference set into additional populations with

different LD structures. Some of the most unique LD patterns in

the world arise in founder populations (Service et al. 2006), many
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of which also display unique health risks (Peltonen et al. 1999;

Orton et al. 2008). Given these characteristics, does it make sense

for a founder population to have its own reference set and, if so,

how would this impact our ability to detect disease variants? Here,

we use a local reference set from the genetically distinct Finn-

ish founder population (Supplemental Fig. 1; Service et al. 2006;

Jakkula et al. 2008) to evaluate the accuracy, coverage, and power of

SNP imputation and CNP tagging relative to that of the less-specific

HapMap3 European samples CEU and TSI (from Tuscans in Italy).

Results

Imputation quality

To study the SNP imputation quality, we used the Health 2000

study data (H2000; for details see Methods and http://www.

nationalbiobanks.fi), which was genotyped with the Illumina 610-

Quad BeadChip. We masked SNPs that were not included in the

previous generation Illumina HumanCNV370 BeadChip (310,906

SNPs after quality control). The masked SNPs were imputed us-

ing five phased reference sets: HapMap2 CEU (HM2, N = 60),

HapMap3 CEU + TSI founders (HM3, N = 200), Finnish HapMap3

(FIN, N = 81), the smaller HapMap3 reference set of 81 individuals

randomly selected from HM3 CEU (HM3-s, N = 81), and combined

HapMap3 (FIN + HM3, combining CEU + TSI + FIN, N = 281) (Fig. 1).

We illustrate the results by imputing data for the complete chro-

mosome 21. Figure 2 and Table 1 show the median proportion of

concordant SNPs between the genotyped and imputed best-

guess genotype and the medians of the squared linear correlations

(R2) between the genotyped 610K SNPs with the imputed allele

dosage genotypes or best-guess genotypes. Specifically, the R2

values presented measure how well-correlated the imputed geno-

types are to the true genotypes and, therefore, they represent the

factor by which linear regression statistics of association will be

reduced, on average, when the imputed data is used in place of

directly typed SNPs. Using HM2 reference, the median R2 between

imputed allele dosages and true genotypes was 0.941 for common

and 0.846 for low-frequency SNPs. HM3 showed slightly higher

R2 values and the FIN reference set offered even better R2 despite

having less haplotypes than HM3 (Table 1; Fig. 2). When com-

paring the imputation quality of FIN to HM3-s, both having the

same number of individuals, the gain of

quality when using FIN was even larger.

The strength of the correlation was fur-

ther increased when using the pooled

haplotypes, FIN + HM3 (R2 = 0.978 for

common and 0.940 for low-frequency

SNPs). The pooled reference set per-

formed particularly well for low-frequency

alleles (MAF < 5%) (Supplemental Fig. 2).

We were unable to compare the imputa-

tion of rare alleles (MAF < 0.5%) due to the

low N of the FIN data set.

To address the impact of population

bottlenecks within the isolated Finnish

population (Peltonen et al. 1999), we

studied a subset of 429 individuals from

the H2000 study originating from the

‘‘late-settlement’’ population isolate of

Northeastern Finland (Nevanlinna 1972;

Varilo et al. 2000). While our results sug-

gest that the late-settlement combined

HapMap3 (LSFIN + HM3) reference set

provides better imputation quality than

the original HM3 set, the quality is

highest when using the FIN + HM3 set

(Supplemental Table 1). Using a ‘‘general

Figure 1. Study flow. The setting and flow of the study for both imputation and CNV tagging. (CEU)
CEPH (Utah residents with ancestry from Northern and Western Europe); (TSI) Tuscans in Italy; (CNP)
copy number polymorphism; (SNP) single nucleotide polymorphism; (FIN) Finnish HapMap3; (LSFIN)
late-settlement subset of the FIN data set; (H2000) Health 2000 data set.

Figure 2. Running median of squared linear correlations from the
H2000 imputations. The top of the plot shows the running median of
squared linear correlations between imputed allele dosages and the
genotyped SNPs on chromosome 21 in the H2000 imputation with
HapMap2 (HM2), HapMap3 (HM3), Finnish HapMap3 (FIN), and the
combined reference, FIN + HM3. At bottom are the genetic distances,
based on the recombination map of HapMap2 trios, within the windows
in which the medians of R2s have been calculated.
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population’’ reference set seems to be sufficient for good imputa-

tion quality of subisolate populations, which have been separated

by additional, more recent bottlenecks from the original founder

population.

In order to investigate the source of the gain in the H2000

imputation quality when using the FIN and FIN + HM3 reference

set instead of HM3, we fitted a linear model that explained the

variability of the R2-increase, calculated as the difference between

the R2s divided by the R2 of the HM3 imputed data, by the re-

combination rate and relative MAF difference between HM3 and

FIN as a surrogate for genetic drift. The relative difference in MAFs

was calculated as the absolute difference between the FIN and

HM3 MAFs divided by the HM3 MAF. The analysis showed that

the best imputation quality gain was achieved for variants in

genomic regions where the recombination rate is high and for

variants with high relative MAF difference (Supplemental Table 2;

Supplemental Fig. 3A,B). The recombination rates were matched

by the position from the HapMap combined recombination map

(ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2008-03_rel22_

B36/rates/). To further characterize this general observation, we

selected nine SNPs having R2 increases higher than five and ex-

amined the LD structure around those SNPs (Supplemental Ta-

ble 3). Of these nine SNPs, four were located directly within

recombination hotspots, which were defined as areas having the

top 5% of cM/Mb rates along chromosome 21 according to the

HapMap combined recombination map. A further four were lo-

cated in the immediate (<20 kb) vicinity of one or more hotspots.

R2 increase of one SNP could not be explained by local recom-

bination rates.

CNP tagging

Parallel to the SNP imputation analysis, we assessed the best

combination of reference panels for choosing CNP tag-SNPs for

H2000, our independent Finnish data set. We chose a tag-SNP for

each CNP in the FIN, HM3, and FIN + HM3 reference panels, in-

dependently. We then measured the cor-

relation coefficient R between the H2000

genotypes at each tag-SNP and the cor-

responding CNP. The median SNP-CNP

R2 in the H2000 data was 0.412 (min.

0.000, max. 0.960) with the HM3 tag-

SNPs, 0.424 (min. 0.000, max. 0.942)

with the FIN tag-SNPs, and 0.448 (min.

0.000, max. 0.960) with the FIN + HM3

tag-SNPs. Although the overall R2 distri-

bution was similar for all three tag-SNP

sets, there was a subset of CNPs whose

CNP-tagging accuracy in the H2000 data

was largely impacted by the choice of the

tag-SNP reference panel (Fig. 3).

A total of 9.6% (N = 27) of the CNPs

were tagged with at least moderately

higher R2 values (0.05 cut-off for differ-

ence) using FIN tag-SNPs compared with

the corresponding HM3 tag-SNP (Fig.

3A,B; Supplemental Table 4). Concur-

rently, however, for 8.5% (N = 24) of the

CNPs, the tagging accuracy was reduced

when FIN tag-SNPs were used instead

of HM3 tag-SNPs (cut-off for difference

0.05). The tag-SNP set based on FIN +

HM3 reference data was more robust in tagging H2000 CNPs; FIN +

HM3 tag-SNPs with at least moderately higher R2 than HM3 tag-

SNP were identified for 5.3% (N = 15) of CNPs (Fig. 3B), while only

1.8% (N = 5) of FIN + HM3 tag-SNPs performed worse than the

HM3 tag-SNP. As expected, most of the large R2 differences be-

tween the FIN or FIN + HM3 and the HM3 tag-SNP set occurred for

CNPs where the correlation between the HM3 tag-SNP and the

corresponding CNP was low (Fig. 3). For low-frequency CNPs, the

gain in tagging accuracy seemed mostly to come from CNPs where

R2 for HM3 tag-SNP was <0.05. For common CNPs, the gain was

more evenly distributed among the HM3 R2 values.

There were 12 CNPs in the H2000 data for which the FIN +

HM3 R2 values were at least twice as high as the HM3 R2 values (Fig.

3C,D; Supplemental Table 4). There were no CNPs whose R2

worsened by the same degree when using FIN + HM3 tag-SNPs. We

more closely examined these 12 events where the CNP tagging

accuracy gain in the H2000 data was highest when using the FIN +

HM3 reference, as opposed to that of HM3 alone. On 10 occasions

the correlation between any of the three tag-SNPs and CNP signal

was similar in the HM3 data, but within the FIN data there was

a large difference in the correlation between SNP genotypes and

CNP signals for the tag-SNP suggested by the HM3 data, and the

best SNP based on the FIN data. This best FIN SNP was identified

and chosen as the tag-SNP for the H2000 correlation test when the

FIN + HM3 data was used for tag-SNP selection. In two events, the

tagging accuracy was poor with all three tag-SNPs, and the R2 gain

may be explained by chance.

Association power simulation

Improvements in SNP imputation quality and CNP-tagging accu-

racy can potentially increase the power to detect association be-

tween a SNP or CNP and a phenotype. We simulated the effect of

the SNP imputation quality and CNP-tagging accuracy gain in

association analysis (Fig. 4) and found that the change in power to

detect association for SNPs was most evident among SNPs with

Table 1. Quality measures from imputation of the Health 2000 data set

Reference data set
No. of

haplotypes

Median
R2 with
dosage

Median
R2 with

best-guess

Median
proportion
of SNPs in

concordance

Percent
of SNPs
dosage
R2 < 0.5

No. of SNPs
R2MACH < 0.5

Common SNPsa

HM2 120 0.941 0.929 0.975 7.79 6.81
HM3-s 162 0.950 0.939 0.978 7.20 5.93
HM3 400 0.958 0.951 0.983 5.93 5.29
FIN 162 0.964 0.955 0.985 3.23 1.57
FIN + HM3 562 0.978 0.974 0.991 2.40 1.91

Low-frequency SNPsb

HM2 120 0.846 0.834 0.987 27.1 19.4
HM3-s 162 0.859 0.847 0.986 25.6 20.2
HM3 400 0.900 0.886 0.991 22.5 17.8
FIN 162 0.910 0.907 0.992 15.5 10.1
FIN + HM3 562 0.940 0.930 0.994 10.9 10.1

Quality measures for the imputation of the Health 2000 data set with HapMap2 (HM2), smaller
HapMap3 reference of 81 individuals selected randomly from the HapMap3 CEU samples (HM3-s),
HapMap3 (HM3), Finnish HapMap3 (FIN), and the combined HapMap3 (FIN + HM3) references. R2 is
the square of the linear correlation between imputed allele dosage and genotyped SNP and R2MACH is
the quality measure from MACH calculated as the square of the linear correlation between the predicted
haplotypes. The median proportion of SNPs in concordance is calculated using genotyped and imputed
best-guess genotypes. This is the median proportion of genotypes that are concordant with the best-
guess imputations, taken across all imputed SNPs on chromosome 21.
aThe common SNPs having MAF $ 0.05.
bSNPs having MAF < 0.05 in Health 2000 genotyped data.
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allele frequencies ranging from 0% to 3% (Fig. 4D), and among

CNPs with allele frequencies of 5%–10% (Fig. 4B). The gain in

power to detect association for SNPs in the MAF range of from 0%

to 3% was highest for the effect size, beta, of 0.3; the power in-

creased from 0.48 to 0.62 when the Finnish HapMap3 sample set

was added to the HM3 reference set. Similarly, in the MAF range of

from 3% to 5%, beta of 0.26 showed the peak power increase of

0.70 to 0.82 when the FIN was added. The gain in imputation

power was more modest for CNPs, for which the highest increase

in power, from 0.56 to 0.59, was observed in the MAF range of from

5% to 10%, with a beta of 0.3. The percentage of variance ex-

plained by the simulated genotyped SNPs (R2 = 1) ranged in the

lowest MAF range from 0.016 to 0.267 and in the highest MAF

range from 0.102 to 3.657.

Discussion
In summary, we have used a reference set from one of the best-

characterized founder populations, the Finns, to show that

increases in imputation accuracy, CNP tagging quality, and even in

the overall power to detect association can be achieved by densely

genotyping a relatively small population-specific high-density

reference panel. Importantly, these gains are more pronounced

when imputing low-frequency single-nucleotide variants, which

Figure 3. Comparison of the correlations (R2) between CNP signal and tag-SNP genotype in the H2000 data. Three tag-SNPs were tested for
each CNP; the tag-SNP with the highest R2 value between SNP genotypes and CNP signal in HM3 data, FIN data, and FIN + HM3 data. Data is plotted
here separately for biallelic CNPs of common (MAF $ 5%, N = 192) (A,C ) and low-frequency (MAF between 0.5% and 5%, N = 89) (B,D). In top plots,
FIN + HM3 tag-SNP and FIN tag-SNP sets are compared with HM3 tag-SNPs by plotting the FIN + HM3 and FIN differences with the HM3 tag-SNP
against the HM3 tag-SNP R2 value, all from the H2000 correlation analysis. A negative difference indicates that the HM3 tag-SNP has a stronger
correlation with the CNP signal in the H2000 data. If the difference is positive, then the correlation is better when the CNP tag-SNP for H2000 is selected
using FIN + HM3 or FIN data. At bottom we show the relative differences in the R2 values ([FIN or FIN + HM3 R2–HM3 R2]/HM3 R2), plotted against
the HM3 tag-SNP R2 value. We focus on the CNPs where the HM3 tag-SNP R2 value is <0.3, since this is the area where the highest relative dif-
ferences are possible. One observation in C and three in D are of significantly larger values than the rest of the data; these are shown in the top left
region of the plot with their corresponding values next to them. (HM3) HapMap3 reference set; (FIN) Finnish HapMap3; (FIN + HM3) combined
reference.
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are of interest as the search for variants involved in complex dis-

eases moves toward the less-frequent variants being identified

by the 1000 Genomes Project (http://www.1000genomes.org)

and other large scale sequencing efforts (McCarthy et al. 2008).

Furthermore, our CNP tag-SNP analysis suggested that for a subset

of CNPs, population-specific reference data can identify tag-SNPs

with considerably higher tagging accuracy in the target pop-

ulation. We have demonstrated the value of a population-specific

reference set in one founder population, but see no reason why

this strategy would not be beneficial for studies in other special

populations worldwide. The patterns of the Finnish population

growth and genetic bottlenecks are well-characterized (Peltonen

et al. 1999), and this information can be used to evaluate the ad-

vantages of population-specific reference panels in other special

populations. If such reference sets are combined and made pub-

licly accessible, they would also enhance our understanding of

genomic variation and their relation to traits in various founder

populations.

Methods

Finnish HapMap3 sample set
The population-specific reference data set, FIN, consists of 81 in-
dividuals genotyped with the Illumina Human 1M-Duo chip and
Affymetrix Genome-Wide Human SNP Array 6.0 chip. Detailed
quality control of this data set was similar to one used in HM3 (The
International HapMap 3 Consortium 2010). In quality control
209,354 SNPs were removed for not meeting the following criteria:
(1) was monomorphic, (2) had a calling rate < 95%, or (3) the
P-value from Fisher’s exact test for Hardy-Weinberg equilibrium

Figure 4. Association power simulation results. Effect of the difference in R2 distributions in terms of power to detect an association is plotted separately
for four different allele frequency ranges. SNPs and CNPs having a minor allele frequency between 10% and 50% (A), 5% and 10% (B), 3%–5% (C ), and
0%–3% (D), including the upper limits. We have used an effective population size of 10,000 and ran 40,000 simulations for both SNPs and CNPs. The
minor allele frequencies and squared linear correlations have been sampled jointly from the empirical distribution. (HM3) HapMap3 reference set; (FIN)
Finnish HapMap3; (FIN + HM3) combined reference.
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was <1 3 10�6. As a result, 1,163,280 SNPs comprised the final FIN
data set. Individuals in this data set were collected as two separate
samples. Forty individuals were collected from the Finnish capital
area, which is genetically representative of the general population,
and 41 individuals from the late-settlement area (LSFIN), a Finnish
subisolate. The haplotypes of the cleaned data set were phased
following the same protocol as the HapMap3 samples of Utah
residents with ancestry from Northern and Western Europe (ab-
breviation CEU) and the Tuscan samples from Italy (abbreviation
TSI). The HapMap3 sample set (HM3) and FIN were combined to
form a combined HapMap3 reference, FIN + HM3. Only SNPs that
passed quality control in both HM3 and FIN were included in
the combined set. HM3 CEU + TSI data included 200 unrelated
founder individuals, which had passed genotyping quality con-
trol in HapMap3 release 2 (http://hapmap.ncbi.nlm.nih.gov/
downloads/phasing/2009-02_phaseIII/HapMap3_r2/hapmap3_r2_
b36_fwd.consensus.qc.poly.info).

Finnish test data

The H2000 data used in this study is a subset of 2212 individuals
taken from the whole national Health2000 survey. These 2212
individuals are metabolic syndrome cases and their matched
controls, of which 2173 have been genotyped with the Illumina
610K chip. The chip simultaneously genotypes 598,203 SNPs,
of which 52,645 were excluded for having a calling rate lower
than 95%, MAF < 2%, or HWE P-value < 1 3 10�4. All individuals
had genotyping frequencies greater than 95%, and thus, no one
needed to be removed on this basis. Thirty-five individuals were
removed for having too high relatedness (p > 0.2), which is in-
dicative of possible sample contamination, and for having non-
European ancestry. After these quality-control procedures, 550,284
SNPs and 2138 individuals were available for study. From this data
we took a subset of 5196 SNPs on chromosome 21, which were
present on the Illumina 370K chip, to use in imputation. Using the
H2000 data, it was also possible to study the imputation quality
among individuals from the subisolate region. For this, we selected
429 individuals from the late settlement of Finland region
(Nevanlinna 1972; Varilo et al. 2000) (Late-settlement data set)
based on the multidimensional scaling of the genome (Purcell et al.
2007).

Phasing

The phasing of FIN samples was performed using the recently
published algorithm IMPUTE v2 (Howie et al. 2009). The method,
recently used for phasing HapMap3 samples (The International
HapMap 3 Consortium 2010), uses a hidden Markov model
(HMM) structure for the conditional distribution of haplotypes
similar to that of IMPUTE (Marchini et al. 2007). In turn, each
genotype is phased using haplotypic information from the refer-
ence panel as well as from the current haplotype estimates for the
rest of the new data. CEU TRIOS from the HapMap3 data set were
used as a reference panel for increased accuracy (44 CEU TRIOS,
176 phased haplotypes). The phasing was performed for the SNPs
that overlap with FIN and HM3. The genetic maps used are avail-
able online (ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/
2008-03_rel22_B36/rates/). For both HM3 and FIN samples, each
chromosome was phased in chunks of ;8000 SNPs, with an
overlap window of 200 SNPs on each side to ensure correct binding
of the phased chunks into a single haplotype per chromosome.
IMPUTE v2 itself accounts for edge effects by internally using
250-kb windows at each side of a chunk. The algorithm was run
for 110 iterations, of which the first 10 burn-in phase iterations
were discarded. Informed selection of 120 conditioning states per

genotype per iteration was used. Details on this can be found in
the main IMPUTE v2 paper (Howie et al. 2009).

Imputation

The imputation was performed with MACH 1.0.16 (Li and Abecasis
2006; Li et al. 2009), which is a HMM-based imputation program.
The main idea behind this algorithm is to estimate the missing
genotype by using the haplotype structure and frequency of the
haplotypes and alleles in the reference data. Because of the large
number of individuals in the H2000 data, the imputation was
performed in two steps. In the first step we used 200 random in-
dividuals from the sample to predict the recombination and error
maps. Using these maps, the data was then imputed in two batches
of ;1000 individuals. The numbers of metabolic syndrome cases
and controls, as well as females and males in each batch, were
checked to ensure that they were approximately even. For the
imputation of the H2000 data, we used five different phased ref-
erence sets; HapMap2 Utah residents with ancestry from Northern
and Western Europe (N = 60), HM3 (N = 200), a smaller HM3
sample of 81 individuals randomly selected from the HapMap3
CEU sample set (N = 81), FIN (N = 81), and FIN + HM3 (N = 281)
(Fig. 1).

Because of the lower number of individuals in the Late-
settlement sample set, the imputation was done in one step only,
which estimates the maps and imputes the data simultaneously.
The reference sets used for the imputation of Late-settlement
sample sets were HM2, HM3, FIN, FIN + HM3, the subset of the
FIN from the late-settlement area (LSFIN, N = 41), and the com-
bined data set of HM3 samples and the late-settlement reference
(N = 241).

CNP genotyping

The population-specific HM3 extension study sample, FIN, was
genotyped on the same two platforms as the HM3 CEU + TSI in-
dividuals: Illumina Human 1M-Duo beadchip and Affymetrix
Genome-Wide Human SNP Array 6.0. In addition to SNP probes,
these contain 35,969 (Illumina beadchip) and 946,000 (Affymetrix
SNP array) intensity-only probes targeting genomic copy number
variation. The Illumina Human610-quad beadchip, which was
the whole-genome genotyping method for the H2000 study sam-
ple, contains 620,901 probes, of which 21,890 are nonpoly-
morphic. Probe signal-intensity data of all SNP and CNP probes
was exported for CNP analysis from raw data files using the
BeadStudio software version 3.2 (http://solexa.co.uk/downloads/
BEADSTUDIODataSheet.pdf) for the Illumina beadchips and
the Affymetrix Power Tools (APT 1.10.2, http://www.affymetrix.
com/partners_programs/programs/developer/tools/powertools.affx)
Software Package for the Affymetrix SNP Arrays.

We attempted to genotype 856 CNP regions, which were re-
cently identified using HapMap3 samples (The International
HapMap 3 Consortium 2010), in four datasets: our Finnish Hap-
Map3 sample, FIN; our Finnish population study sample, H2000;
HapMap3 samples of European origin, CEU + TSI; and a combined
reference sample of FIN and HM3 CEU + TSI. Probe signal intensity
data were analyzed with CNVtools (Barnes et al. 2008). The probe
signal intensities for each CNP region were summarized into
a single measure for each sample. The summary method was either
the first principal component analysis (PCA) method or the PCA
method and linear discriminant function (LDF), depending on
which one of the methods gave the best cluster separation (Q).
Summarized CNP signals were used for testing correlation between
SNP genotypes and CNPs in the downstream analysis. CNVtools
also assigned a categorical CNP copy number estimate for each
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sample and CNP. We used these estimates to determine whether
a CNP was polymorphic in the data set. We tested whether using
the categorical CNP copy numbers yielded results in downstream
analyses concordant to those of summarized signals. The two
measurements yielded concordant results: Both identified a larger
subset of CNPs for which tagging was improved compared with the
subset where it worsened. In this study we have concentrated on
the results from the copy number signal analysis, because un-
certainties in copy number class assignments are avoided and an
increased number of CNP loci are available for analysis, since CNPs
that fail genotyping due to poor cluster separation can still be
analyzed using signal intensities. However, we also used the cate-
gorical copy number cluster assignments to test the effect of ap-
plying stricter quality control criteria for the CNPs. These criteria
required a Hardy-Weinberg equilibrium statistic (Pearson’s x2) < 15,
<10% missing copy number assignment data, and a good quality
copy number cluster separation (Q > 4). In our downstream anal-
ysis, the full CNP set and the QC+ showed similar results—both
identified a larger subset of CNPs for which tagging was improved,
compared with the subset where it worsened—and we have thus
maximized the amount of data in our analyses by using all avail-
able CNP data.

Out of the original 856 HM3 CNPs, 322 were not poly-
morphic in the CEU + TSI samples and were thus excluded from
our analyses. In the FIN analysis, 388 of the 534 CNP regions were
estimated to be polymorphic. The Illumina 1M chip used in FIN
genotyping is a more recent version than the one used in HM3
CEU + TSI genotyping, and some of the probes were not found on
both chip versions. We excluded data for probes that were not
common to both genotyping platforms before summarizing the
probe signal intensity data in the CNP regions. In total, 862 probes
out of 12,370 were excluded in FIN and 268 probes out of 11,776
were excluded in HM3, leaving 11,508 probes for CNP genotyp-
ing analysis in 388 CNP regions.

The Finnish H2000 sample set was also analyzed with
CNVtools. The probe signal data for H2000 was, however, from the
Illumina Human610-quad beadchip that only has probes in 745 of
the 856 HM3 CNP regions. A total of 663 of these regions were
found to be polymorphic in the CNVtools analysis. For CNP tag-
SNP comparisons, the 663 H2000 CNPs was further reduced to 318
CNPs polymorphic in both FIN and HM3 analyses, and from that
to 192 common (MAF $ 5%) and 89 low-frequency (MAF between
0.5% and 5%) biallelic CNPs (Fig. 1). CNPs’ minor allele frequen-
cies were calculated from the original HapMap3 data (The Inter-
national HapMap 3 Consortium 2010).

Correlation tests between SNP genotypes and CNP
intensity signals

We created three sets of CNP tag-SNPs for testing SNP genotype—
CNP signal correlations in the H2000 data set. The first tag-SNP set
was obtained by testing for the correlation between the summa-
rized CNP signal intensities and SNP genotypes within the FIN
reference sample using the cor()-function of R statistical software
(R Development Core Team 2008; http://www.R-project.org), ver-
sion 2.7.1. For each CNP, SNPs from the same recombination block
were tested and the SNP with the highest correlation coefficient
R was chosen as the tag-SNP. Recombination blocks were defined
by recombination hot spots determined by data retrieved from
ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2006-10_rel21_
phaseI+II/hotspots/ that was converted to NCBI build 36 co-
ordinates prior to analyses. The second tag-SNP set was created in
the same manner using the HM3 reference sample. The third tag-
SNP set was based on the FIN + HM3; CNP signals were first sum-
marized separately in the two reference sample sets, then the dis-

tribution of the summarized signals was scaled with the scale()-
function of R in both data sets, after which the HM3 and FIN SNP
and CNP data were combined for testing for correlation between
SNP genotype and CNP signals in order to identify the best tag-SNP
for each CNP. Next, we analyzed the correlation between CNP
signals and SNP genotypes in the imputed H2000 data; for each
CNP, we calculated the correlation coefficient R and R2 between the
CNP signal and SNP genotypes of the FIN tag-SNP, HM3 tag-SNP,
and FIN + HM3 tag-SNP. We increased the number of SNPs in the
analysis by including imputed SNP genotypes. The H2000 SNP
data was imputed from the Illumina 610K resolution to HapMap3
SNP resolution with IMPUTE v2 (Howie et al. 2009) using the FIN +

HM3 as the imputation reference panel. SNPs with an imputation
R2 < 0.5 were excluded from all CNP tag-SNP analysis.

Association power simulation

We simulated the effect of the difference in R2 distributions on the
power to detect association. The number of individuals in the
simulations was 10,000 in both SNP and CNP simulations. For
each linear-regression effect sizes, betas, from 0.05 to 0.30 we ran
40,000 iterations. In each of those iterations we (1) sampled
a MAF–R2 pair jointly from the empirical distributions, (2) simu-
lated the genotype/tagging SNP using the sampled MAF, (3) created
a phenotype using the simulated genotype and beta, (4) changed
the simulated genotype/tagging SNP so that the correlation be-
tween the simulated and the changed genotype/tagging SNP was
smaller or equal to R2, and (4) fitted a new linear model with the
changed genotype. In order to simulate SNP MAF distributions as
appropriately as possible, MAFs were selected from the H2000 data
set, which has the biggest number of observations available for
SNP MAF calculations. For CNPs, a similar approach was used and
the MAFs were obtained from the original HM3 data set, in which
CNP genotyping included a high number of probes in the CNP
regions, a larger number of samples in the CNP signal clustering
compared with FIN, and CNP signals were successfully assigned to
categorical copy number clusters.
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