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Genome architecture marked by retrotransposons
modulates predisposition to DNA methylation
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Epigenetic silencing plays an important role in cancer development. An attractive hypothesis is that local DNA features
may participate in differential predisposition to gene hypermethylation. We found that, compared with methylation-
resistant genes, methylation-prone genes have a lower frequency of SINE and LINE retrotransposons near their tran-
scription start site. In several large testing sets, this distribution was highly predictive of promoter methylation. Genome-
wide analysis showed that 22% of human genes were predicted to be methylation-prone in cancer; these tended to be
genes that are down-regulated in cancer and that function in developmental processes. Moreover, retrotransposon dis-
tribution marks a larger fraction of methylation-prone genes compared to Polycomb group protein (PcG) marking in
embryonic stem cells; indeed, PcG marking and our predictive model based on retrotransposon frequency appear to be
correlated but also complementary. In summary, our data indicate that retrotransposon elements, which are widespread
in our genome, are strongly associated with gene promoter DNA methylation in cancer and may in fact play a role in
influencing epigenetic regulation in normal and abnormal physiological states.

[Supplemental material is available online at http://www.genome.org.]

DNA methylation, a common cause of gene silencing in human

neoplasia, does not affect the genome homogeneously: While

some genes are frequently found methylated in cancer, others are

never or rarely targeted by such modification. The causes of se-

lective predisposition to methylation are unknown, and two main

explanations have been proposed: (1) DNA methylation happens

randomly, and cells with silencing of genes that promote tumori-

genesis have a selective advantage; and (2) some genes are prefer-

entially targeted by silencing complexes, and thus DNA methyla-

tion occurs through an instructive mechanism (Baylin and Bestor

2002; Jones and Baylin 2002; Feltus et al. 2006). The latter expla-

nation appears more likely because genes with similar function

show differential predisposition to methylation. The DNA repair

genes MLH1 (frequently methylated) and MSH2 (never methylated)

are good examples of genes with similar function but differential

predisposition to hypermethylation in cancer (Kondo et al. 2000).

Previous studieswere conductedtopredict DNA methylation in

individual CpG island promoters based on the instructive mecha-

nism hypothesis, but despite efforts, the cause of such selective

predisposition to aberrant methylation is still incompletely un-

derstood. Most commonly these studies employed support vector

machines to annotate short DNA sequences enriched in methylated

versus nonmethylated gene promoter CpG islands. Although im-

portant, these studies were focused on normal cells (Bock et al. 2006;

Das et al. 2006) or artificially induced methylation (Feltus et al.

2006) rather than cancer cells, which is the main system where

aberrant methylation occurs. An apparent lower frequency of SINE

retrotransposons in methylation-prone genes was noticed in some

of these studies, including a report on hyperconserved CpG do-

mains (Tanay et al. 2007), but this association was not further

evaluated. This is an important observation with possible biological

consequences, because retrotransposons such as long and short

interspersed nuclear elements (LINE and SINE, respectively) are

targeted by epigenetic modifications to suppress their mobilization

(Yoder et al. 1997), have been shown to act as methylation centers

(Yates et al. 1999), and have a strong influence on gene expression in

mammalian cells (Faulkner et al. 2009). In this study, we directly

investigated whether CpG island–associated genes that undergo

frequent aberrant DNA methylation in cancer have a unique dis-

tribution of repetitive elements.

Results

A predictive model of predisposition to DNA methylation
in cancer

To answer whether methylation-prone genes in cancer have a dif-

ferent distribution of repetitive elements, we first compared the
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DNA sequence in the 4-kb region sur-

rounding the transcription start site (TSS)

of a training set composed of 36 methyl-

ation-prone and 36 methylation-resistant

genes (Supplemental Table S1). Methyla-

tion analysis of the promoter region of

these genes was done using quantitative

methods (bisulfite-PCR followed by com-

bined bisulfite restriction analysis [CO-

BRA] or pyrosequencing analysis) in nine

cancer cell lines. DNA from peripheral

blood mononuclear cells of a healthy in-

dividual was used as a control (Supple-

mental Table S2). These nine cancer cell

lines were selected because they were

identified as heavily methylated in a pre-

vious study (Shen et al. 2007a). Thus,

genes not found methylated in this group

of cell lines are less likely to be found

methylated elsewhere. The genes included

in the training set were selected from our

database of DNA methylation in cancer,

and the criteria for inclusion were the fol-

lowing: (1) Methylation data were avail-

able for at least two cancer cell lines, (2) the

gene promoter overlapped with or had a

CpG island no more than 200 bp distant

from the TSS, and (3) the CpG island was

not methylated in the normal control.

The classical Gardiner-Frommer definition

of CpG islands was adopted in our study

(Gardiner-Garden and Frommer 1987).

As shown in Figure 1A, SINE and LINE

repeats were approximately half as com-

mon in methylation-prone compared to

methylation-resistant genes. Among the

other repeat classes, both long terminal

repeat (LTR) and DNA elements showed

a lower frequency in methylation-prone

genes; however, this difference was mod-

est and not statistically significant. CpG

island length, GC content, and CpG ratio

were previously shown to be associated

with methylation status in somatic tissues

(Weber et al. 2007), but these variables

were not significantly different between

methylation-resistant and methylation-

prone genes in cancer (Fig. 1B).

To gain further information about

differences in the distribution of SINE

and LINE repeats between methylation-

prone and methylation-resistant genes,

we extended the annotation to a 20-kb

region centered in the TSS in 1-kb non-

overlapping windows. The depletion of

SINE repeats in methylated genes spanned nearly the full 20-kb

region, whereas the depletion of LINE repeats in methylated genes

occurred mainly in a –2-kb to +5-kb window (Fig. 1C; Supple-

mental Fig. S1). We calculated the log-odds score of SINE and LINE

retrotransposons per 1-kb window based on their distribution in

the training set and in the full collection of human promoter CpG

islands (Fig. 2). The sum of log-odds scores in the 20-kb region

allowed us to quantify the similarity in distribution of SINE and

LINE retrotransposons in a single gene promoter compared to the

average distribution of these elements in methylation-prone and

methylation-resistant genes. As a result, we could distinguish three

groups in the training set: (1) genes depleted of both SINE and LINE

repeats, thus predicted to be methylation-prone; (2) genes enriched

for SINE and LINE repeats, predicted to be methylation-resistant; and

Figure 1. Distribution of repetitive elements in methylation-prone versus methylation-resistant genes.
(A) The abundance of repetitive elements of different classes was determined for the 4-kb sequence
window centered in the TSS of 36 methylation-resistant (white) and 36 methylation-prone (black) genes.
Retrotranposons of the SINE and LINE classes were found to be depleted in methylation-prone genes. *P <
0.02; **P < 0.12 (Student’s t-test). (B) Average length, GC content, and CpG ratio of CpG islands were not
significantly different between methylation-prone and methylation-resistant genes. Error bars represent
SEM. (C ) Abundance of SINE and LINE retrotransposons in the 20-kb sequence window centered in the
TSS of 36 methylation-prone and 36 methylation-resistant genes. The abundance of SINE and LINE ret-
rotransposons in all promoter CpG islands in the human genome is shown in gray. Note that the depletion
of LINE retrotransposons is more significant in the �2-kb to +5-kb sequence window.
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(3) genes that were depleted of only one type of repeat. Comparison

of these findings with the methylation data for each one of the

72 studied genes revealed that 19 of 23 genes (83%) predicted to be

methylation-prone were actually hypermethylated in cancer and

23 of 25 genes (92%) predicted to be methylation-resistant were

not or were rarely hypermethylated in cancer (Fig. 3A). Genes with

discordant frequency of SINE and LINE repeats (30 of 72, 42%)

seemed to represent a class of genes of intermediate predisposition to

methylation. We observed that the distribution of retrotransposons

in the core promoter (�1 kb to +2 kb centered in the TSS) is also

predictive of methylation predisposition, however with less accuracy

than the 20-kb region classification (75% of predicted methylation-

prone genes were indeed methylated in cancer, and 63% of the

methylation-resistant genes were unmethylated).

Validation of the model

A major drawback of our model is the limited data set used in its

development. We therefore focused on validation using progres-

sively larger data sets. We first studied 74 methylation-prone and 68

methylation-resistant genes for which data on promoter methyla-

tion in cancer were available (Supplemental Tables S3, S4) from

a variety of tissues (colon, lung, breast, and leukemia, among others).

As shown in Figure 3B, 81% of the predicted methylation-prone

Figure 2. SINE and LINE abundance score to predict gene predisposition to methylation in cancer. (A) Annotation of SINE and LINE retrotransposons near
the promoter sequence of a representative methylation-prone gene (in this example, the CACNA1G gene). The promoter sequence was divided into 20 bins
of 1-kb sequence each (10 bins upstream and 10 bins downstream of each gene TSS), and the presence of SINE and LINE retrotransposons was annotated for
each bin. Note that each element was annotated to just one bin (the closest to TSS). The same procedure was followed for all human genes with CpG islands
overlapping or no more than 200 bp from their TSS. (B) Example of a 20-letter acronym representing SINE retrotransposon abundance in a collection of
methylation-prone genes. (C ) Counting of SINE presence (S) and absence (G) in all human genes with a promoter CpG island (genome-wide) and the
training set of methylation-prone and methylation-resistant genes. SINE abundance was converted to standard log-odds ratios, as described in the Methods
section, and the final substitution matrix for SINE retrotransposons is presented (bottom table). The same calculation was done for LINE retrotransposons.
*Transcript variant coding for the P16INK4A protein.
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genes were indeed methylated in cancer, and 75% of the predicted

methylation-resistant genes were not methylated. As expected, we

found a 1:1 ratio of methylated to unmethylated genes in the pre-

dicted methylation-intermediate group (52 of 142 genes, 37%). We

further evaluated whether our predictive model held true in a larger

scale analysis. For this, we used methylation data from 28 cancer cell

lines and 32 primary tissues analyzed by methylated CpG island

amplification microarray (MCAM), a sensitive and specific micro-

array method based on selective amplification of methylated DNA

after restriction enzyme digestion (Estecio et al. 2007; Shen et al.

2007b). As performed, MCAM detects cancer-specific methylation as

a result of the cohybridization of methylation libraries of cancer

versus normal tissues. Thus, all promoter CpG islands identified

by MCAM as methylated in cancer are not methylated in the nor-

mal control. In this large data set, composed of more than 26,000

probes representing around 6600 CpG islands associated with auto-

somal gene promoters, we found that predicted methylation-prone

genes showed the highest average values of measured promoter

Figure 3. Prediction of gene predisposition and resistance to hypermethylation in cancer. (A) SINE and LINE scores of the training set genes. The scores
were calculated according to the described log-odds ratio method for each gene and are represented as horizontal bars (white bars, SINE score; black bars,
LINE score). Methylation status determined by bisulfite PCR methods is shown on the right. Genes with concordant depletion of SINE and LINE retro-
transposons (log-odds $ 0) were predominantly methylation-prone, with the opposite found for genes with enrichment of both SINE and LINE repeats.
Discordant SINE and LINE scores likely represent a class of genes with intermediate predisposition to methylation. *Transcript variant coding for the
P16INK4A protein. **Transcript variant coding for the P14ARF protein. Black rectangles represent methylated genes; white rectangles represent un-
methylated genes. (B) The predictive method based on SINE and LINE retrotransposons abundance was applied to a test set composed of 142 genes.
The frequency of genes correctly classified according to their DNA methylation status in cancer was 79% for methylation-resistant and 75% for meth-
ylation-prone genes. These values were closely related to those found in the training set (gray bars). (C ) Validation of the predictive method in a large set
of cancer cell lines and primary cancer tissues. Methylation status of more than 6600 autosomal gene promoters was determined by MCAM. X chro-
mosome genes were excluded from this analysis due to their hemimethylated status in female samples. The measured DNA methylation per tissue type
was significantly higher in predicted methylation-prone genes than in predicted methylation-resistant and methylation-intermediate genes. Methylation
is presented as the log2 ratio (cancer/control) of all oligonucleotide probes of a predicted methylation status.
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methylation, and the predicted methylation-resistant genes had the

lowest values (Fig. 3C). This pattern was consistent across individual

samples and tissue types, and was observed in 27 of 28 cancer cell

lines (98%) and in all 32 studied primary cancer tissue samples

(Supplemental Fig. S2). Among 740 genes concordantly methylated

across tumor samples (i.e., methylated in at least 30% of the primary

tumors and cell lines), 16% were predicted methylation-resistant,

41% methylation-intermediate, and 43% methylation-prone. Thus,

our predictive method can accurately classify genes in methylation

predisposition groups. In addition, despite the fact that it was gen-

erated from cancer cell lines, the predictive model correctly predicts

methylation predisposition in primary, uncultured cancer cells.

Although structurally different between mice and humans,

retrotransposons are associated with repressed chromatin organi-

zation in both species. Thus, if our model is correct, promoter CpG

islands subjected to hypermethylation in animal models should

also be depleted of retrotransposons. To address this question, we

compared the distribution of SINE and LINE retrotransposons in

a 20-kb region around the TSS of more than 6000 mouse promoter

CpG islands identified by MCAM analysis as methylation-prone

and methylation-resistant in a mouse model for myelodysplastic

syndrome (Lin et al. 2005). Similar to human cancer, SINE repeats

were consistently depleted in methylation-prone genes (Fig. 4A).

However, the difference in frequency of LINE repeats was not sta-

tistically significant between methylation-prone and methylation-

resistant genes. Interestingly, the analysis of distribution of LTR

repeats revealed that these transposons were less frequent in

methylation-prone genes. IAP repeats, a family of LTR repeats

highly successful in mice but not present in humans, also showed

a trend for depletion in methylation-prone genes. The lack of

statistical significance for the differential distribution of IAP re-

peats between the methylation-predisposition groups is likely due

to their low frequency close to gene TSS (<1% of gene promoter

CpG islands). The same general pattern of frequency of SINE, LINE,

and LTR repeats was also observed in an analysis of two additional

recently published methylation data sets (Fig. 4B,C) generated

from chronic lymphocytic leukemia (CLL) and intestinal cancer

mouse models (Hahn et al. 2008; Chen et al. 2009). Additionally,

since age-related methylation accounts for a large fraction of pro-

moter CpG island methylation observed in cancer (Toyota and Issa

1999), we reasoned that age-related methylated genes are also

likely to be depleted of retrotransposons. The DNA methylation

pattern of mouse small intestine tissue was compared between

old (35-mo-old) and young (3-mo-old) animals using MCAM. We

found that, similar to human and mouse promoter CpG islands

predisposed to methylation in cancer, age-related methylated mouse

promoter CpG islands were depleted of SINE, LINE, and LTR repeats

(Fig. 4D). Thus, our data clearly demonstrate that genes predisposed

to age-related methylation share a common genome architecture

with cancer-related methylated genes. Based on these findings, we

revisited the distribution of LTR elements in our large MCAM data set

for human cancers and found that LTRs are also depleted in meth-

ylation-prone genes, albeit to a lesser degree than SINE and LINE

retrotransposons (Supplemental Fig. S3). However, adding LTR dis-

tribution to predict gene predisposition to DNA methylation in

human cancer did not significantly improve our model.

Genome-wide analysis of methylation predisposition

The validation of our predictive model prompted us to apply it

genome-wide. Among 25,489 unique RefSeq genes (NCBI Build

36.1), 16,166 (63.4%) have a promoter CpG island. Of these, 3613

(22.3%) were predicted by our model to be methylation-prone;

7308 (45.2%) were predicted to be moderately predisposed to

methylation (methylation-intermediate); and the remaining 5245

(32.5%) were predicted to be methylation-resistant (Fig. 5A).

The top 50 predicted methylation-prone and methylation-

resistant genes are presented in Tables 1 and 2. Forty-eight percent

(24 of 50) of the top predicted methylation-prone genes have been

described as methylated in cancer according to data in the litera-

ture, and only 6% (3/50) of the top predicted methylation-resistant

genes were described as methylated. Although not present in

Table 1 because they did not rank among the top 50 genes, several

classical genes known to be methylated in cancer and not pre-

viously included in the first validation set were correctly predicted

as methylation-prone (for example RASSF1, GATA4, GATA5, and

SFRP2). In terms of gene function, 39/50 (78%) predicted

methylation-prone genes are directly related to developmental

processes, compared to only 5% of the predicted methylation-

resistant genes (P < 0.001, Fisher’s exact test). Indeed, when applied

genome-wide, Gene Ontology analysis revealed that methylation-

prone genes preferentially participate in developmental processes

(Fig. 5B), an observation in agreement with previous data showing

that repeat-free regions in mammalian genomes are enriched

for genes that function in organogenesis and morphogenesis,

among other functions related to development (Simons et al.

2006). Some of these are multiclusters of neighboring genes with

related function, such as HOX gene clusters. This prompted us to

quantify the propensity of predicted methylation-prone genes to

be correlated in neighboring genes and to find 28 genomic regions

with statistically significant higher frequency of such genes (Sup-

plemental Table S5). These regions were in average 5 Mb long

(ranging from 0.3 to 26 Mb) and had a tendency to be located close

to telomeric regions. Together, these regions cover ;4.5% of the

human genome but contain 15% of the predicted methylation-

prone genes. Twelve (43%) of these regions included multiclusters

of genes with similar function and likely originated from dupli-

cation events.

Two classes of genes with methylated promoter CpG islands

in normal tissues are imprinted and X chromosome–inactivated

genes. Among 30 well-characterized imprinted genes, 12 (40%)

were predicted methylation-prone, 17 (57%) were predicted in-

termediate, and only one was predicted methylation-resistant

(Supplemental Table S6). The frequency of predicted methylation-

prone, resistant, and intermediate genes on the X chromosome

was remarkably similar to the frequency of the predicted classes

genome-wide. There was a moderate, although not significant,

enrichment of predicted methylation-prone genes among genes

that escape X inactivation (P > 0.05, x2 test, Supplemental Fig. S4).

Although we have focused our analysis on promoter CpG is-

lands, nonpromoter CpG islands (both exonic/intronic and

intergenic CpG islands) are also subject to de novo methylation in

cancer. There are scarce data on these CpG islands in the literature,

but we were able to identify 291 nonpromoter CpG islands in our

MCAM database that showed frequent hypermethylation in cell

lines and primary tumors, and 740 methylation-resistant non-

promoter CpG islands. Similarly to promoter CpG islands, meth-

ylation-prone nonpromoter CpG islands were found to be de-

pleted of SINE and LINE retrotransposons (Supplemental Fig. S5).

Although the functional role of these CpG islands remains poorly

defined, our data suggest that the underlying genomic architecture

is closely related between methylation-prone and methylation-

resistant CpG islands regardless of their position relative to tran-

scriptional units.
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Effects on gene expression

To validate the biological implications of our predictive model, we

compared the mRNA expression of predicted methylation-prone

and methylation-resistant promoter CpG island genes in 28 nor-

mal differentiated human tissues and 52 human cancer cell line

samples using public microarray databases (Ross et al. 2000; Su

et al. 2004). As shown in Figure 5C, in normal tissues, predicted

methylation-resistant genes had in general lower expression than

predicted methylation-prone genes. An attractive explanation

for the lower expression of predicted methylation-resistant genes

in normal cells is their higher content of retrotransposons, which

have been implicated in decreased mRNA expression through

impairment of elongation (Han et al. 2004). As would be expected

Figure 4. Frequency of retroelements in methylation-prone and methylation-resistant genes identified in mouse cancer models and old mice. (A)
Depletion of SINE and LTR but not LINE repeats near TSS marks methylated promoter CpG islands in a mouse model of myelodysplastic syndrome (MDS).
Bone marrow samples of three NUP98-HOXD13 transgene animals that developed MDS (Lin et al. 2005) were studied by MCAM. Bone marrow samples
from nontransgene animal of the same mouse strain was used as control, and the methylation status of approximately 6000 CpG island promoter genes
was determined in the MCAM experiments. (B,C ) The same pattern of retroelements depletion is observed in hypermethylated genes in CLL (Chen et al.
2009) and intestinal cancer mouse models (Hahn et al. 2008). (D) Depletion of SINE, LINE, and LTR repeats near TSS also marks age-related methylation
promoter CpG islands. Small intestine tissue harvested from young (3-mo-old) and old (35-mo-old) C57BL/6J mice were used in MCAM experiments to
identify age-related methylation.
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if our predictive model were correct (since hypermethylation of

gene promoters results in gene silencing), we observed in cancer

cell lines that predicted methylation-prone genes were down-reg-

ulated compared to predicted methylation-resistant genes (Fig.

5D). Thus, depletion of retrotransposons near the TSS was found to

be an independent predictor of gene down-regulation in cancer.

Comparison with hyperconserved
domains and PcG protein marking

Enrichment for developmental genes was

previously described (Tanay et al. 2007)

among genes associated with hypercon-

served CpG domains, which were identi-

fied based on DNA sequence features.

Analysis of our data revealed that 84%

of the genes in hyperconserved domains

are predicted methylation-prone (Fig. 6A).

However, hyperconservation is a feature of

a much smaller subset of hypermethylated

genes in cancer than depletion of retro-

transposons (Fig. 6B). Another feature of

hyperconserved domains is the overlap

with multicluster gene families, such as

HOX genes. Among the identified genomic

clusters predicted methylation-prone, 11

(39%) included hyperconserved domains

(Supplemental Table S5).

Hyperconserved domains and DNA

methylation have been shown to correlate

with Polycomb group (PcG) protein bind-

ing in embryonic stem cells. We there-

fore studied the relationship between our

methylation prediction and PcG protein

binding. First, we compared the presence

of H3K27me3 in predicted methylation-

prone and methylation-resistant genes

according to chromatin immunoprecipi-

tation microarray results for 8727 gene

promoters in three cell lines: PC3, a pros-

tate cancer cell line; MCF7, a breast cancer

cell line; and PrEC, an immortalized nor-

mal prostate epithelial cell line (Kondo

et al. 2008). As shown in Figure 6C, pre-

dicted methylation-prone genes were en-

riched for H3K27me3 in all three cell lines

tested. We next evaluated the frequency

of binding of PcG proteins and H3K27me3

to genes predicted to be methylation-

prone or methylation-resistant according

to the occupancy maps published for em-

bryonic stem cells (Lee et al. 2006). Genes

predicted to be methylation-prone had

a higher frequency of SUZ12, EED, and

H3K27me3 targets compared to genes pre-

dicted to be methylation-resistant (Fig. 6D;

Supplemental Fig. S6A). Indeed, a direct

comparison of the distribution of SINE and

LINE retrotransposons in genes targeted by

Suz12 revealed a large difference, in the

same direction as observed between can-

cer methylation-prone and methylation-

resistant genes (Supplemental Fig. S6B).

Since PcG protein marking in embryonic stem cells is closely

related to predisposition to DNA methylation in cancer (Ohm et al.

2007; Schlesinger et al. 2007; Widschwendter et al. 2007), it is

possible that the relationship between retrotransposon abundance

and CpG island DNA methylation is a consequence rather than

an independent phenomenon from PcG protein marking. In this

Figure 5. Genome-wide prediction of predisposition to DNA methylation in cancer. (A) The pie
chart shows the number of RefSeq genes with no CpG islands (dark gray) and the number of pre-
dicted methylation-resistant (white), methylation-intermediate (light gray), and methylation-prone
(black) genes in promoter CpG island genes. (B) Gene Ontology (GO) analysis of 1952 predicted
methylation-prone and 2583 predicted methylation-resistant genes for which functional information
was available. Horizontal bars represent the frequency of significant GO terms. (C ) Gene expression
analysis for 2822 promoter CpG island associated genes predicted methylation-prone and 3651
predicted methylation-resistant genes in normal tissues. Expression values were retrieved from the
GNF database (Su et al. 2004) and Z-score normalized per tissue. Each bar represents the mean 6

SEM expression values in each tissue according to their predicted methylation predisposition. (D)
Gene expression analysis for 599 promoter CpG island associated genes predicted methylation-
prone and 996 predicted methylation-resistant genes in 52 cancer cell lines. Expression values were
retrieved from a published work (Ross et al. 2000) and were analyzed as described in C. Only genes
present in the studied array platforms could be evaluated, resulting in a different number of analyzed
genes in each experiment.
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case, our predictive model would have no additional predictive

value beyond that of PcG protein marking alone. We first exam-

ined the relative contribution of PcG marking and our predictive

model in genes known to be methylated in our training and first

testing set. Out of 110 frequently methylated genes, 25 (23%) are

marked by both PcG and predicted methylation-prone, 31 (28%)

are predicted methylation-prone alone, 15 (14%) are PcG-positive

alone, and 39 (35%) are neither marked by PcG nor predicted

methylation-prone (Fig. 6E). Thus, in this set, PcG marking and our

predictive model based on retrotransposon frequency appear to be

correlated but also complementary. Moreover, these results show

that retrotransposon distribution marks a larger fraction of meth-

ylation-prone genes than PcG protein marking. To examine this in

a larger data set, we turned to MCAM data and divided genes into

predicted methylation-prone and methylation-resistant (exclud-

ing intermediate for clarity). As seen in Figure 6F, both predicted

methylation-prone and PcG-marked genes have significantly higher

levels of measured methylation than methylation-resistant/PcG-

negative subsets. Again, PcG marking alone identifies a smaller subset

of methylated genes compared to our predictive model alone (119

Table 1. Top 50 genes predicted as methylation-prone

Gene symbol Gene name
RefSeq
name Chromosome

Transcription
start

S
score

L
score

ZFPM2 Zinc finger protein, multitype 2 NM_012082 chr 8 106400322 10.0794 2.5599
TOX3 TOX high mobility group box family member 3 NM_001080430 chr 16 51138307 9.7349 2.8928
TPPP Tubulin polymerization promoting protein NM_007030 chr 5 746510 10.0794 2.4442
FOXA1 Forkhead box A1 NM_004496 chr 14 37134240 10.3338 2.1021
NKX2-2 NK2 homeobox 2 NM_002509 chr 20 21442664 9.4206 2.9432
TCERG1L Transcription elongation regulator 1-like NM_174937 chr 10 132999974 9.0299 3.2956
POU3F3 POU class 3 homeobox 3 NM_006236 chr 2 104838400 10.0794 2.2061
DUX4 Double homeobox, 4 NM_033178 chr 4 191229360 10.0794 1.978
LHX9 LIM homeobox 9 NM_001014434 chr 1 196148257 10.0794 1.9779
EBF3 Early B-cell factor 3 NM_001005463 chr 10 131652081 10.0794 1.9779
GATA3 GATA binding protein 3 NM_002051 chr 10 8136672 10.0794 1.9779
GPR123 G protein-coupled receptor 123 NM_001083909 chr 10 134751398 10.0794 1.9779
IGF2 Insulin-like growth factor 2 (somatomedin A) NM_000612 chr 11 2116780 10.0794 1.9779
PAX6 Paired box 6 NM_001604 chr 11 31789434 10.0794 1.9779
HOXC4 Homeobox C4 NM_014620 chr 12 52696908 10.0794 1.9779
HOXC8 Homeobox C8 NM_022658 chr 12 52689156 10.0794 1.9779
HOXC9 Homeobox C9 NM_006897 chr 12 52680143 10.0794 1.9779
ZIC2 Zic family member 2 (odd-paired homolog,

Drosophila)
NM_007129 chr 13 99432319 10.0794 1.9779

ZIC5 Zic family member 5 (odd-paired homolog,
Drosophila)

NM_033132 chr 13 99422179 10.0794 1.9779

CRIP2 Cysteine-rich protein 2 NM_001312 chr 14 105012175 10.0794 1.9779
SIX1 SIX homeobox 1 NM_005982 chr 14 60185933 10.0794 1.9779
NR2F2 Nuclear receptor subfamily 2, group F,

member 2
NM_021005 chr 15 94674949 10.0794 1.9779

HOXB4 Homeobox B4 NM_024015 chr 17 44010742 10.0794 1.9779
HOXB5 Homeobox B5 NM_002147 chr 17 44026102 10.0794 1.9779
ZADH2 Zinc binding alcohol dehydrogenase domain

containing 2
NM_175907 chr 18 71050105 10.0794 1.9779

TSHZ3 Teashirt zinc finger homeobox 3 NM_020856 chr 19 36532030 10.0794 1.9779
DLX1 Distal-less homeobox 1 NM_178120 chr 2 172658453 10.0794 1.9779
HOXD10 Homeobox D10 NM_002148 chr 2 176689737 10.0794 1.9779
HOXD11 Homeobox D11 NM_021192 chr 2 176680329 10.0794 1.9779
HOXD12 Homeobox D12 NM_021193 chr 2 176672775 10.0794 1.9779
HOXD8 Homeobox D8 NM_019558 chr 2 176702722 10.0794 1.9779
HOXD9 Homeobox D9 NM_014213 chr 2 176695333 10.0794 1.9779
MEIS1 Meis homeobox 1 NM_002398 chr 2 66516035 10.0794 1.9779
NR4A2 Nuclear receptor subfamily 4, group A,

member 2
NM_006186 chr 2 156897446 10.0794 1.9779

SATB2 SATB homeobox 2 NM_015265 chr 2 200033446 10.0794 1.9779
POU4F2 POU class 4 homeobox 2 NM_004575 chr 4 147779494 10.0794 1.9779
IRX1 Iroquois homeobox 1 NM_024337 chr 5 3649167 10.0794 1.9779
POU3F2 POU class 3 homeobox 2 NM_005604 chr 6 99389300 10.0794 1.9779
DLX6 Distal-less homeobox 6 NM_005222 chr 7 96473225 10.0794 1.9779
HOXA10 Homeobox A10 (isoform a) NM_018951 chr 7 27186368 10.0794 1.9779
HOXA10 Homeobox A10 (isoform b) NM_153715 chr 7 27180480 10.0794 1.9779
HOXA5 Homeobox A5 NM_019102 chr 7 27149812 10.0794 1.9779
HOXA6 Homeobox A6 NM_024014 chr 7 27153893 10.0794 1.9779
HOXA7 Homeobox A7 NM_006896 chr 7 27162821 10.0794 1.9779
HOXA9 Homeobox A9 NM_152739 chr 7 27171674 10.0794 1.9779
SCRIB Scribbled homolog (Drosophila) NM_182706 chr 8 144969537 10.0794 1.9779
SCXB Scleraxis homolog B (mouse) NM_001080514 chr 8 145461410 10.0794 1.9779
NFIB Nuclear factor I/B NM_005596 chr 9 14303945 10.0794 1.9779
METRNL Meteorin, glial cell differentiation

regulator-like
NM_001004431 chr 17 78630855 9.1408 2.8277

OTP Orthopedia homeobox NM_032109 chr 5 76970278 9.4805 2.4357
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versus 1254 genes). The genes with both PcG marking and retro-

transposon depletion (methylation-prone) had the highest levels of

measured methylation, confirming that the two models complement

each other.

Refinement of the model

Our data suggest that retrotransposon marking is a powerful dis-

criminator of CpG island methylation predisposition in cancer,

and that it compares favorably to models based on hypercon-

servation and PcG marking. However, it does not explain the be-

havior of every single CpG island. Thus, there is room for re-

finement of the model, and combination of retrotransposon

distribution with other features will likely improve its sensitivity

and specificity. An important feature reported to predict methyl-

ation propensity of CpG islands are short DNA motifs discovered

by Feltus et al. (2003, 2006), and recently modeled in a classifier

called PatMan by McCabe et al. (2009). Applied to the first testing

set, composed of genes known to be methylated according to the

literature, PatMan identifies 9/142 genes as methylation-prone, and

five of these (56%) are indeed known to be methylated. Among the

remaining 133 genes classified as methylation-resistant by PatMan,

Table 2. Top 50 genes predicted as methylation-resistant

Gene symbol Gene name
RefSeq
name Chrom

Transcription
start

S
score

L
score

SMYD4 SET and MYND domain containing 4 NM_052928 chr 17 1679925 �7.6213 �7.5946
SMN2 Survival of motor neuron 2, centromeric NM_022877 chr 5 70256523 �7.5439 �6.2266
SMN1 Survival of motor neuron 1, telomeric NM_000344 chr 5 70256523 �7.5439 �6.2266
PPIL2 Peptidylprolyl isomerase (cyclophilin)-like 2 NM_148176 chr 22 20350272 �6.4342 �6.9256
RBM44 RNA binding motif protein 44 NM_001080504 chr 2 238372126 �5.5751 �7.7633
NOSIP Nitric oxide synthase interacting protein NM_015953 chr 19 54775615 �6.8053 �6.3264
ZFP1 Zinc finger protein 1 homolog (mouse) NM_153688 chr 16 73739921 �7.6213 �5.5062
PXMP4 Peroxisomal membrane protein 4, 24 kDa NM_007238 chr 20 31771797 �6.8522 �6.1378
NHP2L1 NHP2 non-histone chr omosome protein 2-like 1

(S. cerevisiae)
NM_005008 chr 22 40408502 �7.6213 �5.3096

DRG1 Developmentally regulated GTP binding protein 1 NM_004147 chr 22 30125538 �7.2939 �5.3636
RPA1 Replication protein A1, 70 kDa NM_002945 chr 17 1680094 �7.2939 �5.3193
JAGN1 Jagunal homolog 1 (Drosophila) NM_032492 chr 3 9907271 �6.8225 �5.5777
EP400 E1A binding protein p400 NM_015409 chr 12 131000460 �6.7769 �5.4792
PAAF1 Proteasomal ATPase-associated factor 1 NM_025155 chr 11 73265680 �7.6213 �4.5654
TRPV4 Transient receptor potential cation channel, subfamily

V, member 4
NM_147204 chr 12 108755595 �7.6213 �4.51

CDK5RAP2 CDK5 regulatory subunit associated protein 2 NM_018249 chr 9 122382258 �7.6213 �4.4664
IQCD IQ motif containing D NM_138451 chr 12 112143263 �6.2945 �5.7063
C12orf32 Chromosome 12 open reading frame 32 NM_031465 chr 12 2856649 �6.2921 �5.683
CYB5RL Cytochr ome b5 reductase-like NM_001031672 chr 1 54438334 �6.5718 �5.3888
NPRL3 Nitrogen permease regulator-like 3 (S. cerevisiae) NM_001039476 chr 16 128672 �7.6213 �4.2671
CDK5RAP1 CDK5 regulatory subunit associated protein 1 NM_016408 chr 20 31452998 �7.1813 �4.6612
CCDC101 Coiled-coil domain containing 101 NM_138414 chr 16 28472757 �6.9085 �4.9031
CHCHD8 Coiled-coil-helix-coiled-coil-helix domain containing 8 NM_016565 chr 11 73265538 �7.2895 �4.4949
SLC24A6 Solute carrier family 24 (sodium/potassium/calcium

exchanger), member 6
NM_024959 chr 12 112257308 �7.6213 �4.1074

DHX37 DEAH (Asp-Glu-Ala-His) box polypeptide 37 NM_032656 chr 12 124039620 �7.6213 �4.0842
DNAJC8 DnaJ (Hsp40) homolog, subfamily C, member 8 NM_014280 chr 1 28432129 �7.6213 �4.0769
ZNF562 Zinc finger protein 562 NM_017656 chr 19 9646734 �7.8757 �3.8041
DRG2 Developmentally regulated GTP binding protein 2 NM_001388 chr 17 17932007 �5.7396 �5.8857
C16orf45 Chromosome 16 open reading frame 45 NM_033201 chr 16 15435825 �5.9831 �5.6375
PLA2G16 Phospholipase A2, group XVI NM_007069 chr 11 63138469 �7.8757 �3.6817
FOXR1 Forkhead box R1 NM_181721 chr 11 118347626 �5.4078 �6.0503
KIF3A Kinesin family member 3A NM_007054 chr 5 132101164 �6.4861 �4.9674
RNF185 Ring finger protein 185 NM_152267 chr 22 29886178 �7.6213 �3.8222
MRPL37 Mitochondrial ribosomal protein L37 NM_016491 chr 1 54438427 �6.2901 �5.1153
YIPF1 Yip1 domain family, member 1 NM_018982 chr 1 54128041 �4.4365 �6.8572
RAD51L3 RAD51-like 3 (S. cerevisiae) NM_002878 chr 17 30471001 �7.1327 �4.1404
DNAL1 Dynein, axonemal, light chain 1 NM_031427 chr 14 73181454 �5.9831 �5.265
HLCS Holocarboxylase synthetase [biotin-(proprionyl-

CoA-carboxylase [ATP-hydrolyzing]) ligase]
NM_000411 chr 21 37284373 �5.6994 �5.5373

MMP24 Matrix metallopeptidase 24 (membrane-inserted) NM_006690 chr 20 33278116 �6.7495 �4.4684
MRPL1 Mitochondrial ribosomal protein L1 NM_020236 chr 4 79002828 �5.4106 �5.7917
SETDB1 SET domain, bifurcated 1 NM_012432 chr 1 149165511 �6.9085 �4.291
CTNNA1 Catenin (cadherin-associated protein), alpha 1, 102 kDa NM_001903 chr 5 138117005 �5.5787 �5.6172
SPNS1 Spinster homolog 1 (Drosophila) NM_032038 chr 16 28893649 �5.9223 �5.233
C6orf203 Chromosome 6 open reading frame 203 NM_016487 chr 6 107456109 �7.6213 �3.4953
KIF18B Kinesin family member 18B NM_001080443 chr 17 40380608 �6.0268 �5.0785
C19orf50 Chromosome 19 open reading frame 50 NM_024069 chr 19 18529603 �7.6213 �3.4712
TMEM219 Transmembrane protein 219 NM_001083613 chr 16 29880851 �6.9625 �4.1224
SLC29A2 Solute carrier family 29 (nucleoside transporters), member 2 NM_001532 chr 11 65895867 �6.3653 �4.5099
ENG Endoglin NM_000118 chr 9 129656805 �7.6213 �3.2082
MDM4 Mdm4 p53 binding protein homolog (mouse) NM_002393 chr 1 202752133 �7.6213 �3.1811
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69 are methylated. In comparison, 47/142 genes are classified as

methylation-prone according to retrotransposon marking, and

38 (81%) of these are indeed methylated. Thus, retrotransposon

marking compares favorably to PatMan. In our validation using

MCAM data, PatMan is a good classifier of

methylation-prone genes (Supplemental

Fig. S7A), but it seems to lack the sensi-

tivity of retrotransposon marking, as it

misses a little more than one thousand

methylation-prone CpG islands (Fig. 7A).

PatMan does, however, resolve nearly 200

methylation-intermediate genes into the

methylation-prone group.

Known insulator elements are likely

to play a role in protection of CpG islands

from de novo DNA methylation, espe-

cially if heterochromatin spreading, as

suggested by several authors, is the main

event leading to gene inactivation in can-

cer. To answer whether putative blocking

elements influence gene promoter pre-

disposition to DNA methylation, we com-

pared the average methylation of genes

with and without CTCF binding sites in

the promoter vicinity. A gene promoter

was considered to be bound by CTCF if this

protein was present in the 2-kb window

centered on the gene TSS in at least one out

of five normal adult cell lines investigated

by chromatin immunoprecipitation with

massively parallel sequencing (ChIP-seq)

(Bernstein et al. 2005, 2006; Mikkelsen

et al. 2007). According to this analysis,

;36% of promoter CpG islands are bound

by CTCF. Promoter CpG islands bound by

CTCF seem to be protected from de novo

methylation in cancer, as they present

lower measured DNA methylation by

MCAM compared to genes without CTCF

(Fig. 7B). However, CTCF binding is not

as strong a predictor of methylation pre-

disposition as retrotransposons marking,

since a large fraction of CTCF bound pro-

moters do become methylated in cancer.

When added to the prediction model, the

presence of CTCF binding does not im-

prove the classification of methylation-

resistant genes; even in the absence of

CTCF, retrotransposons mark genes that

do not become methylated in cancer (Sup-

plemental Fig. S7B). However, the presence

of CTCF decreases the methylation pro-

pensity of retrotransposon-poor promoters.

Finally, the breakdown of SINE and

LINE retrotransposons in families and

subfamilies may reveal additional infor-

mation regarding their relationship to

CpG island methylation. To test this pos-

sibility, we further annotated the pres-

ence of Alu and MIR repeats, the two

main families of human SINE, in the

20-kb window centered in the TSS of

methylation-prone and methylation-resistant genes. This compar-

ison revealed that Alu repeats are the main drivers of the difference

in abundance of SINE repeats between methylation-prone and

methylation-resistant genes (Fig. 7C). The difference in frequency

Figure 6. Genome architecture influences on PcG protein binding in embryonic and differentiated
cells. (A) Frequency of predicted methylation groups among hyperconserved domains. (B) Relative
contribution of hyperconserved domains and retrotransposon depletion in marking frequently meth-
ylated genes in cancer. MCAM data from 32 primary tissues and 28 cancer cell lines were averaged to
identify frequently methylated genes. *Predicted status. (C ) Enrichment of H3K27me3 mark in pre-
dicted methylation-prone genes in cancer (PC3, prostate; MCF7, breast) and normal immortalized
(PrEC, prostate epithelium) cell lines. H3K27me3 marking was measured by ChIP with microarray hy-
bridization (ChIP-chip) and is quantified as log2 ratio of pull-down signal over no antibody signal (Kondo
et al. 2008). (D) Frequency of binding of SUZ12 and EED (PcG proteins) in human embryonic stem cells
to 2583 methylation-resistant, 3655 methylation-intermediate, and 1690 methylation-prone genes
based on our predictive model. Note that genes predicted methylation-prone (thus depleted for SINE
and LINE retrotransposons) are preferential targets of PcG proteins. (E ) Comparison of PcG marking and
our predictive model in identifying methylation-prone genes from our training and first testing set. (F )
Average measured methylation of predicted methylation-prone and methylation-resistant genes in PcG
marked genes. MCAM data from 32 primary tumors and 28 cancer cell lines were averaged per com-
parison group, and methylation is presented as log2 ratio (cancer/control). The number of genes per
category is presented above each column.
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of MIR repeats is less evident, but these repeats are, like LINE re-

peats, depleted in the proximal region to TSS (�2 kb to +4 kb).

Discussion
Our data show that a genome architecture marked by depletion

of retrotransposons is strongly correlated to gene predisposition

to DNA methylation in cancer. Moreover, we show that this same

architecture is an independent predictor of gene expression in

cancer and that it is correlated with PcG binding in embryonic

stem cells and adult tissues. These data add to the list of possible

influences of retrotransposons on genome biology. For example,

SINEs are differentially distributed in imprinted (Greally 2002),

tissue-specific (Ganapathi et al. 2005), and monoallelically ex-

pressed genes (Allen et al. 2003). Obviously, there may be overlap

between these states. Indeed, in our study, the frequency of pre-

dicted methylation-prone and methylation-resistant genes among

imprinted genes was significantly different from the genome-wide

distribution of these methylation predisposition groups. These re-

sults were in agreement with previous studies showing that SINE

repeats are less represented in imprinted

genes, resulting in an underrepresenta-

tion of predicted methylation-resistant

genes (Greally 2002). Of note, several

imprinted genes predicted methylation-

prone have been reported as hypermeth-

ylated in cancer (for example, CDKN1C

and DLK1). In contrast, despite reports

of differential distribution of SINE and

LINE retrotransposons on the X chro-

mosome (Jurka et al. 2004; Wang et al.

2006), we did not find the frequency

of methylation-prone and methylation-

resistant genes in the X chromosome to

differ from autosomes. These results are

consistent with the proposed idea that,

if retrotransposons in fact participate in

X inactivation, their action is due to long-

range interactions rather than local, pro-

moter-associated effects. It is important

to note that all these studies are correla-

tive, although they strongly point toward

a role for retrotransposons in epigenetic

regulation.

The depletion of SINE elements in

methylation-prone genes is a paradoxical

finding, since the main family of these

elements (Alu family) is efficient as a

methylation nucleation center in both

plants and mammals (Yates et al. 1999;

Arnaud et al. 2000), and the spreading of

DNA methylation from these repeats into

gene promoters was hypothesized to be

a cause of de novo methylation in cancer

(Jones and Baylin 2002). It is important

to note, however, that an opposite effect

has also been reported for repetitive ele-

ments, some of which have insulator

function (Gdula et al. 1996; Lunyak et al.

2007). Although the exact mechanism by

which the presence of retrotransposons is

associated with protection from de novo

promoter DNA methylation in cancer is unknown, it is possible

that protection is not directly mediated by these repetitive ele-

ments but rather by transcription factors with euchromatin/het-

erochromatin boundary activity, such as CTCF (Bell et al. 1999)

and Sp1 (Mummaneni et al. 1998) transcription factors. In such

cases, genes without binding sites for boundary proteins would be

negatively affected by the insertion of repetitive elements near

their promoters. Thus, the presence of retrotransposons near these

genes would be counterselected during evolution. Indeed, it has

been shown in Arabidopsis thaliana that methylated transposable

elements are preferentially inserted or retained in gene-poor areas,

a feature that likely evolved due to negative selection (Hollister and

Gaut 2009). Also, in agreement with this possibility, we show here

that CTCF binding confers some protection from de novo meth-

ylation. We believe that the performance of CTCF binding alone

as a predictor of methylation fate of gene promoters is somewhat

weak due to two main factors: (1) CTCF binding should be taken

in tissue-specific context, and compared to methylation data on the

same tissue type; and (2) other insulator proteins, for which ge-

nome-wide binding to gene promoters has not yet been extensively

Figure 7. Other genomic features associated with methylation predisposition in cancer. (A) Perfor-
mance of PatMan and retrotransposon marking in predicting promoter CpG methylation status in cancer.
PatMan�, predicted methylation-resistant genes; PatMan+, predicted methylation-prone genes. The
number of genes per category is presented above each column. (B) Measured promoter CpG island
methylation by MCAM of CTCF bound (CTCF+) and unbound (CTCF�) genes. A gene was considered
bound by CTCF if ChIP-seq data from public databases show binding of this protein in the 2-kb region
centered in the gene TSS. (C ) Abundance of Alu and MIR retrotransposons in the 20-kb sequence window
centered in the TSS of 740 methylation-prone and 5658 methylation-resistant genes. Note that the de-
pletion of MIR retrotransposons is more significant in the �2-kb to +2-kb sequence window.
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reported (for example, VEZF1), should be taken into consideration

together with CTCF when developing models of protection.

The lack of correlation of LINE repeats with methylation

predisposition in mouse data sets is a puzzling observation, and

a possible explanation resides in the fact that different repeats may

impact the genome differently. Indeed, while SINE and LINE re-

peats are correlated to methylation predispositon, DNA repeats are

not. Among SINE repeats, Alus showed higher correlation to pro-

moter methylation status than MIRs. While not identical, human

Alu and mouse B1 share higher sequence similarity than human

and mouse LINEs. Also, LINE-1 repeats, the main LINE family, are

more variable in mice than in humans. In a direct comparison of

repetitive elements in human and mouse genomes, a strong cor-

relation was observed between the presences of SINE repeats in

orthologous locations, an event quite surprising given the lineage

specificity of these repeats (Mouse Genome Sequencing Consor-

tium 2002). LINE repeats, however, do not show such correlation.

Although these observations do not completely explain why

mouse LINEs are not correlated to methylation predisposition,

they point out that genomic location of different repeats may be

dictated by the repeat structure itself and species-specific factors.

The fact that the frequency of retrotransposons alone can

predict the expression status of thousands of genes in cancer

supports the idea that epigenetic effects in cancer occur through an

instructive mechanism and depend relatively little on gene func-

tion, at least initially. Indeed, the higher average methylation

in PcG marked genes is due to concordant methylation status

across different cell lines and primary tissues studied by MCAM,

indicating that these genes are under a strong program to become

epigenetically silenced. Retrotransposon-depleted genes are more

heterogeneously methylated; their lack of protection from de novo

methylation leaves these genes prone to epigenetic silencing, al-

though it is not a programmed event and may depend on selec-

tion. Thus, as for genetic alterations, many of the methylation

events in cancer are likely to be passengers, not drivers, in carci-

nogenesis. This does not exclude the active participation of a sub-

set of methylation-prone genes with strong tumor-suppression

function as drivers in tumorigenesis. Therefore, epigenetic defects

in cancer are best viewed as a form of molecular instability creating

diversity in gene expression that is exploited by cancers using

classical selection mechanisms.

A possible explanation for the correlation between depletion

of retrotransposons and predisposition to DNA methylation is

that, similarly to PcG marking, retrotransposon depletion marks

regulatory regions of developmental genes, which then might be

especially prone to DNA methylation. Indeed, developmental

genes often have hyperconserved CpG sites (Tanay et al. 2007).

Most genes that have such hyperconservation were found to be

predicted methylation-prone by our model, reinforcing the argu-

ment that retrotransposon depletion marks important essential

genes for development. However, our results in primary bladder

cancer methylation makes evident that tissue-lineage methylation

is not a confounder in our results. In this experiment, bladder

tissues from normal adult individuals were used as a control, thus

eliminating tissue-specific methylation as a confounder. As shown,

our predictive model performs well in this system after tissue-

specific methylation has been removed. Still, these data do not

exclude the possibility that chromatin states in normal tissues may

influence DNA methylation. Indeed, as discussed above, this has

been shown for PcG protein binding. It may be that our predicted

methylation prone genes have a unique chromatin pattern in

normal cells, beyond PcG protein binding, and this should be

addressed in further studies. Independent of the mechanism by

which retrotransposons are associated to or participate in pro-

tection from de novo DNA methylation in cancer, our findings

suggest that the architecture of the genome has much more pro-

found influences on cancer physiology than previously suspected.

Methods

Cell lines and primary cancer samples
A total of 34 cell lines from different tissues were obtained from the
NCI Anticancer Drug Screen Panel, the American Type Culture
Collection (Manassas, VA) or the University of Texas MD Anderson
repositories (one cell line from breast cancer, 12 from bladder can-
cer, one from the central nervous system, four from colon cancer,
11 from leukemia, one from melanoma, one from lung cancer, one
from ovarian cancer, one from prostate cancer, and one from renal
cancer) and cultured according to standard methods.

Primary tumor samples from 28 bladder cancer and four
acute myelogenous leukemia patients were collected at the MD
Anderson Cancer Center in accordance with institutional policies.
All patients provided written informed consent. Tumors were se-
lected solely on the basis of availability. Genomic DNA was ex-
tracted from all cell lines and primary tissue samples using a stan-
dard phenol-chloroform method.

Methylation analyses

DNA methylation status of gene promoter CpG islands was eval-
uated using bisulfite-treated DNA followed by PCR amplification,
and methylation density of individual genes was determined by
pyrosequencing or COBRA assays according to standard protocols
(Estecio et al. 2006, 2007). PCR primers are presented in Supple-
mental Tables S7 and S8. Genes with at least 15% methylation
density were considered hypermethylated (a conservative value
chosen based on the detection limits of the methods) and genes
hypermethylated in 2/9 tested cancer cell lines were classified as
methylation-prone, given that in our research we intended to find
genome signatures associated with predisposition or resistance to
methylation across tissue types, rather than tissue-specific meth-
ylation. It is important to note, however, that the vast majority of
the genes classified as methylation-prone showed gene methyl-
ation of 30% and higher, and in general they were methylated in
three or more cell lines. Analysis of DNA methylation using the
MCAM method was performed as previously reported (Estecio
et al. 2007; Shen et al. 2007b). Tumor and normal control MCA
amplicons were Cy5- and Cy3-labeled, respectively, and cohybrid-
ized to the HCGI12K-Human CpG 12K Array (Microarray Center,
University Health Network, Toronto, Canada) or to a custom 4 3

44 k oligo array (Agilent Technologies). Methylation analysis of
promoter CpG island methylation in mice was done using bone
marrow samples of three NUP98-HOXD13 transgene animals
that developed MDS (Lin et al. 2005). Bone marrow samples from
a nontransgene animal of the same mouse strain were used as
control in MCAM experiments, and the methylation status of
approximately 6000 CpG island promoter genes was determined
using Mouse CpG Island Microarray Kit oligo arrays (Agilent
Technologies). Additional data sets of promoter CpG island
methylation in mouse tumors were obtained from published re-
ports on a mouse model of chronic lymphocytic leukemia (Chen
et al. 2009) and intestinal cancer (Hahn et al. 2008). Small intestine
tissues isolated from young (3-mo-old) and old (35-mo-old)
C57BL/6J mice and tumor samples from a leukemia mouse model
(Choi et al. 2008) were used in MCAM experiments to identify
cancer and age-related methylation.

Estécio et al.

1380 Genome Research
www.genome.org



Repetitive element abundance and CpG island characteristics

The DNA sequence flanking the 4-kb sequence region surrounding
the TSS of 36 methylation-prone and 36 methylation-resistant
genes with a promoter CpG island was obtained from the Uni-
versity of California Santa Cruz (UCSC) BLAT Genome Browser
(http://genome.ucsc.edu/cgi-bin/hgBlat). The TSS for each gene
was determined according to RefSeq (NCBI Build 36.1), and re-
petitive DNA sequences were annotated using the RepeatMasker
search engine (http://www.repeatmasker.org). All genome tables
were downloaded from the UCSC Table Browser (http://genome.
ucsc.edu/cgi-bin/hgTables; Karolchik et al. 2004). For all statistical
analysis, CpG island length, GC content, and CpG ratio were cal-
culated using the public software CpG Island Searcher (http://
www.cpgislands.com; Takai and Jones 2003).

Calculation of a score to predict gene promoter predisposition
to DNA methylation

We divided the promoter sequence of 36 methylation-prone and
36 methylation-resistant genes into 20 bins of 1-kb sequence each
(10 bins upstream and 10 bins downstream of each gene TSS), and
annotated the presence SINE and LINE retrotransposons in each
bin (Fig. 2A). In order to avoid a single repeat being counted in
multiple bins, SINE and LINE elements were annotated to the
closest bin to TSS. Done this way, each gene is represented by a
20-letter acronym, where S represents a SINE element in the bin
and G represents the absence of a SINE element (Fig. 2B). Similarly,
an independent acronym is generated for LINE repeats, where
L represents a LINE element in the bin and G represents the ab-
sence of a LINE element. We compared the average abundance of
SINE and LINE retrotransposons per bin in methylation-prone
and methylation-resistant genes to their average abundance
genome-wide in the full collection of human promoter CpG is-
lands, and translated the preference to repetitive elements to a
score that differentiates two kinds of promoters.

Such a score is a sum over the bin score, which is a standard
log-odds ratio:

si;r = ln
qi;r

pr

� �
;

where qi,r is the frequency of observing repeat of type r for the ith
bin for the promoters known to be methylated; pr is the back-
ground frequency for the repeat r. To account for the low count
and avoid taking logarithm of zero, qi,r is replaced by Qi;r =

ci;r + f r

N + 1

derived from ‘‘pseudo-count,’’ where fr is the fraction of the re-
peat that is type r: +r f r = 1. N is the total number of promoters
with the known methylation status; ci,r is the number of repeats of
type r in the ith bin: +r ci;r = N. The final value for each letter in
the 20-letter acronym representing the abundance of SINE and
LINE elements was calculated as the difference between its value
in methylation-prone and methylation-resistant genes (for exam-
ple, s10;S = s10;Smp � s10;Smr , where Smp is the SINE standard log-odds
ratio in methylation-prone genes and Smr is the SINE standard log-
odds ratio in methylation-resistant genes). The calculation of the
log-odds ratios for SINE elements is illustrated in Figure 2C.

Identification of clusters of methylation-prone genes

To identify clusters of methylation-prone genes, we computed the
correlation as a function of separation between genes. We denoted
the computed status of whether the ith gene on a chromosome is
methylation-prone by Si, where Si = 1 indicates methylation-prone
and Si = 0 indicates methylation-resistance. The following corre-
lation function was applied to detect clustering of methylation-
prone or methylation-resistance: C(d ) where L is the total number

of genes in the chromosome. We similarly defined the correlation
function over the genome by averaging over all chromosomes. At
a large gene separation (distance d ), Si and Si+d become in-
dependent. If there is a correlation at a short distance, it will result
in an elevated value of C(d) at a shorter distance in comparison to
a larger distance. We found that between distances 3 and 60, the
correlation C(d) can be fitted to an exponential function e

d
�l where

l = 20.6 indicates a decay length of about 21 gene separations. In
these analyses, only genes with promoter CpG islands were com-
puted. In order to find the regions of clustering of methylation-
prone genes, we look for a string of consecutive methylation-prone
genes (i = 1) in Si. We compared the length of the string with what is
allowed by random chance. Let N0 and N1 be the number of 0’s
(methylation-resistant) and 1’s in Si, then p1= N1

N0 + N1
and p0 = 1� p1.

If 0’s and 1’s are randomly distributed, the chance of having

L �m1’s and m0’s is given by PðLÞ= L
m

� �
p L�m

1 pm
0 . Let N = N0 = N1,

using very conservative Bonferroni correction for multiple test-
ings, when PðLÞ 3 N » 1, there is approximately one string with
L � m1’s and 0’s in the entire genome. To control for multiple L

we find the smallest L that satisfies N 3 +
N

1=L

PðLÞ # 1. Although P/L

over L does not sum to one, we are summing over very small P/L
as an approximation to control for multiple string length tested.
So for m = 0 we find all string of 1’s with length $ L (the threshold
value in this case is L = 7) and mark this region as significant.
Similarly, we mark regions for m up to 10.

Gene expression, ChIP-chip, and PatMan data sets

Gene expression profiles of normal tissues were downloaded from
GNF expression database (http://expression.gnf.org/; Su et al.
2004). Raw expression values in each data set were substituted by
their respective Z-scores ([X� m]/s, where X represents expression
data of each gene in each sample; m represents mean of expression
of all genes for each sample; and s represents standard deviation).
S and L scores were attributed to each gene, and Z-score expression
data were averaged per predicted methylation status (prone or
resistant to methylation) according to tissue of origin. Gene ex-
pression profiles of cancer cell lines were downloaded from the
NCI60 Cancer Microarray Project website (http://genome-www.
stanford.edu/nci60/; Ross et al. 2000) and analyzed as described for
normal tissue expression data. Suz12 and Eed polycomb group
(PcG) protein binding and H3K27me3 ChIP data are from human
embryonic stem cells (Lee et al. 2006), and from PC3 (prostate cancer
cell line), MCF7 (breast cancer cell line), and PrEC (immortalized
normal prostate epithelial cells) (Kondo et al. 2008). CTCF binding
data are from normal cultured cells (Bernstein et al. 2005, 2006;
Mikkelsen et al. 2007). Genome-wide classification of CpG island in
methylation-prone and methylation-resistant genes according to
the PatMan classifier was retrieved from McCabe et al. (2009).

Gene Ontology analysis

We used FatiGO (Al-Shahrour et al. 2006) from Babelomics (http://
babelomics.bioinfo.cipf.es/) for Gene Ontology analysis. The sta-
tistical significance of frequency of genes per biological process in
predicted methylation-prone and methylation-resistant groups
was calculated using Fisher’s exact test. P-values were adjusted for
false discovery rate.
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