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The generation of genome-wide data derived from methylated DNA immunoprecipitation followed by sequencing
(MeDIP-seq) has become a major tool for epigenetic studies in health and disease. The computational analysis of such data,
however, still falls short on accuracy, sensitivity, and speed. We propose a time-efficient statistical method that is able to
cope with the inherent complexity of MeDIP-seq data with similar performance compared with existing methods. In order
to demonstrate the computational approach, we have analyzed alterations in DNA methylation during the differentiation
of human embryonic stem cells (hESCs) to definitive endoderm. We show improved correlation of normalized MeDIP-seq
data in comparison to available whole-genome bisulfite sequencing data, and investigated the effect of differential
methylation on gene expression. Furthermore, we analyzed the interplay between DNA methylation, histone modifi-
cations, and transcription factor binding and show that in contrast to de novo methylation, demethylation is mainly
associated with regions of low CpG densities.

[Supplemental material is available at http://www.genome.org. The MeDIP-seq data from this study have been submitted
to NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession no. SRA012665. The
bead array gene expression data from this study have been submitted to the NCBI Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo) under accession no. GSE21715. The MEDIPS software package, manual, data, and example data
are available online at http://medips.molgen.mpg.de.]

DNA methylation is an epigenetic mechanism involved in tran-

scriptional regulation during embryonic development (Meissner

et al. 2008) and reprogramming of somatic cells into induced

pluripotent stem cells (Chan et al. 2009; Deng et al. 2009). Results

from literature have shown severe effects of aberrant methylation,

for example, its association with cancer ( Jones and Baylin 2007;

Irizarry et al. 2009). Furthermore, distinct genome-wide methyla-

tion patterns distinguish different cell-types (Eckhardt et al. 2006;

Rakyan et al. 2008). Sequencing-based DNA methylation data are

an emerging technology for analyzing epigenetic modifications

(Laird 2010). Methylated DNA immunoprecipitation (MeDIP) de-

pends on the use of an antibody specific for methylated cytosines in

order to immunocapture methylated genomic fragments (Weber

et al. 2005), which can be detected either by tiling arrays (MeDIP-

Chip) or by next-generation sequencing (MeDIP-seq). Methylation

profiles obtained by the MeDIP approach are not base pair–specific

but reflect methylation levels on a resolution restricted by the size

of the sonicated DNA fragments after amplification and size selec-

tion. In contrast, bisulfite sequencing detects cytosine methylation

on a base-pair level. Although whole-genome single-base resolution

maps have been generated (Lister et al. 2008, 2009), such tech-

niques cannot yet be cost-effectively applied to screen large sets of

sequences or samples. Reduced representation bisulfite sequencing

(RRBS) was introduced in order to address this issue by selecting

only some regions of the genome for sequencing. Here, reduced

representation is achieved by the size-fractionation of DNA frag-

ments after restriction enzyme digestion (Meissner et al. 2008; Laird

2010). In contrast to bisulfite sequencing, MeDIP-seq–derived

methylation data are of far lower resolution, and therefore, it re-

mains difficult to discriminate between CpG and non-CpG meth-

ylation when single-end short reads are considered. However,

MeDIP-seq covers nearly as many CpGs per sample genome as does

the more expensive whole-genome shotgun bisulfite sequenc-

ing (WGSBS) approach (Laird 2010). An advantage of the MeDIP

approach is the generation of unbiased, cost-effective, and full-

genome methylation levels without the limitations associated

with methylation-sensitive restriction enzymes. The current bot-

tleneck resulting from the advancing technology development in

DNA methylation is the computational analysis of the large-scale

sequencing data (Laird 2010). It has been previously shown that

MeDIP-derived data need to be corrected for local CpG densities in

order to compute unbiased methylation levels (Down et al. 2008;

Pelizzola et al. 2008). This effect is caused by a varying efficiency of

antibody binding and immunoprecipitation dependent on the lo-

cal density of the methylated CpG sites. Although there are com-

putational methods available for analyzing whole-genome meth-

ylation data (Down et al. 2008; Pelizzola et al. 2008), in particular

the analysis of MeDIP-seq data remains disproportionally time-

consuming. Moreover, important features for the design of MeDIP-

seq experiments have not yet been addressed, including quality

control metrics and identification of differential methylation. In
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particular, the number of sequencing reads necessary for obtain-

ing a sufficient coverage of the methylome has to be estimated and

the enrichment of CpG-rich short reads relative to the genomic

background has to be analyzed in order to provide a quality mea-

sure for antibody binding and immunoprecipitation. Finally, there

is a need for MeDIP-seq–specific methods that identify events of

differential methylation. Here, we present MEDIPS, a comprehen-

sive approach for normalizing and analyzing MeDIP-seq data that

is based on the valuable concept of coupling factors presented

by Down et al. (2008) but that outperforms computation time

by orders of magnitude. As a proof of performance, we processed

the available MeDIP-seq sperm data from Down et al. (2008),

compared our results to benchmark data from the HEP project

(Eckhardt et al. 2006), and show comparable concordance to the

results of Down et al. (2008). We further applied our computa-

tional analysis approach to the analysis of cellular differentiation

of human embryonic stem cells (hESCs). Because hESCs can be

induced to differentiate into a wide variety of cell types, these cells

hold promise for cell replacement therapy (Altun et al. 2010). Dif-

ferentiation of hESCs along the endodermal lineage is induced

by treatment with Activin A, a member of the TGFb family of

ligands (D’Amour et al. 2005; Agarwal et al. 2008), resulting in

definitive endoderm (DE). We derived DE cells from hESCs and

analyzed the resulting transcriptome and methylome profiles of

both cell types using the Illumina bead array platform and MeDIP-

seq technologies. Analogous to the study of Lister et al. (2009), we

identified a large number of demethylation events, emphasizing

an important role of demethylation during the differentiation of

hESCs. In addition, we identified de novo methylation events at key

regulatory acting genomic regions (e.g. in the POU5F1 transcription

factor [TF] promoter). The entire computational approach (MED-

IPS), including data processing, quality control, normalization, sta-

tistical analysis of differential methylation, and methods for the

simulation of read coverage and saturation has been made available

as an R software library. MEDIPS is suitable for any arbitrary genome

available via Bioconductor’s annotation libraries (Gentleman et al.

2004). Our results show that MEDIPS is an efficient approach for

a genome-wide methylation analysis that significantly reduces the

imbalance of sequencing data generation and analysis and that can

assist further studies aiming to understand and characterize the

function of DNA methylation.

Results

MEDIPS—MeDIP-seq data normalization performance

The rationale behind our normalization method is based upon the

concept of coupling factors presented by Down et al. (2008). Based

on a selected distance function for calculating coupling factors, we

estimated the dependency between increasing total CpG density

and increasing mean MeDIP-seq signals for the low range of cou-

pling factors. Instead of transferring the identified normalization

parameters to a computationally demanding Bayesian deconvolu-

tion process (Down et al. 2008), MEDIPS weighs the raw MeDIP-seq

signals with respect to the estimated coupling factor–dependent

normalization parameters. The main impact of this simplification is

a significantly reduced run time for processing MeDIP-seq data by

orders of magnitude. Moreover, CpG coupling factor–based nor-

malization methods do not require an artificial reference experi-

ment using fully methylated samples, as proposed by Pelizzola et al.

(2008). For a detailed description of the normalization method

performed by MEDIPS, see the Supplementary Methods. In order to

test the performance of the MEDIPS procedure, we processed the

MeDIP-seq data derived from a sperm sample published by Down

et al. (2008). Additionally, we downloaded the normalized meth-

ylation values provided by Down et al. (2008) as well as the bench-

mark methylation data derived from bisulfite-sequencing of an-

other sperm sample generated by the human epigenome project

(HEP) (Eckhardt et al. 2006). Because we have mapped our short

reads against the latest human genome build (hg19), we always

transform genomic coordinates from other public sources to the

hg19 build using UCSC’s Batch Coordinate Conversion (liftOver)

software (Rhead et al. 2010). The analysis revealed that both nor-

malization methods improved the poor correlation of raw data

from MeDIP-seq and bisulfite sequencing from a Pearson correlation

of 0.42 (Fig. 1A) to 0.83 (MEDIPS) (Fig. 1B) and 0.82 (Batman) (Fig.

1C), respectively, and that both methods have a high correlation of

0.92 (Fig. 1D).

Differentiation of hESCs into DE

Upon treatment with Activin A (100 ng/mL) for 5 d, undifferentiated

hESCs (H1, passage 53) changed morphology from typical, de-

fined, tight colonies (Fig. 2A) into less dense, flatter cells (Fig. 2B;

D’Amour et al. 2005). In order to confirm the differentiation into

DE, we detected the expression of SOX17 using immunostaining

(Fig. 2C) and investigated lineage-specific gene expression patterns

by real-time RT-PCR (Fig. 2D). After 5 d of Activin A treatment, the

majority of cells was devoid of the pluripotent marker POU5F1

but, however, showed expression of the TFs SOX17 and FOXA2,

which are markers of DE. Importantly, there was a low level ex-

pression of the TF SOX7 (expressed in primitive endoderm but

not in DE). This implies that the induction of SOX17 and FOXA2

expression was not a result of differentiation into primitive en-

doderm. PAX6 expression is detectable, demonstrating the pres-

ence of some ectodermal cells. Moreover, Brachyury (T) expression

was also detected, which might imply a transition through the

primitive streak stage of development. Furthermore, HNF4A is up-

regulated and therefore indicative of early hepatic-like charac-

teristics of the Activin A–treated cells.

MEDIPS—MeDIP-seq quality control metrics

Based on the high-quality mapping hits of the generated short reads

from hESCs, DE, and input (see Methods), we first performed sat-

uration analyses resulting in genome-wide coverage saturation of

0.94 for hESCs and 0.96 for DE (see Supplemental Fig. 1A,B). Be-

cause the constellation of DNA fragments that have to be sequenced

is much higher for the input samples than for the immunoprecip-

itated samples, the estimated saturation for the input sequences is

lower (0.75) (see Supplemental Fig. 1C). Coverage analysis shows a

good CpG coverage saturation of the approximately 28.2 million

CpGs of the human genome. In the hESCs sample 22.4 million

CpGs (79%), in the DE sample 23.2 million CpGs (82%), and in the

input sample 25.4 million CpGs (90%) were covered at least once

(see Supplemental Fig. 1D–F). The genome-wide Pearson correlation

obtained when comparing MeDIP-seq data from the hESCs and DE

samples is 0.9 (see Supplemental Fig. 2A,B). Moreover, we tested the

enrichment of CpG-rich short reads derived from the immunopre-

cipitation step, and found a relative enrichment for CpG-rich short

reads from the hESC sample (2.11) and DE sample (2.59) compared

with the reference genome, whereas, as expected, the relative CpG

enrichment is close to one (1.16) for the combined input samples

(see Supplemental Table 1). Finally, the calibration curves clearly

reveal the dependency between increasing MeDIP-seq signals and

increasing local total CpG densities for the hESCs and DE samples
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resulting from immunoprecipitation, but not for the input sample

(see Supplemental Fig. 3A–C). For a detailed description of the

quality controls, see Supplementary Methods.

Comparing MeDIP-seq and WGSBS derived methylation
profiles in hESCs

Recently, Lister et al. (2009) presented a genome-wide map of

methylated cytosines in hESCs at base resolution generated from

1.16 billion short reads of a WGSBS approach. Moreover, they

showed that 25% of all methylated cytosines in hESCs exist in a

non-CpG context. Although MeDIP-derived methylation signals

are not at a base resolution level, we were interested in comparing

mean MeDIP-seq and mean WGSBS methylation values for defined

regions of interest. We divided all the Ensembl (Birney et al. 2004)

transcript proximal promoters (�1 kb to +0.5 kb around their

transcription start sites [TSSs]) of chromosome 1 into 500-bp win-

dows and calculated mean WGSBS-derived CpG methylation

values and mean un-normalized (reads per million [rpm]) MeDIP-

seq values from hESCs on that resolution. The scatterplot in Figure

Figure 1. Normalization of MeDIP-seq data. We compared the normalization results of the MEDIPS method by processing publicly available MeDIP-seq
data (Down et al. 2008) against bisulfite sequencing–derived methylation data from sperm samples (human epigenome project [HEP]) (Eckhardt et al.
2006). Each data point represents a genomic region analyzed by bisulfite sequencing (Eckhardt et al. 2006). The color code refers to four quantiles of the
mean coupling factors (CpG densities) for these regions. Correlation plots show (A) raw MeDIP-seq signals (y-axis), (B) MEDIPS normalized signals (y-axis),
and (C ) Batman (Down et al. 2008) normalized (y-axis) signals against bisulfite data (x-axis) from the HEP project (Eckhardt et al. 2006). (D) Comparison of
MEDIPS normalized against Batman (Down et al. 2008)-normalized MeDIP-seq data for the same genomic regions.

DNA methylation changes in differentiating hESCs
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3A shows a low correlation of the raw data of 0.31. Figure 3B shows

that this correlation increases to 0.74 by normalizing the rpm

MeDIP-seq signals into absolute methylation signals (ams) using

MEDIPS. For CpG islands (Takai and Jones 2002), the correlation

between mean rpm MeDIP-seq and mean

WGSBS values is 0.54 (see Fig. 3C) and

increases to 0.65 with MEDIPS normal-

ized ams values (see Fig. 3D).

Promoter methylation

We have, in particular, analyzed CpG

density and methylation distributions

in proximal promoter sequences (�1 kb

to +0.5 kb around the TSSs) of 96,016

Ensembl (Birney et al. 2004) transcripts.

Figure 3E shows the well-known bimodal

CpG density distribution present in hu-

man promoters but calculated based on

CpG coupling factors. By visual inspec-

tion of the plot, we define the coupling

factor = 40 as threshold for discriminating

between low CpG density (LCP; 48,021

transcripts) and high CpG density (HCP;

47,995 transcripts) promoters. Whereas

bimodal promoter methylation is not ob-

vious when considering non-normalized

rpm MeDIP-seq signals from hESCs (see

Supplemental Fig. 4A), MEDIPS-normalized ams MeDIP-seq values

reveal the bimodal promoter methylation distribution present in

hESCs (see Fig. 3F) and in DE (see Supplemental Fig. 4B). Consistent

with previous findings (Koga et al. 2009), we observe distinct

Figure 2. Derivation of definitive endoderm from human ES cells. Phase contrast image of un-
differentiated human ES cells (hESCs; A) and cells after 5 d of Activin A treatment (B). (C ) Immuno-
fluorescence labeling of differentiated cells showing SOX17 expression. Scale bars, 100 mm. (D) Effect
of Activin A treatment on the gene expression of selected genes during differentiation of human ES cells.
The ratios represent the mean of two independent biological replicates. Bars, SE between the biological
replicates.

Figure 3. Promoter, CpG islands, and TFBS methylation and comparison to WGSBS. (A) We divided Ensembl (Birney et al. 2004) transcript promoters of
chromosome 1 into 500-bp windows and show that mean WGSBS and mean reads per million (RPM) MeDIP-seq signals have a correlation of 0.31. (B) The
WGSBS vs. MeDIP-seq correlation is increased to 0.74 after MEDIPS normalization of the MeDIP-seq signals into absolute methylation signals (AMS). For
CpG islands, the correlation between mean rpm MeDIP-seq and mean WGSBS values is 0.54 (C ) and is increased to 0.65 after MEDIPS normalization of the
MeDIP-seq signals into ams (D). (E) DNA sequences underlying human promoters show a bimodal distribution of CpG densities (calculated as means of
CpG coupling factors). By setting the coupling factor = 40, we define a threshold for discriminating between low (LCPs) and high (HCPs) CpG density
promoters. (F ) MEDIPS normalized ams reveal the bimodal promoter methylation distributions in hESCs. (G) POU5F1 binding sites (Lister et al. 2009)
show low negative correlation (�0.10) between CpG density and un-normalized rpm values in hESCs. (H ) MEDIPS normalized ams values reveal the
negative correlation (�0.82) between CpG density and methylation present in POU5F1 binding sites. Interestingly, mean CpG coupling factors and mean
normalized ams values indicate bimodal CpG density and methylation distributions of POU5F1 TFBSs.
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patterns of LCP and HCP methylation based on our MeDIP-seq

data. For hESCs, a large fraction of LCPs (22,104, 46%) is highly

methylated (mean ams $600), whereas only 3488 (7%) LCPs show

low methylation levels (mean ams #400). For HCPs, this obser-

vation is reversed: 33,196 (69%) HCPs are lowly methylated,

whereas only 189 (<1%) HCPs are highly methylated. For DE,

a similar trend was observed (data not shown).

Methylation patterns of TF binding sites

We tested the ChIP-seq derived TF binding sites (TFBSs) of six TFs

as presented by Lister et al. (2009) for mean CpG densities, rpm

values, and ams values in hESCs. As shown in Figure 3G, a low

negative correlation between CpG density and un-normalized rpm

values is observed for POU5F1 TFBSs (Pearson correlation �0.10).

An increased negative correlation is obtained (�0.82) when MEDIPS-

normalized ams values are considered instead. Interestingly,

mean CpG coupling factors and mean normalized ams values in-

dicate bimodal CpG density and methylation distributions of

POU5F1 TFBSs (see Fig. 3H). In addition to POU5F1, the binding

sites of KLF4 and TAF1 show bimodal CpG density and ams distri-

butions (see Supplemental Fig. 4C–F). In contrast, NANOG, SOX2,

and EP300 binding sites cannot be distinguished into two groups

of CpG densities or ams (see Supplemental Fig. 4G–L).

Identification of differentially methylated regions

Based on the MeDIP-seq data from hESCs, DE, and input, MEDIPS

identified 62,142 distinct genome-wide regions that become de-

methylated during the differentiation of hESCs into DE (see Sup-

plementary File 1). On the other hand, MEDIPS identified 10,435

genomic regions where de novo methylation occurs during the

first step of differentiation along the endodermal linage (see Sup-

plementary File 2). For a detailed description of the detection of

differentially methylated regions (DMRs), see Methods. The com-

paratively higher number of demethylated regions compared with

de novo methylated regions emphasizes the important role of

demethylation during embryonic differentiation. As a comparison,

Lister et al. (2009) identified approximately 6 million cytosines with

higher levels of methylation in hESCs compared with differentiated

fetal lung fibroblasts, and only 124,162 cytosines with higher levels

of methylation in fetal lung fibroblasts compared with hESCs. From

the 491 regions that are hypomethylated in hESCs compared with

fetal lung fibroblasts (Lister et al. 2009), we also identified 62 regions

(13%) where a de novo methylation event occurs during the differ-

entiation into DE and only five regions (1%) that appear more

methylated in hESCs compared with DE. Moreover, we tested the

overlap between the identified genomic regions that become

demethylated during differentiation of hESCs into DE and the par-

tially methylated domains (8088 PMDs) identified by Lister et al.

(2009) in fetal lung fibroblasts. From the 8028 PMDs remaining after

transformation of the genomic coordinates to the hg19 genome

build, 3067 (38.2%) overlap with at least one of the DMRs.

Genome-wide distribution of DMRs

Figure 4A shows rpm MeDIP-seq values for the three biological

replicates of hESCs, DE, and the input samples for a subset of the

identified DMRs selected by highest variances between samples.

This clustering approach clearly separates the hESCs, DE, and input

samples into distinct groups. Additionally, the heatmap contains

scaled CpG coupling factors of the DMRs. Interestingly, the DMRs

that become demethylated during the differentiation of hESCs are

associated with low CpG densities, and the DMRs that become de

novo methylated are associated with higher CpG densities (see Fig.

4A). In addition to this observation, we calculated CpG observed/

expected (obs/exp) (Gardiner-Garden and Frommer 1987) ratios as

a measure for CpG density with respect to the amount of cytosines

present in both strands of the DNA for both sets of DMRs, sepa-

rately. Whereas the majority of demethylated regions are associated

with very low CpG obs/exp ratios, de novo methylated regions tend

to be associated with higher CpG obs/exp ratios, indicating higher

densities of CpGs (see Fig. 4B). For the identified demethylated (Fig.

4C) and de novo (Fig. 4D) methylated regions, we tested if they

overlap with HCPs (high CpG promoters) or LCPs (low CpG pro-

moters), CpG islands (Takai and Jones 2002), the CpG island shores,

exons, and introns, or if they are intergenically located. In addition,

we have calculated the enrichment of DMRs with respect to selected

regions of interest. Interestingly, a higher percentage of de novo

methylated regions overlap with promoters (17.23%) or CpG is-

lands (37.15%) compared with the percentage of demethylated re-

gions (6.09% and 8.85%, respectively). For CpG islands, the DMR

enrichment is 2.53 for demethylated regions and 11.20 for de

novo methylated regions. We observed that less than 1% of all

demethylation events occur within HCPs (enrichment of 0.49),

whereas 12.33% of all de novo methylated regions overlap with

HCPs (enrichment of 8.08). The percentage of demethylated re-

gions that overlap with introns is considerably higher (56.28%)

compared with the percentage of de novo methylated regions

(31.43%). In total, a large fraction (78.53%) of all genome-wide de-

methylation events can be associated with transcript bodies or

proximal promoters associated with 12,930 unique Ensembl (Birney

et al. 2004) gene names (including miRNAs and others), whereas

53% of all de novo methylation events can be associated with

the gene regions or proximal promoters of 4787 unique Ensembl

genes.

Differential methylation at TFBSs

We have tested the TFBSs of six TFs in hESCs as published by Lister

et al. (2009) for overlap with regions identified as differentially

methylated during endodermal differentiation of hESCs. In total,

DMRs are not significantly enriched for any of the sets of TFBSs

(data not shown). However, demethylations and de novo methyl-

ations occur within the genomic regions identified as binding re-

gions of the TFs. For example, from the 3889 POU5F1 binding sites

(Lister et al. 2009), there are 130 regions that become de novo and

only 14 regions that become demethylated. Interestingly, although

there are in total six times more DMRs that become demethylated

than de novo methylated, the majority of DMRs that overlap with

the TFBSs are associated with de novo methylation for all six TFs

(see Supplemental Table 2). Binding regions of the class of TFs that

show bimodal methylation distributions (these are POU5F1, KLF4,

and TAF1) overlap more than twice as much with DMRs than TFBSs

targeted by NANOG, SOX2, and EP300.

Enrichment analysis associates demethylation events
to functional histone modifications

In order to further examine the identified DMRs, we performed

overrepresentation analyses for the demethylated and de novo

methylated regions, separately, using the statistical analysis soft-

ware EpiGRAPH (for the full results, see Supplemental Tables 3, 4;

Bock et al. 2009). Most interestingly, demethylation events are sig-

nificantly enriched within regions associated with high signals of

gene activating histone modifications (Table 1; Barski et al. 2007).

DNA methylation changes in differentiating hESCs
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On the other hand, events of demethylation are strongly under-

represented within regions associated with higher signals of gene

silencing histone modifications (Barski et al. 2007).

Differential methylation and gene expression alterations

In order to analyze the interplay between DNA methylation and

gene expression changes, we performed microarray-based gene ex-

pression analysis of hESCs and derived DE cells (see Methods); 2129

genes were significantly (P-value # 0.01) down-regulated and 1661

genes up-regulated after differentiation (see Supplemental Table 5).

In total, 15,947 genes were in common with Illumina arrays and

with gene annotations matched to the identified DMRs. Based on

these common genes, Figure 5 shows the overlap between genes

that contain at least one identified DMR (demethylation or de novo

methylation) in any of their associated transcript-exons, introns, or

promoter regions with expression either up-regulated (Fig. 5A) or

down-regulated (Fig. 5B) defined by a P-value of #0.01. In general,

the events of differential methylation are significantly associated

with up-regulated (P-value = 3.58310�6) and down-regulated (P-

value = 4.78310�49) gene expression patterns (see Supplemental

Table 5). However, the histograms in Figure 5, A and B, show similar

location distributions over the tested gene-associated functional

units of demethylation and de novo methylation events in both,

up- and down-regulated genes. Although gene expression changes

cannot, in general, be linked to distinct patterns of differential

Figure 4. Differentially methylated regions (DMRs). (A) Heatmap of 100 DMRs, selected by highest variances between samples, including mean rpm
signals for the three biological replicates of hESCs, and DE cells, the input sample from hESCs, the input sample from DE, and scaled mean CpG coupling
factors. Differential methylation was calculated based on the pooled sets for hESCs, DE, and input (see Methods and Supplementary Methods). (B)
Distributions of CpG observed/expected (Gardiner-Garden and Frommer 1987) ratios for demethylated regions (hESCs > DE) and de novo methylated
regions (DE > hESCs). The identified demethylated (C ) and de novo (D) methylated regions were annotated for Ensembl (Birney et al. 2004) transcript
promoters (�2 kb to +0.5 kb regions around their TSSs; divided into LCPs and HCPs), CpG islands (Takai and Jones 2002) and their shores (�0.5 kb from
the start or +0.5 kb from the end of a CpG island), exons, introns, and intergenic regions (no overlap with promoters and transcript bodies). Regions can be
associated to more than one annotation (e.g., exon and CpG island).
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methylation, Figure 5 shows two examples of de novo methylation

events located within the promoter regions of the TFs POU5F1 (Fig.

5C) and STAT5A (Fig. 5D), which appear along with down-regula-

tion of gene expression in both cases.

Discussion
Full-genome and base-specific methylomes of hESCs have been

generated based on more than 1 billion short reads (Lister et al.

2009). Although MeDIP-seq data have far lower resolution, we have

shown that MeDIP-seq enables the generation of full-genome

methylation profiles based on about 20–30 million uniquely map-

ped short reads and thus reveals valuable information for whole-

genome methylation analysis. A prerequisite is, however, a proper

computational processing of the data, in particular a normalization

procedure that takes into account the inherent sequence bias. In

this work, we have developed and applied MEDIPS, a stand-alone

computational tool, and showed that it is a cost- and time-effective

software package for full-genome DNA methylation analysis.

MeDIP-seq data are not base-specific, and therefore, it is still difficult

to distinguish cytosine methylation within a CpG and non-CpG

context based on single-end short reads. However, we have shown

that for regions of interest, methylation profiles obtained by WGSBS

can be correlated to normalized MeDIP-seq data. For biological

material known to express cytosine methylation in non-CpG con-

text, like for hESCs, correlation might even be improved when raw

MeDIP-seq signals are calibrated with respect to a weighted com-

bination of cytosine- and CpG-based coupling factors. The MEDIPS

software package enables calculating coupling factors with respect

to any arbitrary sequence pattern for immediate adapted calibration

in future studies. Moreover, MeDIP-seq–derived methylation pro-

files enable the identification of regions showing differential

methylation between samples on a full-genome level. Although in

vivo liver development is specifically characterized by substantial

demethylation, Brunner et al. (2009) reported some controversial

observations on the number of demethylation events and the

enrichment of demethylation and de novo methylation events at

H3K27me3-bound regions and within

LCPs when comparing in vitro and in

vivo hepatic differentiation by a methyl-

sensitive restriction enzyme–based se-

quencing approach. However, based on

the normalized full-genome MeDIP-seq

data of hESCs and DE, consistently with

in vivo hepatic differentiation (Brunner

et al. 2009), we observe high numbers

of demethylation events and especially

LCPs are specific targets for demethyla-

tion compared with de novo methyla-

tion. Although we compared our DMRs

to histone modification signals obtained

from human T cells (Barski et al. 2007),

accordingly to the method of Meissner

et al. (2008), we observed that H3K4

methylation events (activating mark) are

associated with demethylation events in

hESCs. CpG density and methylation

analysis revealed two classes of TFs,

namely, POU5F1, KLF4, and TAF1 on the

one hand, and NANOG, SOX2, and

EP300 on the other hand, thus suggest-

ing distinct mechanisms in the interplay

between TF binding and DNA methylation. Differential methyla-

tion is associated with differential gene expression in some key

pluripotency regulating genes such as POU5F1. Similar cases can be

found in the literature (Rakyan et al. 2008). However, we did not

observe a general trend of gene-associated, region-specific meth-

ylation alterations that could explain up- and down-regulation of

gene expression, thus implying the influence of additional factors

in gene regulation. We have identified previously a core gene

regulatory network of POU5F1 within the context of maintaining

pluripotency in hESCs (Chavez et al. 2009), so that we were spe-

cifically interested in the effect of Activin A treatment on the in-

duction of endodermal differentiation (D’Amour et al. 2005) by

associating gene expression and DNA methylation for the mem-

bers of this network. POU5F1 is a major factor in maintaining

pluripotency and shows significant differential methylation in its

promoter sequence (see Fig. 5C) associated to down-regulation of

gene expression during differentiation. In contrast, direct target

genes of POU5F1 show low or no promoter methylation differ-

ences, suggesting that expression of downstream genes is de-

termined by promoter DNA methylation-independent regulation

(see Supplemental Fig. 6). These observations indicate more com-

plex dependencies in the interplay between gene regulation and

DNA methylation during endoderm differentiation and of course

gastrulation. Therefore, we propose that the effect of differential

methylation on gene expression has to be further examined with

respect to gene-specific locations of putative functional enhancer

or silencer regions. Taken together, in our opinion and in line with

that of D’Amour et al. (2005), we propose to further consider in

vitro differentiation of hESCs along the endodermal lineage as

a model for endodermal in vivo development.

Methods

Differentiation of hESCs cells into DE
hESCs (H1, passage 53) were treated with Activin A (100 ng/mL) for
5 d according to the method of D’Amour et al. (2005).

Table 1. Overrepresented histone modifications in DMRs

Histone
modification

Gene
regulation

hESCs > DE
(ratio control/DMRs)

DE > hESCs
(ratio control/DMRs)

H2BK5me1 + 0.54 —
H3K27me1 + 0.62 1.33
H3K36me3 + 0.39 —
H3K4me1 + 0.73 0.86
H3K4me2 + 0.77 —
H3K9me1 + 0.67 —
H3R2me1 + 0.85 —
H4K20me1 + 0.44 —
PolII + 0.62 —
H3K27me3 � 1.38 —
H3K9me3 � 1.60 —
H3K9me2 � 1.45 —
H3K27me2 � — 1.27
H2A_Z Controversial 2.03 —

The table shows all histone modifications (Barski et al. 2007) that are highly significantly (Bonferroni-
corrected) enriched (or under-represented, respectively) within the identified demethylated and de
novo methylated regions. Statistical analysis was performed using EpiGRAPH (here, EpiGRAPHSs over-
lapRegionsCount annotation was considered) (Bock et al. 2009). + indicates associated with gene acti-
vation (Barski et al. 2007); �, associated with silent genes (Barski et al. 2007); controversial, no distinct
effect (Barski et al. 2007); hESCs > DE, DMRs higher methylated in hESCs compared to DE; DE > hESCs,
DMRs higher methylated in DE compared with hESCs; —, not associated to DMRs; ratio control/DMRs
<1, overrepresented in DMRs; and ratio control/DMRs >1 underrepresented in DMRs.
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Library preparation

Genomic DNA was sonicated for 2 h as described previously
(Parkhomchuk et al. 2009) to a size range of 100–400 bp. Frag-
mented DNA was purified using QIAquick spin columns and
buffer QG (Qiagen) according to the manufacturer’s protocol. Five
micrograms of fragmented DNA was subjected to single end li-
brary preparation using the genomic DNA sample prep kit (Illu-
mina) according to the manufacturer’s instructions with the fol-
lowing modifications: 2.4 times increased amount of enzymes
were used for end-repair and A-tailing. End repair was performed
in the presence of 0.25 mM dNTPs Mix in a total volume of 317 mL;
A-tailing was performed in a total volume of 88 mL. Adapters were
ligated to the DNA fragments using 29 mL of Adapter oligo mix and
two times excess concentration of ligase in a total reaction volume

of 98 mL. The sequencing libraries were subjected to immunopre-
cipitation (see below). The amplification was performed after im-
munoprecipitation prior to gel-size selection. Twenty percent of
the immunoprecipitated DNA or 40 ng of sheared DNA (input) was
amplified using six amplification cycles in a total volume of 30 mL.
Amplified libraries were size-selected on a 2% agarose gel to frag-
ments of 150–400 bp (corresponding to insert sizes of 80–330 bp).
Libraries were quantified on a Qubit fluorometer using the QuantIt
dsHS Assay Kit (Invitrogen).

Immunoprecipitation of methylated DNA

MeDIP was adapted from a previously published protocol (Weber
et al. 2005). Ten micrograms of monoclonal antibody against

Figure 5. Genetic and epigenetic dependencies. The figure shows the number of up-regulated (A) and down-regulated (B) genes with respect to the
number of genes associated with differentially methylated regions (DMRs). For the genes that are differentially expressed and that contain a DMR, the
histograms give an overview of the location of the respective demethylated and de novo methylated regions (LCP indicates low CpG density promotor;
HCP, high CpG density promotor). (C ) The promoter region of the down-regulated TF POU5F1, including an identified promoter de novo methylation
event. (D) The promoter region of the down-regulated TF, STAT5A, including an identified de novo methylation event. Visualization of both regions was
done with a local copy of the UCSC Genome Browser (Kuhn et al. 2009) (hg19). Included tracks are rpm (blue curves) and rms (gray blocks) values for
hESCs and DE, rpm values for input (red curves), demethylated and de novo methylated regions (black blocks), CpG islands defined by UCSC (dark green
blocks at the bottom) (Kuhn et al. 2009) and by Takai and Jones (2002) (light green blocks at the top), CpG densities along the chromosome (green curves,
calculated by MEDIPS based on the CpG coupling factors), TFBSs of six TFs (orange blocks; genomic regions were transformed from hg18 to hg19 using
UCSCs liftOver software; Rhead et al. 2010) (Lister et al. 2009), repeat masked regions (black boxes at the bottom), and RefSeq (Pruitt et al. 2007) and
Ensembl (Birney et al. 2004) transcripts.
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5-methylcytidine (no. BI-MECY, Eurogentec) was coupled over-
night with 40 mL of Dynabeads M-280 sheep anti-mouse IgG
(Invitrogen) in 500 mL of 0.5% BSA/PBS and washed two times
with 0.5% BSA/PBS and once with IP-buffer (10 mM sodium
phosphate at pH 7.0, 140 mM NaCl, 0.25% Triton X100). The se-
quencing libraries were denatured for 1 min at 95°C. Four micro-
grams of library was immunoprecipitated for 4 h at 4°C with the
5-methylcytidine antibody coupled to Dynabeads in 230 mL of
IP-buffer and then washed three times with 700 mL of IP-buffer.
The beads were treated with 50 mM Tris-HCl (pH 8.0), 10 mM
EDTA, 1% SDS for 15 min at 65°C and collected using a magnetic
rack. The supernatant containing the methylated DNA (200 mL)
was diluted with 200 mL of 10 mM Tris (pH 8.0), 1 mM EDTA and
treated with proteinase K (0.2 mg/mL) for 2 h at 55°C, followed by
phenol-chloroform-extraction and ethanol precipitation. The
precipitated DNA was resuspended in 20 mL of 10 mM Tris (pH 8.5).

Illumina Genome Analyzer sequencing and data processing

After library quantification at a Qubit (Invitrogen), a 10 nmol stock
solution of the amplified library was created. We loaded 12 pM of
the stock solution onto the channels of a 1.4-mm flow cell, and
cluster amplification was performed. Sequencing-by-synthesis was
performed on an Illumina Genome Analyzer (GAIIx). After quality
control of the first base incorporation (signal intensities, cluster
density), the run was started. All MeDIP and input samples were
subjected to a 36-bp single read sequencing. The raw data process-
ing was done with the Illumina 1.4 pipeline version. After MAQ
mapping (Li et al. 2008) of the generated reads against the human
genome hg19 build downloaded from UCSC (Kuhn et al. 2009)
(http://genome.ucsc.edu/), we obtained about 25.9 million unique
high-quality (MAQ quality $ 10) mapping hits for pluripotent
hESCs and about 32.6 million for DE. Additionally, we obtained
about 22.6 million unique high-quality mapping hits from input
samples of both conditions.

Identification of DMRs

Based on the MeDIP-seq data from hESCs, DE, and input, re-
spectively, we calculated the short read coverage (extend value =

400) at genome-wide 50-bp bins using MEDIPS. In order to identify
DMRs, MEDIPS calculates mean rpm (for hESCs, DE, and input)
and mean rms (for hESCs and DE, only) values for overlapping
genome-wide 500-bp windows where neighboring windows over-
lap by 250 bp. In order to estimate a minimal global background
signal threshold, MEDIPS calculates the 0.9 rpm quantile (qt) of the
input rpm signals of all overlapping 500-bp windows. Addition-
ally, MEDIPS calculates P-values by comparing the rms signal dis-
tributions of the 50-bp bins of the hESCs and DE samples within
each of the 500-bp windows. DMRs were identified by filtering
for windows associated with a P-value #0.001, with a mean hESCs
(or DE, respectively) rpm value $qt, with a local mean rpm hESCs/
input (or DE/input, respectively) ratio $1.33, and with a mean rms
hESCs/DE ratio #0.75 (or $1.33, respectively) (for a detailed de-
scription, see Supplementary Methods).

Gene expression analysis

Biotin-labeled cRNA was produced by means of a linear amplifica-
tion kit (Ambion) using 500 ng of quality-checked DNase-free total
RNA as input. Chip hybridizations, washing, Cy3-streptavidin
staining, and scanning were performed on an Illumina BeadStation
500 platform (Illumina) using reagents and following protocols
supplied by the manufacturer. cRNA samples were hybridized on
Illumina human-8 BeadChips. We hybridized undifferentiated and

Activin A–treated (DE differentiated) H1 cell line (passage 53) sam-
ples in biological triplicates. Raw data were obtained employing
the manufacturer’s software, BeadStudio 3.0.19.0. Subsequently,
the raw data were imported into the Bioconductor environment
(Gentleman et al. 2004), and quantile normalization was performed
using the beadarray package (for boxplots of raw and normalized
data, see Supplemental Fig. 5A,B; Dunning et al. 2007). In order to
test for global gene expression similarities within biological repli-
cates and between different treatments, pairwise Pearson correla-
tion coefficients were calculated for all samples. Correlations within
the groups are all >0.99, and correlations between the groups are
from 0.92–0.93 (see Supplemental Fig. 5C). Finally, the dendrogram
in Supplemental Figure 5D shows that the biological replicates
of hESCs (control) and of DE (treatment) can be clearly separated
into distinct groups.

Statistical analysis

For testing the enrichment of differentially expressed genes within
the set of genes associated with DMRs, we used the hypergeometric
distribution function phyper provided within the R framework
(http://www.R-project.org). For identifying DMRs, the MEDIPS
package calculates P-values (see above) using the default parameter
settings of the ttest and wilcox.test functions (both two-sided) of
the R framework. Differential gene expression was calculated using
the limma (Wettenhall and Smyth 2004) package and by setting
the level of significance to 0.01.
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