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TATA is a modular component of synthetic promoters
Ilaria Mogno, Francesco Vallania, Robi D. Mitra, and Barak A. Cohen1

Center for Genome Sciences, Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri

63108, USA

The expression of most genes is regulated by multiple transcription factors. The interactions between transcription factors
produce complex patterns of gene expression that are not always obvious from the arrangement of cis-regulatory elements
in a promoter. One critical element of promoters is the TATA box, the docking site for the RNA polymerase holoenzyme.
Using a synthetic promoter system coupled to a thermodynamic model of combinatorial regulation, we analyze the effects
of different strength TATA boxes on various aspects of combinatorial cis-regulation. The thermodynamic model explains
75% of the variance in gene expression in synthetic promoter libraries with different strength TATA boxes, suggesting
that many of the salient aspects of cis-regulation are captured by the model. Our results demonstrate that the effect
of changing the TATA box on gene expression is the same for all synthetic promoters regardless of the arrangement of cis-
regulatory sites we studied. Our analysis also showed that in our synthetic system the strength of the RNA polymerase–
TATA interaction does not alter the combinatorial interactions between transcription factors, or between transcription
factors and RNA polymerase. Finally, we show that although stronger TATA boxes increase expression in a predictable
fashion, stronger TATA boxes have very little effect on noise in our synthetic promoters, regardless of the arrangement of
cis-regulatory sites. Our results support a modular model of promoter function, where cis-regulatory elements can be
mixed and matched (programmed) with outcomes on expression that are predictable based on the rules of simple protein–
protein and protein–DNA interactions.

[Supplemental material is available online at http://www.genome.org.]

A major component of transcriptional regulation is the recruit-

ment and interaction of sequence-specific DNA binding proteins

known as transcription factors (TFs). Most genes have multiple

regulators. Because of the high complexity of some promoters, and

because of phenomena such as cooperativity and competition

between TFs for similar cis-regulatory sites, the interactions be-

tween TFs often produce patterns of expression that are difficult to

predict from the effects of individual TFs (Yuh et al. 2001; Istrail

and Davidson 2005; Kulkarni and Arnosti 2005; Hsiau et al. 2007).

Because of the centrality of transcriptional regulation in so many

biological processes, unraveling the rules that govern combinato-

rial cis-regulation is an important and challenging task (Bintu et al.

2005). One recent approach to this problem focuses on synthetic

promoters as models of transcriptional regulation (Ligr et al. 2006;

Cox et al. 2007; Murphy et al. 2007; Gertz and Cohen 2009; Gertz

et al. 2009). In previous work we studied combinatorial cis-regu-

lation using a library of synthetic promoters in yeast coupled with

a formal thermodynamic model that relates the promoter se-

quence to the expression of the downstream gene. We showed that

a large fraction of the variability in gene expression can be ex-

plained by simple TF–TF and TF–DNA interactions. In addition,

we used this system to investigate the effects of low-affinity TF

binding sites (Gertz et al. 2009) and the effects of different growth

environments on combinatorial cis-regulation (Gertz and Cohen

2009).

One important variable in gene expression is the interaction

of RNA polymerase with DNA. A critical step in the regulation of

eukaryotic genes is the recruitment of the TATA binding protein

(TBP), which bends the DNA to allow binding of RNA polymerase

II and transcription initiation (Struhl 1995). The canonical binding

site for TBP is an A/T-rich sequence, known as the TATA box. In

Saccharomyces cerevisiae only 17% of genes contain a conventional

TATA box at their promoters (Iyer and Struhl 1995; Basehoar et al.

2004), but TBP is still required for the transcription of virtually all

genes (Pugh and Tijan 1990; Cormack and Struhl 1992; Martinez

et al. 1994). TATA and TATA-less promoters show structural and

functional differences: In TATA-containing promoters TBP is de-

livered by the SAGA complex, while in TATA-less promoters TBP is

delivered by TFIID (Lemon and Tijan 2000; Basehoar et al. 2004);

a conventional TATA box is usually found at stress-related pro-

moters as opposed to housekeeping genes (Basehoar et al. 2004).

Keeping in mind these structural and functional differences, we

sought to investigate whether the presence and strength of the

TATA box affects combinatorial cis-regulation by TFs.

Several studies on individual promoters have shown how

mutants of the TATA box affect both gene expression and promoter

noise (Raser and O’Shea 2004; Blake et al. 2006). However, it is

unclear whether these effects follow a general rule or if they are

promoter-specific. It is well established that changes to the se-

quence of the TATA box affect the interaction between polymerase

and DNA (Maicas and Friesen 1990; Stewart and Stargell 2001;

Blake et al. 2006; Tirosh et al. 2006). However, it is still unclear

whether these changes also affect the combinatorial interactions

of TFs with polymerase and with each other. To address these

questions we constructed synthetic promoter libraries with TATA

boxes of different strengths and used a thermodynamic framework

to model the interactions that occur on these promoters. The

synthetic library allows us to study a wide variety of promoters in

a controlled system. We found that TATA is a remarkably modular

component of our promoters. Changes in the strength of the TATA

box have similar effects on all promoters regardless of the ar-

rangement of their components (TF binding sites). Changing the

strength of the TATA box appears to affect the interaction between
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polymerase and DNA without affecting any of the combinatorial

interactions between TFs, or between TFs and RNA polymerase.

We also measured the variance in gene expression in each of our

synthetic libraries and showed that while stronger TATA boxes

increase gene expression, stronger TATA boxes do not contribute

additional noise to gene expression. Our results suggest that

TATA amplifies gene expression in the same way for all promoters

without adding significant noise. Thus, the TATA box appears to

be a modular component of promoters.

Results
We built three different synthetic promoter libraries with random

combinations of four TF binding sites following procedures pre-

viously described (Gertz et al. 2009). In each library we used a dif-

ferent basal promoter, one for a strong-TATA, one for a weak-TATA,

and one for a no-TATA library (Blake et al. 2006). All three basal

promoters were derived from the TSA1 promoter (see Methods for

details). The strong-TATA basal promoter (here called S) contains

one strong and one weak TATA box; the weak-TATA basal promoter

(here called W), contains two weak TATA boxes; and the no-TATA

basal promoter (here called N) contains no conventional TATA box

(see Supplemental Table S2 for the exact sequence). These pro-

moters were cloned upstream of the yellow fluorescent protein

(YFP) gene, and each cassette was then integrated into the S. cer-

evisiae genome at the TRP1 locus as described in the Methods. Flow

cytometry assays allowed us to obtain estimates of gene expression

for each promoter, which we used as an estimate of promoter ac-

tivity. As predicted, the three basal promoters showed different

expression levels (Fig. 1).

For our study of the relationship between the strength of the

TATA box and the interactions among cis-regulatory sites we chose

to study four TF binding sites. We picked binding sites for Gcr1,

Reb1, Rap1 (activators), and Mig1 (repressor) as in Gertz et al.

(2009). These sites are known to co-occur in promoters across the

genome, and can be stimulated by glucose growth conditions (Scott

and Baker 1993; Tornow et al. 1993; Pilpel et al. 2001; Harbison

et al. 2004).

The vast majority of cis-regulatory sites occur evenly between

TATA and non-TATA promoters (Supplemental Table S1). This

suggests that most cis-regulatory sites function in both TATA and

non-TATA promoters. We were therefore careful to choose sites

that show no statistical enrichment in either TATA or non-TATA

promoters as ‘‘typical’’ cis-regulatory sites function in both classes

of promoters. All four sites we chose occur at expected frequencies

in both TATA and non-TATA promoters (Supplemental Table S1).

Among the known targets for each of these four transcription

factors are both TATA and TATA-less promoters (Basehoar et al.

2004; Harbison et al. 2004). These four sites, Mig1, Reb1, Rap1, and

Gcr1, are reasonable representative cis-regulatory sites, because like

most cis-regulatory sites they occur evenly between both classes of

promoters.

Binding sites for Gcr1, Reb1, Rap1, and Mig1 were randomly

inserted upstream of each basal promoter in the S. cerevisiae ge-

nome. Each integrant was individually sequenced. We obtained

235 clones for the strong-TATA library (here called L-S), 298 for the

weak-TATA library (here called L-W), and 241 for the no-TATA li-

brary (here called L-N). We arrayed our library clones in 96-well

microplates. Each plate contained 92 individual clones and four

replicates of the basal promoter as controls. We measured volume

and YFP expression of single cells using flow cytometery. We then

calculated the normalized fluorescence by dividing the fluores-

cence signal by the volume for every cell. The mean expression of

every well was then normalized by the average of the mean ex-

pression of the four control wells to control for plate-to-plate var-

iation, resulting in a measurement of fold change with respect to

the basal promoter. Individual clone sequences and their associ-

ated expression values are available in Supplemental Table S2.

TATA is a simple scaling factor for all promoters

In each plate of libraries L-W and L-N we also added controls for

the strong basal promoters (S). This allowed us to compare S and

W, and S and N, in the same assay. We then estimated the strength

of the strong-TATA with respect to the weak-TATA and to the no-

TATA clones by calculating the ratio of expression of the basal

promoters. The basal promoter with the strong TATA box was 4.9-

fold stronger than the no-TATA basal promoter and 2.56-fold

stronger than the weak-TATA basal promoter (Table 1).

We next asked whether the effect of different strength TATAs

depends on promoter context. To address this question we com-

pared identical clones between the L-S and L-W libraries, and

between the L-S and L-N libraries. Identical clones are promoters

with the same sequence of TF binding sites but with different TATA

boxes. We identified 30 unique clones identical between the L-S

library and the L-W library. The scatter plot in Figure 2 shows the

average expression of biological replicates of the identical clones.

The slope of the best fit regression between identical clones in

these libraries was 2.75, which is comparable to the ratio of ex-

pression from the strong and weak basal promoters (2.56). Simi-

larly, the slope of the regression line between the 23 unique clones

identical between the L-S and L-N libraries (4.11) is close to the

ratio of expression of the strong- and no-TATA basal promoters

(4.9). Furthermore, the residual variance in Figure 2, A and B, is

almost entirely explained by the biological replicate variance. The

biological replicate variance (Table 2) of our libraries explains

100% of the residual variance in Figure 2A, and 86% of the variance

of the residuals in Figure 2B. This suggests that the small number

of points that lie off of the regression lines in Figure 2, A and B, is

due to experimental error, not to contextual differences caused by

different strength TATAs. Moreover, the points that do lie off the

regression line do not show any enrichment in size or composition

of the promoter. Taken together, our results suggest that TATA acts

Figure 1. Average expression, noise, and noise strength in arbitrary
units (AU) of the three basal promoters from four technical replicates.
Error bars represent one standard deviation. Noise is CV (standard de-
viation divided by mean), and noise strength is VMR (variance divided by
mean).
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as a simple scaling factor: Gene expression scales with the strength

of the TATA box in a predictable way regardless of the upstream

arrangement of cis-regulatory sites we studied.

The TATA box is a modular component of promoters

The interactions that occur on a promoter form a dense web of

connections. We therefore sought to address whether the strength

of the TATA box might affect the interactions between TFs and

RNA polymerase (RNAP), or between TFs. We tested whether

changing the strength of the TATA box had effects other than

changing the affinity of RNAP for DNA (Stewart and Stargell 2001;

van Werven et al. 2009). We applied a thermodynamic model

previously developed to estimate the binding affinities between

TF–RNAP and TF–TF given the expression level of each promoter

(Gertz et al. 2009). The model’s final outputs are proportional to

the free energies (DG) of TF–RNAP and TF–TF interactions. We first

fit each library independently to obtain estimates for the in-

teractions between TFs and RNAP, and between TFs in the context

of different strength TATA boxes. In each case a thermodynamic

model specific for each library explained a high fraction of the

variation in gene expression we observed in our data. Models that

include only TF–RNAP interactions explained 62%, 61%, and 63%

of the variance for L-S, L-W, and L-N, respectively (Table 2). Strik-

ingly, the strengths of TF–RNAP and TF–TF interactions were not

significantly different for the three libraries (Fig. 3; Supplemental

Table S3). This result suggests that changes in the strength of the

TATA box only affect RNAP binding, and that the change in RNAP

binding does not alter TF–RNAP or TF–TF binding. Changes in the

TATA box appear to be modular with respect to the web of in-

teractions that occur on promoters.

To compare the effect of each TATA box, we pooled the data

from two libraries together. We fit the

pooled data using the thermodynamic

framework by adding one extra parame-

ter to the model that describes the relative

affinity of RNAP for different strength

TATAs. We obtained better fits to the

pooled data than to data from individual

libraries. The R2 for L-S + L-W was 74%

and for L-S + L-N was 75% (Table 2; Fig.

3B,C), indicating that the thermody-

namic model captured the added com-

plexity introduced by different TATA

boxes with the addition of only a single

parameter that describes the relative af-

finity of RNAP for different TATA boxes.

The extra variance in the pooled data,

coupled with the improved model sig-

nificantly increased our predictive power,

allowing us to explain 15% more vari-

ance. The model performs significantly

better with the extra DNA–RNAP param-

eter than without such a parameter, dem-

onstrating that the improved fit is due to

a better model of cis-regulation and not

just to data with a larger dynamic range

(see Methods for details). Using the fits

from the pooled data we estimated the

DG of the RNAP–TF interaction of the

weak TATA and of the no TATA with re-

spect to the strong TATA. Given these

DG values we then calculated the probability of RNAP binding at

each basal promoter. The calculated relative affinity of RNAP for

the strong versus weak TATA was 2.89 6 0.23, a number very

similar to the ratio of expression of S and W (2.56), and to the

slope of the line regressed for identical clones in L-S and L-W

(2.75) (Table 1). Similarly, the calculated relative affinity of RNAP

for the strong- versus no-TATA clones was 4.52 6 0.42, which is

similar to the ratio of expression of S and W (4.9), and to the

slope of the line regressed for identical clones in L-S and L-W

(4.11). Thus, in both comparisons (strong versus weak, and

strong versus no TATA), three independent estimates suggest that

the TATA box acts as a linear amplifier of gene expression, and

that its effect is independent of the cis-regulatory content of the

promoter.

TATA amplifies gene expression with little effect on noise

We investigated whether the strength of the TATA box affects the

noise in transcriptional regulation in our system. Previous studies

have extensively modeled the noise in protein expression as a re-

sult of stochastic processes that occur during TF binding, RNA

polymerase binding, transcription, mRNA degradation, and trans-

lation (Paulsson 2004; Bar-Even et al. 2006; Kaufmann and van

Oudenaarden 2007). Noise in specific S. cerevisiae promoters has

been studied using a double color assay (Raser and O’Shea 2004),

by introducing multiple copies of the same promoter into cells

(Volfson et al. 2006), or by mutating the TATA box at a particular

promoter (Raser and O’Shea 2004; Blake et al. 2006). Here, rather

than measuring single promoters or single proteins, we extend

these studies by analyzing noise in libraries of promoters with

different strength TATA boxes and different cis-regulatory con-

tents, but with the same translational efficiency.

Figure 2. Comparison of the expression of identical library clones. (A) Scatter plot of identical clones
between the L-S and L-W libraries. The slope of the best-fit regression line is 2.75. (B) Scatter plot of
identical clones between the L-S and L-N libraries. The slope of the best-fit regression line is 4.11. The
Pearson correlation is 0.82 for identical clones between L-S and L-W and between L-S and L-N.

Table 1. Comparison of basal promoters

Basal (S)/basal (W) = 2.56 Slope (S/W) = 2.75 p(S)/p(W) = 2.89 6 0.23
Basal (S)/basal (N) = 4.9 Slope (S/N) = 4.11 p(S)/p(N) = 4.52 6 0.42

The first column reports the ratio of expression between the strong-TATA basal promoters and the
weak-TATA and the no-TATA basal promoters. The second column reports the slope of the line fitted on
the expression of identical clones in the strong-TATA and weak-TATA libraries, and in the strong-TATA
and no-TATA libraries. The last column reports the calculated relative affinity of RNAP for the strong
versus weak TATA and for the strong versus the no TATA (with 95% C.I.), after having estimated the
DG of RNAP–DNA binding with the thermodynamic model.

The TATA box and synthetic promoters
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Each flow cytometry run consisted of measurements of vol-

ume and fluorescence for 25,000 events (single cells). Cross-vali-

dation tests showed that 5000 events were sufficient to obtain

robust estimations of the mean and variance of the distribution of

expression measurements for each pro-

moter (data not shown). To control for

extrinsic sources of noise we normalized

each fluorescence measurement by the

volume of the cell from which it was de-

rived (see Methods for details).

A simple comparison of the three

basal promoters only (N, W, and S)

showed that noise, as measured by the

coefficient of variation (CV), which is

the standard deviation to mean ratio,

does not depend on the strength of the

TATA box, while the noise strength, or

variance to mean ratio (VMR), does (Fig.

1). Because the VMR depends on the

mean expression level, as already described in Raser and O’Shea

(2004), we sought to determine whether TATA has an effect on

transcriptional noise that is independent of its effect on the mean

expression of promoters.

Figure 3. (A) Estimated DG for the interactions between TFs and RNAP. (R) Binding site in the reverse orientation. Each library was fit individually with the
thermodynamic model. The figure shows the value of the estimated DG for TF–RNAP and TF–TF interactions with a 95% confidence interval (only the
significant parameters are shown here); there are no significant differences in the energies of the interactions between RNAP and TF and in TF cooperativity in
the three libraries. (B,C) Scatter plots of the pooled libraries. Each dot represents a library clone, with its measured expression on the x-axis, and its estimated
expression on the y-axis (using the thermodynamic model). (Blue dots) Clones in the strong-TATA library; (green dots) clones in the weak-TATA library; (red
dots) clones in the no-TATA library. (Cyan line) The perfect model, in which estimated values are exactly equal to the measured values.

Table 2. Explanatory power of the thermodynamic model

Library

Fraction of the
variance captured
by the model (R2)

Fraction of the
variance explained

by technical
replicate variation

Fraction of the
variance explained

by biological
replicate variation

Fraction of the
available variance

captured by
the model

L-S 62% 0.6% 15% 73%
L-W 61% 0.9% 19% 75%
L-N 63% 0.9% 12% 72%
L-S + L-W 74% 0.7% 18% 91%
L-S + L-N 75% 0.7% 14% 87%

This table shows for each single and pooled library the fraction of the variance explained by the model,
(R2), the fraction explained by the technical or by the biological replicate variance, and the fraction of
the available variance captured by the model, as in Gertz et al. (2009).
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We compared the variances in expression between clones

from each of our libraries. To compare clones from different li-

braries we normalized their mean expression to the mean expres-

sion of their specific basal promoter (i.e., each clone is expressed in

terms of fold changes with respect to its specific basal promoter).

When CV is used as the measure of noise we find no differences

between strong- and weak-TATA clones (P > 0.3, Students t-test),

and only a small difference between strong- and weak-TATA and

no-TATA clones (P = 10�6 and P = 10�7, respectively, Students t-test)

(Fig. 4A,C). This result holds across the entire range of normalized

expression levels and across all cis-regulatory combinations we

studied. When VMR is used as the measure of noise (Fig. 4B,D) we

find no significant difference between weak-TATA and no-TATA

clones (P > 0.08, Students t-test). Clones that contain a strong TATA

show a very small, but statistically significant, increase in noise

strength (P = 10�4 and P = 10�7 with respect to no TATA and weak

TATA, respectively, Students t-test). Although CV and VMR are the

two most commonly used metrics of noise, our results suggest that

using the CV (in Fig. 4A) skews the no-TATA data (the lowest

expressing clones) slightly downward, while using the VMR (in

Fig. 4B) skews the strong-TATA data (the highest expressing clones)

slightly upward. If we use a different noise model (see Supple-

mental material) we do not find any significant difference in the

three libraries.

Taken together, our results suggest that the strength of the

TATA box has very little effect on transcriptional noise. The TATA

box thus acts as a clean amplifier: It amplifies the expression level,

without changing the rules of combinatorial cis-regulation, and

adding very little transcriptional noise, regardless of the arrange-

ment of the cis-regulatory sites used in this study.

Discussion
We examined the effect of the strength of the TATA box on tran-

scription in synthetic yeast promoters. We found that the TATA

box acts as a simple scaling factor: Stronger TATA boxes result in

predictably stronger expression levels. The increase in transcrip-

tion was not promoter-specific as the same scaling factor applied to

all our synthetic promoters. The TATA box amplifies gene expres-

sion in a predictable way regardless of the arrangement of the cis-

regulatory sites used in this study. The strength of the TATA box

does not affect the cis-regulatory interactions that occur on pro-

moters, except by affecting the affinity of RNAP for the promoter

DNA. Thus, the affinity of RNAP–TF and TF–TF are not affected by

the affinity of RNAP–DNA. It was previously shown that the TATA

box does not directly affect TBP binding but rather the stability of

the TFIIA and TBP complex, which is crucial for both TBP re-

cruitment (Stewart and Stargell 2001) and turnover rate (van

Werven et al. 2009). We have shown here that this process does not

affect TF binding to the promoters, allowing us to conclude that

the TATA box, as well as transcription factor binding sites, is a

modular component of synthetic promoters.

Figure 4. Transcriptional noise in different promoter libraries. Noise of each individual clone is plotted against the mean expression. Normalized ex-
pression means that the expression value (fluorescence/volume) for each clone was divided by the expression of its basal promoter (promoter with same
TATA but no TF binding site), so that each clone is expressed in terms of fold changes with respect to their basal promoter. (A) Noise versus normalized
expression for the three libraries. (B) Noise strength versus normalized expression. (C,D) Data of A and B, respectively, in a boxplot representation.
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In our system TATA is a clean amplifier. TATA does not have

a large effect on transcriptional noise, as it does on expression

levels. Several previous studies showed correlations of CVand VMR

with gene expression levels or protein abundance (Raser and

O’Shea 2004; Blake et al. 2006; Newman et al. 2006; Volfson et al.

2006). In our study we separated the effects of TATA from the ef-

fects of mean expression level. By isolating the effect of TATA we

showed that promoters with the same mean expression level, but

different strength TATAs, have the same CV (Fig. 4A). This result

suggests that TATA does not have a large effect on the CV that is in-

dependent of its effect on the mean expression level of promoters.

Although most cis-regulatory sites in yeast are distributed

evenly between both TATA and non-TATA promoters, different cis-

regulatory sites also show different levels of bias in their occurrence

between these classes of promoters, with some sites showing sig-

nificant skew toward one or the other promoter class. It is therefore

possible that we might have obtained qualitatively different results

with another set of cis-regulatory sites. Some cis-regulatory sites

may function in very different modes when they occur in TATA

versus non-TATA promoters. As additional sites are tested in syn-

thetic promoter systems the likelihood of this hypothesis will be

determined.

This work clarified the role of the basal promoter in our syn-

thetic library system (Gertz et al. 2009). The thermodynamic

model we developed explained ;62% of the variability in gene

expression by only accounting for TF–RNAP binding. Here, we

varied another element in our system, the strength of the TATA

box, and showed that the thermodynamic model still explains

a large fraction of the variability in gene expression (;75%), even

with the added complexity introduced by different strength

TATA boxes. These results support a modular model of tran-

scriptional regulation, where promoter elements can be mixed

and matched with outcomes on expression that are predictable

based on the rules of simple protein–protein and protein–DNA

interactions.

One striking result was the behavior of the promoter with no

conventional TATA box (called N in the text) and the library we

built using it. Despite the fact that TATA and TATA-less promoters

have functional and structural differences, we did not find any

differences in the rules of combinatorial transcriptional regula-

tion in TATA versus TATA-less library clones. Our results suggest

that the TATA box does not drive the recruitment of SAGA or

TFIID, but rather only affects the transcription rate, regardless

of the way TBP is delivered to the DNA. This hypothesis is sup-

ported by the fact that SAGA and TFIID are functionally redundant

(Lee et al. 2000).

Methods

Strains and plasmids
We used the 160 nucleotides upstream of the start codon of the
TSA1 gene of S. cerevisiae as the basal promoter, as already cloned
into plasmid pJG102 (Gertz et al. 2009). The strong-TATA promoter
was derived from the original TSA1 promoter by introducing a
3-bp substitution at positions �105 to �103, from GTC to TCG,
to create a restriction site for XhoI (forming plasmid pIM102).
Plasmids pIM104 and pIM103 carried the mutations for the weak-
TATA and for the no-TATA basal promoters. The cassette contain-
ing the selection marker (URA3 gene), the basal promoters, and the
YFP gene was then integrated into strain BY4742 (MATa his3D1
leu2D0 lys2D0 ura3D0) at the TRP1 locus, as described in Gertz
et al. (2009). Sequences are available in Supplemental Table S2.

Construction of the TATA libraries

Libraries L-S, L-W, and L-N were cloned first into plasmids pIM102,
pIM104, and pIM103, respectively, and then integrated into S.
cerevisiae BY4742 following the procedure described in Gertz et al.
(2009). The oligonucleotide building blocks we used to construct
library inserts contained binding sites for the transcription factors
Mig1, Gcr1, Reb1, and Rap1 (see Gertz and Cohen 2009 for the
exact sequence for these binding sites). Each individual clone was
sequenced as in Gertz et al. (2009).

Flow cytometry assay

All library strains, including the basal promoter control strains,
were arrayed into 96-well microplates. All cultures were grown in
500 mL of synthetic complete media lacking uracil with 2% glucose
in 2-mL 96-well plates with shaking for 4 h at 30°C. They were then
fixed with paraformaldehyde as described in Gertz et al. (2009).
The fluorescence intensities and electronic volumes of 25,000
events from each well were measured on a Beckman Coulter Cell
Lab Quanta SC with a multiplate loader. Fluorescence was then
divided by volume to obtain a normalized fluorescence value for
every cell. For each well, mean and variance were then calculated
from the normalized fluorescence values for 25,000 events.

The purpose of normalizing by cell volume was to control for
extrinsic components of noise. The major source of extrinsic noise
is cell volume (Di Talia et al. 2007; Nachman et al. 2007; Skotheim
et al. 2008); thus, dividing fluorescence by volume for each cell is
a way of focusing on intrinsic sources of noise. In previous studies,
investigators have attempted to gate on cells in the G1 phase of the
cell cycle using forward scatter and side scatter (Newman et al.
2006). Because G1 cells are relatively uniform in size, this results in
a lower noise population of cells to study. However, gating by
forward scatter and side scatter is not an accepted method of de-
termining the cell cycle state of yeast cells, so there is no guarantee
that this method gates on a uniform population of G1 cells. For
example, after gating, Newman et al. (2006) retained only 1% of
total cells, when it is known that 30%–35% of yeast cells from an
asynchronous population are in the G1 phase. While this method
does reduce noise in the measurements, the analysis necessarily
focuses on a biased subset of the data. Simply dividing fluorescence
by volume corrects for the largest source of extrinsic noise and
yields a similar relationship between CV and mean expression, as
Newman et al. (2006) observed (Supplemental Fig. S3). Thus, we
reduce the extrinsic noise, as Newman et al. (2006) did, without
resorting to gating on a very small subpopulation of the data.

Thermodynamic model

To model gene expression, we implemented a thermodynamic
model of polymerase occupancy that was originally proposed by
Shea and Ackers (1985). The model and implementation were
described previously in Gertz et al. (2009). For each promoter, the
probability of RNAP binding is calculated as the sum of Boltzmann
weights for the states with RNAP bound by the sum of Boltzmann
weights for all states. Boltzmann weights are calculated for each
possible state of every promoter. Each state includes parameters
for DG changes for RNAP–DNA, TF–DNA, RNAP–TF, and TF–TF
interactions. The parameters representing the DG are then esti-
mated with a nonlinear fit. Goodness-of-fit was estimated with R2

and RSS. Akaike Information Criterion (Akaike 1974), which in-
troduces a penalty term for the number of parameters, was used to
determine whether the model applied to the pooled libraries with
the extra parameter for RNAP–DNA interaction was significantly
more accurate than the simpler model applied to the single libraries.
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All calculations were performed using the Matlab package from The
Mathworks, Inc..
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